

F O U N D A T I O N

®

O

P
C

 U
A

 S
p

e
c

ific
a

tio
n

OPC 10000-100

OPC Unified Architecture

Part 100: Devices

Release 1.02

2019-04-18

Release 1.02 i OPC 10000-100: Devices

Specification
Type

Industry Standard
Specification

Comments:

Document
Number OPC 10000-100

Title: OPC Unified Architecture

Devices

Date: 2019-04-18

Version: Release 1.02 Software MS-Word

 Source: OPC 10000-100 - UA
Specification Part 100 - Devices
1.02.docx

Author: OPC Foundation Status: Release

Release 1.02 1 OPC 10000-100: Devices

CONTENTS

FIGURES ... 4

TABLES ... 5

1 Scope ... 11

2 Reference documents ... 11

3 Terms, definitions, abbreviations, and used data types ... 12

3.1 Terms and definitions ... 12

3.2 Abbreviations ... 13

3.3 Conventions used in this Document .. 13

3.3.1 Conventions for Terms .. 13

3.3.2 Conventions for Node Descriptions ... 13

3.3.3 NodeIds and BrowseNames .. 15

3.3.4 Common Attributes ... 15

4 Introduction to OPC UA ... 18

4.1 What is OPC UA? ... 18

4.2 Basics of OPC UA .. 18

4.2.1 Information Modelling in OPC UA .. 19

4.2.2 OPC UA Profiles ... 21

4.2.3 Namespaces ... 21

4.2.4 Companion Specifications ... 21

5 Device model .. 22

5.1 General .. 22

5.2 Usage guidelines .. 23

5.3 TopologyElementType .. 23

5.4 FunctionalGroupType ... 24

5.4.1 Model .. 24

5.4.2 Recommended FunctionalGroup BrowseNames .. 26

5.4.3 UIElement Type .. 26

5.5 Interfaces ... 27

5.5.1 Overview ... 27

5.5.2 VendorNameplate Interface ... 27

5.5.3 TagNameplate Interface .. 29

5.5.4 DeviceHealth Interface .. 30

5.5.5 SupportInfo Interface .. 31

5.6 ComponentType ... 34

5.7 DeviceType .. 35

5.8 SoftwareType ... 37

5.9 DeviceSet entry point ... 37

5.10 DeviceFeatures entry point ... 39

5.11 BlockType .. 39

5.12 DeviceHealth Alarm Types ... 40

5.12.1 General ... 40

5.12.2 DeviceHealthDiagnosticAlarmType .. 41

5.12.3 FailureAlarmType .. 41

5.12.4 CheckFunctionAlarmType ... 42

5.12.5 OffSpecAlarmType .. 42

5.12.6 MaintenanceRequiredAlarmType ... 42

OPC 10000-100: Devices 2 Release 1.02

6 Device communication model .. 43

6.1 General .. 43

6.2 ProtocolType .. 44

6.3 Network .. 46

6.4 ConnectionPoint ... 47

6.5 ConnectsTo and ConnectsToParent ReferenceTypes ... 48

6.6 NetworkSet Object ... 50

7 Device integration host model ... 51

7.1 General .. 51

7.2 DeviceTopology Object .. 52

7.3 Online/Offline ... 53

7.3.1 General ... 53

7.3.2 IsOnline ReferenceType .. 54

8 AddIn Capabilities ... 56

8.1 Overview .. 56

8.2 Offline-Online data transfer .. 56

8.2.1 Definition .. 56

8.2.2 TransferServices Type .. 56

8.2.3 TransferServices Object .. 57

8.2.4 TransferToDevice Method ... 57

8.2.5 TransferFromDevice Method ... 58

8.2.6 FetchTransferResultData Method .. 59

8.3 Locking .. 61

8.3.1 Overview ... 61

8.3.2 LockingServices Type ... 62

8.3.3 LockingServices Object ... 63

8.3.4 MaxInactiveLockTime Property ... 63

8.3.5 InitLock Method... 64

8.3.6 ExitLock Method ... 64

8.3.7 RenewLock Method ... 65

8.3.8 BreakLock Method .. 65

9 Specialized topology elements .. 67

9.1 General .. 67

9.2 Configurable components ... 67

9.2.1 General pattern ... 67

9.2.2 ConfigurableObjectType .. 67

9.3 Block Devices... 69

9.4 Modular Devices... 69

10 Profiles ... 71

10.1 General .. 71

10.2 Device Server Facets ... 71

10.3 Device Client Facets .. 72

11 Namespaces ... 74

11.1 Namespace Metadata ... 74

11.2 Handling of OPC UA namespaces .. 74

Annex A (normative) Namespace and mappings .. 76

Annex B (informative) Examples .. 77

B.1 Functional Group Usages ... 77

Release 1.02 3 OPC 10000-100: Devices

B.2 Identification Functional Group ... 78

Annex C (informative) Guidelines for the usage of OPC UA for Devices as base for
Companion Specifications ... 79

C.1 Overview .. 79

C.2 Guidelines to define Companion Specifications based on OPC UA for Devices 81

C.3 Guidelines on how to combine different companion specifications based on OPC
UA for Devices in one OPC UA application ... 82

Bibliography ... 84

OPC 10000-100: Devices 4 Release 1.02

FIGURES
Figure 1 – The Scope of OPC UA within an Enterprise ... 19

Figure 2 – The Relationship between Type Definitions and Instances 20

Figure 3 – The OPC UA Information Model Notation ... 21

Figure 4 – Device model overview .. 22

Figure 5 – Components of the TopologyElementType ... 23

Figure 6 – FunctionalGroupType .. 25

Figure 7 – Overview of Interfaces for Devices and Device components 27

Figure 8 – VendorNameplate Interface ... 27

Figure 9 – TagNameplate Interface .. 29

Figure 10 – DeviceHealth Interface .. 30

Figure 11 –Support information Interface .. 31

Figure 12 – ComponentType .. 34

Figure 13 – DeviceType ... 35

Figure 14 – SoftwareType .. 37

Figure 15 – Standard entry point for Devices .. 38

Figure 16 – Standard entry point for DeviceFeatures .. 39

Figure 17 – BlockType hierarchy .. 39

Figure 18 – Device Health Alarm type hierarchy ... 41

Figure 19 – Device communication model overview .. 43

Figure 20 – Example of a communication topology ... 44

Figure 21 – Example of a ProtocolType hierarchy with instances that represent specific
communication profiles ... 45

Figure 22 – NetworkType ... 46

Figure 23 – Example of ConnectionPointType hierarchy ... 47

Figure 24 – ConnectionPointType... 47

Figure 25 – ConnectionPoint usage .. 48

Figure 26 – Type Hierarchy for ConnectsTo and ConnectsToParent References 49

Figure 27 – Example with ConnectsTo and ConnectsToParent References 49

Figure 28 – Example of an automation system ... 51

Figure 29 – Example of a Device topology .. 52

Figure 30 – Online component for access to Device data ... 53

Figure 31 – Type hierarchy for IsOnline Reference ... 54

Figure 32 – TransferServicesType .. 56

Figure 33 – TransferServices ... 57

Figure 34 – LockingServicesType ... 62

Figure 35 – LockingServices .. 63

Figure 36 – Configurable component pattern .. 67

Figure 37 – ConfigurableObjectType .. 68

Figure 38 – Block-oriented Device structure example ... 69

Figure 39 – Modular Device structure example ... 70

Figure B.1 – Analyser Device use for FunctionalGroups ... 77

Figure B.2 – PLCopen use for FunctionalGroups .. 77

Figure B.3 – Example of an Identification FunctionalGroup ... 78

Release 1.02 5 OPC 10000-100: Devices

Figure C.1 – Example of applying two companion specifications based on OPC UA for
Devices .. 80

Figure C.2 – Using composition to compose one device representation defined by two
companion specifications ... 81

Figure C.3 – Example of applying several companion specifications (I) 82

Figure C.4 – Example of applying several companion specifications (II) 83

TABLES
Table 1 – Examples of DataTypes .. 14

Table 2 – Type Definition Table .. 14

Table 3 – Common Node Attributes .. 16

Table 4 – Common Object Attributes .. 16

Table 5 – Common Variable Attributes ... 16

Table 6 – Common VariableType Attributes .. 17

Table 7 – Common Method Attributes ... 17

Table 8 – TopologyElementType definition ... 23

Table 9 – ParameterSet definition .. 24

Table 10 – MethodSet definition ... 24

Table 11 – FunctionalGroupType definition .. 25

Table 12 – Recommended FunctionalGroup BrowseNames .. 26

Table 13 – UIElementType definition .. 26

Table 14 – IVendorNameplateType definition ... 28

Table 15 – VendorNameplate Mapping to IRDIs ... 29

Table 16 – ITagNameplateType definition .. 29

Table 17 – TagNameplate Mapping to IRDIs .. 30

Table 18 – IDeviceHealthType definition .. 30

Table 19 – DeviceHealthEnumeration values .. 31

Table 20 – ISupportInfoType definition ... 32

Table 21 – DeviceTypeImage definition .. 32

Table 22 – Documentation definition .. 32

Table 23 – ProtocolSupport definition ... 33

Table 24 – ImageSet definition ... 33

Table 25 – ComponentType definition .. 34

Table 26 – DeviceType definition ... 36

Table 27 – SoftwareType definition .. 37

Table 28 – DeviceSet definition .. 38

Table 29 – DeviceFeatures definition ... 39

Table 30 – BlockType definition.. 40

Table 31 – DeviceHealthDiagnosticAlarmType definition .. 41

Table 32 – FailureAlarmType definition .. 41

Table 33 – CheckFunctionAlarmType definition .. 42

Table 34 – OffSpecAlarmType definition ... 42

Table 35 – MaintenanceRequiredAlarmType definition ... 42

OPC 10000-100: Devices 6 Release 1.02

Table 36 – ProtocolType definition ... 45

Table 37 – NetworkType definition ... 46

Table 38 – ConnectionPointType definition ... 47

Table 39 – ConnectsTo ReferenceType .. 49

Table 40 – ConnectsToParent ReferenceType ... 49

Table 41 – NetworkSet definition .. 50

Table 42 – DeviceTopology definition ... 53

Table 43 – IsOnline ReferenceType ... 55

Table 44 – TransferServicesType definition .. 57

Table 45 – TransferToDevice Method arguments ... 58

Table 46 – TransferToDevice Method AddressSpace definition .. 58

Table 47 – TransferFromDevice Method arguments.. 58

Table 48 – TransferFromDevice Method AddressSpace definition .. 59

Table 49 –FetchTransferResultData Method arguments ... 60

Table 50 – FetchTransferResultData Method AddressSpace definition 60

Table 51 – FetchResultDataType structure ... 60

Table 52 – TransferResultError DataType structure .. 60

Table 53 – TransferResultData DataType structure .. 61

Table 54 – LockingServicesType definition ... 62

Table 55 – MaxInactiveLockTime Property definition .. 63

Table 56 – InitLock Method Arguments ... 64

Table 57 – InitLock Method AddressSpace definition .. 64

Table 58 – ExitLock Method Arguments.. 65

Table 59 – ExitLock Method AddressSpace definition ... 65

Table 60 – RenewLock Method Arguments ... 65

Table 61 – RenewLock Method AddressSpace definition .. 65

Table 62 – BreakLock Method Arguments .. 65

Table 63 – BreakLock Method AddressSpace definition ... 66

Table 64 – ConfigurableObjectType definition .. 68

Table 65 – BaseDevice_Server_Facet definition ... 71

Table 66 – DeviceIdentification_Server_Facet definition ... 71

Table 67 – BlockDevice_Server_Facet definition .. 71

Table 68 – Locking_Server_Facet definition ... 71

Table 69 – DeviceCommunication_Server_Facet definition .. 72

Table 70 – DeviceIntegrationHost_Server_Facet definition ... 72

Table 71 – BaseDevice_Client_Facet definition .. 72

Table 72 – DeviceIdentification_Client_Facet definition .. 72

Table 73 – BlockDevice_Client_Facet definition ... 72

Table 74 – Locking_Client_Facet definition .. 73

Table 75 – DeviceCommunication_Client_Facet definition .. 73

Table 76 – DeviceIntegrationHost_Client_Facet definition .. 73

Table 77 – NamespaceMetadata Object for this Specification ... 74

Table 78 – Namespaces used in an OPC UA for Devices Server .. 74

Release 1.02 7 OPC 10000-100: Devices

Table 79 – Namespaces used in this specification .. 75

OPC 10000-100: Devices 8 Release 1.02

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis a nd
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2019, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means --graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies
must be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may
be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents tha t
are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC
Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260 -1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Products developed using this specification may claim compliance or conformance with this specification if and

http://www.opcfoundation.org/

Release 1.02 9 OPC 10000-100: Devices

only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet
these requirements may claim only that the product was based on this specification and must not claim compliance or
conformance with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications; hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

OPC 10000-100: Devices 10 Release 1.02

Revision 1.2 Highlights

This revision contains extensions to Version 1.1.

The following table includes the Mantis issues resolved with this revision.

Mantis
ID

Summary Resolution

2708 Inconsistent BrowseNames Already fixed in 1.01.09 and IEC version.

3096 Need inverse ref from connection
point to device

Added requirement to ConnectionPoint.

3148 NamespaceMetaData Object
missing

Added to this version.

3288 BrowseNames for optional
Placeholder inconsistent

Fixed as suggested.

3221 Spelling error Fixed as suggested.

3193 NetworkSet only mandatory as part
of DeviceCommunication facet

Removed “mandatory” from heading.

3191 Broken reference Fixed as suggested.

3419 It would be good to have something
like a SoftwareType

SoftwareType was incorporated in this
revision.

4049 New element to structure different
aspects of a device

 Defined a "ComponentType" that can be
used to model any HW or SW element of a
device.

 Annex B provides guidelines on how to
structure such a device

3873 Clarification of subtypes of
BaseVariableType

Fixed UIElement to derive from
BaseDataVariableType.

4533 Add “DeviceFeatures” folder in DI Specified “DeviceFeatures” Object underneath
“DeviceSet”

http://opcfoundation-onlineapplications.org/mantis/view.php?id=2708
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3096
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3148
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3288
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3221
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3193
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3191
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3419
http://opcfoundation-onlineapplications.org/mantis/view.php?id=4049
http://opcfoundation-onlineapplications.org/mantis/view.php?id=3873
http://opcfoundation-onlineapplications.org/mantis/view.php?id=4533

Release 1.02 11 OPC 10000-100: Devices

1 Scope

This part of the OPC UA specification is an extension of the overall OPC Unified Architecture
specification series and defines the information model associated with Devices. This specification

describes three models which build upon each other as fo llows:

 The (base) Device Model is intended to provide a unified view of devices and their hardware
and software parts irrespective of the underlying device protocols.

 The Device Communication Model adds Network and Connection information elements so
that communication topologies can be created.

 The Device Integration Host Model finally adds additional elements and rules required for
host systems to manage integration for a complete system. It allows reflecting the topology
of the automation system with the devices as well as the connecting communication networks.

2 Reference documents

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments and errata)
applies.

OPC 10000-1, OPC Unified Architecture - Part 1: Overview and Concepts
http://www.opcfoundation.org/UA/Part1/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model
http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services
http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model
http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings
http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles
http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access
http://www.opcfoundation.org/UA/Part8/

OPC 10000-9, OPC Unified Architecture - Part 9: Alarms and Conditions
http://www.opcfoundation.org/UA/Part9/

OPC 10001-5, OPC Unified Architecture V1.04 - Amendment 5: Dictionary Reference

OPC 10001-7, OPC Unified Architecture V1.04 - Amendment 7: Interfaces and AddIns

[OPC 10020 - ADI], OPC UA Companion Specification for Analyser Devices

[OPC 30000 - PLCopen], OPC UA Companion Specification for PLCopen

IEC 62769, Field Device Integration (FDI)

NAMUR Recommendation NE107: Self-monitoring and diagnosis of field devices

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part7/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part9/

OPC 10000-100: Devices 12 Release 1.02

3 Terms, definitions, abbreviations, and used data types

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in The following documents, in
whole or in part, are normatively referenced in this document and are indispensable for its application.
For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments and errata) applies.

OPC 10000-1, OPC 10000-3, and OPC 10000-8 as well as the following apply.

3.1.1
block
functional Parameter grouping entity

Note 1 to entry: It could map to a function block (see IEC 62769) or to the resource parameters of the Device itself.

3.1.2
blockMode
mode of operation (target mode, permitted modes, actual mode, and normal mode) for a Block

Note 1 to entry: Further details about Block modes are defined by standard organisations.

3.1.3
Communication Profile
fixed set of mapping rules to allow unambiguous interoperability between Devices or Applications,

respectively

Note 1 to entry: Examples of such profiles are the “Wireless communication network and communication profiles for
WirelessHART” in IEC 62591 and the Protocol Mappings for OPC UA in OPC 10000-6.

3.1.4
Connection Point
logical representation of the interface between a Device and a Network

3.1.5
device
independent physical entity capable of performing one or more specified functions in a particular
context and delimited by its interfaces

Note 1 to entry: See IEC 61499-1.

Note 2 to entry: Devices provide sensing, actuating, communication, and/or control functionality. Examples include
transmitters, valve controllers, drives, motor controllers, PLCs, and communication gateways.

Note 3 to entry: A Device can be a system (topology) of other Devices, components, or parts.

3.1.6
Device Integration Host
Server that manages integration of multiple Devices in an automation system

3.1.7
Device Topology
arrangement of Networks and Devices that constitute a communication topology

3.1.8
fieldbus
communication system based on serial data transfer and used in industrial automation or process
control applications

Note 1 to entry: See IEC 61784.

Note 2 to entry: Designates the communication bus used by a Device.

Release 1.02 13 OPC 10000-100: Devices

3.1.9
Parameter
variable of the Device that can be used for configuration, monitoring or control purposes

Note 1 to entry: In the information model it is synonymous to an OPC UA DataVariable.

3.1.10
Network

means used to communicate with one specific protocol

3.2 Abbreviations

ADI Analyser Device Integration
CP Communication Processor (hardware module)
CPU Central Processing Unit (of a Device)
DA Data Access
DI Device Integration (the short name for this specification)
ERP Enterprise Resource Planning
IRDI International Registration Data Identifiers
UA Unified Architecture
UML Unified Modelling Language
XML Extensible Mark-up Language

3.3 Conventions used in this Document

3.3.1 Conventions for Terms

Terms in this document are written in CamelCase and italicized.

3.3.2 Conventions for Node Descriptions

Node definitions are specified using tables (see Table 2).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode
and its NodeClass.

 If the TargetNode is a component of the Node being defined in the table the Attributes of the
composed Node are defined in the same row of the table.

 The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional
array, for multi-dimensional arrays the expression is repeated for each dimension (e.g. [2][3]
for a two-dimensional array). For all arrays the ArrayDimensions is set as identified by
<number> values. If no <number> is set, the corresponding dimension is set to 0, indicating
an unknown size. If no number is provided at all the ArrayDimensions can be omitted. If no
brackets are provided, it identifies a scalar DataType and the ValueRank is set to the
corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to null or is
omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so either
“{Any}” or “{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value
(see OPC 10000-3) and the ArrayDimensions is set to null or is omitted. Examples are given
in Table 1.

OPC 10000-100: Devices 14 Release 1.02

Table 1 – Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an
unknown size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown
sizes for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for
the first dimension and an unknown size for the
second dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for
the first dimension and a size of 3 for the second
dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array
with any number of dimensions.

Int32{ScalarOrOne
Dimension}

Int32 -3 omitted or null An Int32 where it is either a single-dimensional
array or a scalar.

 The TypeDefinition is specified for Objects and Variables.

 The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node
points with a HasTypeDefinition Reference to the corresponding Node.

 The ModellingRule of the referenced component is provided by specifying the symbolic name
of the rule in the ModellingRule column. In the AddressSpace, the Node shall use a
HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType
shall be used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used
ReferenceType, their NodeClass and their BrowseName are specified. A reference to another part of
this document points to their definition.

Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and
ModellingRule columns may be omitted and only a Comment column is introduced to point to the
Node definition.

Table 2 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“ will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType
name

NodeClass
of the
TargetNode.

BrowseName of the
target Node. If the
Reference is to be
instantiated by the
server, then the
value of the target
Node’s
BrowseName is “--“.

DataType
of the
referenced
Node, only
applicable
for
Variables.

TypeDefinition of the referenced
Node, only applicable for
Variables and Objects.

Referenced
ModellingRule of
the referenced
Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The
TypeDefinition, NodeClass, DataType and ModellingRule can be derived from the type definitions,
and the symbolic name can be created as defined in Annex A. Therefore, those containing
components are not explicitly specified; they are implicitly specified by the type definitions.

Release 1.02 15 OPC 10000-100: Devices

3.3.3 NodeIds and BrowseNames

3.3.3.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Annex A defines the
actual NodeIds.

The symbolic name of each Node defined in this specification is its BrowseName, or, when it is part
of another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case
“part of” means that the whole has a HasProperty or HasComponent Reference to its part. Since all
Nodes not being part of another Node have a unique name in this specification, the symbolic name

is unique.

The NamespaceUri for all NodeIds defined in this specification is defined in Annex A. The
NamespaceIndex for this NamespaceUri is vendor-specific and depends on the position of the
NamespaceUri in the Server namespace table.

Note that this specification not only defines concrete Nodes, but also requires that some Nodes shall
be generated, for example one for each Session running on the Server. The NodeIds of those Nodes
are vendor-specific, including the NamespaceUri. But the NamespaceUri of those Nodes cannot be
the NamespaceUri used for the Nodes defined in this specification, because they are not defined by
this specification but generated by the Server.

3.3.3.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this specification is specified in the tables
defining the Nodes. The NamespaceUri for all BrowseNames defined in this specification is defined

in Annex A.

If the BrowseName is not defined by this specification, a namespace index prefix like
‘0:EngineeringUnits’ is added to the BrowseName. This is typically necessary if a Property of another
specification is overwritten or used in the OPC UA types defined in this specification. Clause 11
provides the namespaces used in this specification.

3.3.4 Common Attributes

3.3.4.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes not
marked as optional are mandatory and shall be provided by a Server. The following tables define if
the Attribute value is defined by this specification or if it is vendor -specific.

For all Nodes specified in this specification, the Attributes named in Table 3 shall be set as specified
in the table.

OPC 10000-100: Devices 16 Release 1.02

Table 3 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to
the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated
names for other LocaleIds is vendor-specific.

Description Optionally a vendor-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.3.3.1

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it
shall set all non-vendor-specific Attributes to not writable. For example, the Description
Attribute may be set to writable since a Server may provide a vendor-specific description for
the Node. The NodeId shall not be writable, because it is defined for each Node in this
specification.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask
Attribute apply.

RolePermissions Optionally vendor-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is vendor-
specific and depend on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally vendor-specific access restrictions can be provided.

3.3.4.2 Objects

For all Objects specified in this specification, the Attributes named in Table 4 shall be set as specified
in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 4 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is vendor-specific.

3.3.4.3 Variables

For all Variables specified in this specification, the Attributes named in Table 5 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 5 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a vendor-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is vendor-specific, for all other
Variables defined in this specification, the access level shall allow reading; other settings are
vendor-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is vendor-specific. It is assumed that all
Variables can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is vendor-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is
vendor-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is vendor-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0,
meaning that read and write operations on an individual Variable are atomic, and arrays can
be partly written.

3.3.4.4 VariableTypes

For all VariableTypes specified in this specification, the Attributes named in Table 6 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC 10000-3.

Release 1.02 17 OPC 10000-100: Devices

Table 6 – Common VariableType Attributes

Attributes Value

Value Optionally a vendor-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is vendor-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

3.3.4.5 Methods

For all Methods specified in this specification, the Attributes named in Table 7 shall be set as specified
in the table. The definitions for the Attributes can be found in OPC 10000-3.

Table 7 – Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to “True”),
unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is vendor-specific. It is assumed that all Methods can
be executed by at least one user.

OPC 10000-100: Devices 18 Release 1.02

4 Introduction to OPC UA

4.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication protocol.
While there are numerous communication solutions available, OPC UA has key advantages:

 A state of art security model (see OPC UA Part 2).

 A fault tolerant communication protocol.

 An information modelling framework that allows application developers to represent their data
in a way that makes sense to them.

OPC UA has a broad scope which delivers economies of scale for application developers. This means
that a larger number of high quality applications at a reasonable cost are available. When combined
with semantic models such as OPC UA for IO-Link, OPC UA makes it easier for end users to access
data via generic commercial applications.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process
information locally and then provide that data in a consistent format to any application requesting
data - ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard Browser, for
examples. For a more complete overview see The following documents, in whole or in part, are
normatively referenced in this document and are indispensable for its application. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments and errata) applies.

OPC 10000-1.

4.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web
Sockets.

As an extensible standard, OPC UA provides a set of Services (see OPC 10000-4) and a basic
information model framework. This framework provides an easy manner for creating and exposing
vendor defined information in a standard way. More importantly all O PC UA Clients are expected to
be able to discover and use vendor-defined information. This means OPC UA users can benefit from
the economies of scale that come with generic visualization and historian applications. This
specification is an example of an OPC UA Information Model designed to meet the needs of
developers and users.

OPC UA Clients can be any consumer of data from another device on the network to browser based
thin clients and ERP systems. The full scope of OPC UA applications is shown in Figure 1.

Release 1.02 19 OPC 10000-100: Devices

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Figure 1 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling
lost messages, failover, heartbeat, etc. With its binary encoded data, it offers a high -performing data
exchange solution. Security is built into OPC UA as security requirements become more and more
important especially since environments are connected to the office network or the internet and
attackers are starting to focus on automation systems.

4.2.1 Information Modelling in OPC UA

4.2.1.1 Concepts

OPC UA provides a framework that can be used to represent complex informati on as Objects in an
AddressSpace which can be accessed with standard services. These Objects consist of Nodes
connected by References. Different classes of Nodes convey different semantics. For example, a
Variable Node represents a value that can be read or written. The Variable Node has an associated
DataType that can define the actual value, such as a string, float, structure etc. It can also describe
the Variable value as a variant. A Method Node represents a function that can be called. Every Node
has a number of Attributes including a unique identifier called a NodeId and non-localized name called
as BrowseName.

Object and Variable Nodes represent instances and they always reference a TypeDefinition
(ObjectType or VariableType) Node which describes their semantics and structure. Figure 2 illustrates
the relationship between an instance and its TypeDefinition.

The type Nodes are templates that define all the children that can be present in an instance of the
type. In the example in Figure 2 the SomeType ObjectType defines two Properties: Property1 and
Property2. All instances of SomeType are expected to have the same children with the same
BrowseNames. Within a type the BrowseNames uniquely identify the children. This means Client
applications can be designed to search for children based on the BrowseNames from the type instead
of NodeIds. This eliminates the need for manual reconfiguration of systems if a Client uses types that
multiple Servers implement.

OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing type and
extend it. There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the
extension of a given type or the restriction of a DataType. For example, the modeller may decide that
the existing ObjectType in some cases needs an additional Variable. The modeller can create a
subtype of the ObjectType and add the Variable. A Client that is expecting the parent type can treat
the new type as if it was of the parent type. Regarding DataTypes, subtypes can only restrict. If a
Variable is defined to have a numeric value, a subtype could restrict it to a float.

OPC 10000-100: Devices 20 Release 1.02

Instance1

Property1
 One

Property2
 Two

Property1
[String]

Property2
[String]

Property3
 Three

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

BaseObjectType

SomeType

Figure 2 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected in ways that describe their relationships. All References
have a ReferenceType that specifies the semantics of the relationship. References can be
hierarchical or non-hierarchical. Hierarchical references are used to create the structure of Objects
and Variables. Non-hierarchical are used to create arbitrary associations. Applications can define
their own ReferenceType by creating subtypes of an existing ReferenceType. Subtypes inherit the

semantics of the parent but may add additional restrictions.

4.2.1.2 Graphical Notation

Figure 2 uses a notation that was developed for the OPC UA specification. The notation is
summarized in Figure 3. UML representations can also be used; however, the OPC UA notation is
less ambiguous because there is a direct mapping from the elements in the figures to Nodes in the
AddressSpace of an OPC UA Server.

Release 1.02 21 OPC 10000-100: Devices

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 3 – The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in OPC 10000-3
and the base structure is described in OPC 10000-5.

4.2.2 OPC UA Profiles

OPC UA specification defines a very wide range of functionality in its base information model. It is
not expected that all Clients or Servers support all functionality in the OPC UA specifications. OPC
UA includes the concept of Profiles, which segments the functionality into testable certifiable units.
This allows the definition of functional subsets (that are expected to be implemented) within a
companion specification. The Profiles do not restrict functionality, but generate requirements for a

minimum set of functionalities (see OPC 10000-7).

4.2.3 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent
AddressSpace. Namespaces are used to make this possible by eliminating naming and id conflicts
between information from different sources. Namespaces in OPC UA have a globally unique string
called a NamespaceUri and a locally unique integer called a NamespaceIndex. The NamespaceIndex
is only unique within the context of a Session between an OPC UA Client and an OPC UA Server.
The Services defined for OPC UA use the NamespaceIndex to specify the Namespace for qualified

values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and
QualifiedNames. NodeIds are globally unique identifiers for Nodes. This means the same Node with
the same NodeId can appear in many Servers. This, in turn, means Clients can have built in
knowledge of some Nodes. OPC UA Information Models generally define globally unique NodeIds for
the TypeDefinitions defined by the Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the
BrowseNames of Nodes and allow the same names to be used by different information models without
conflict. TypeDefinitions are not allowed to have children with duplicate BrowseNames; however,
instances do not have that restriction.

4.2.4 Companion Specifications

An OPC UA companion specification describes an Information Model by defining ObjectTypes,
VariableTypes, DataTypes and ReferenceTypes that represent a specific semantic relevant for the

companion specification.

OPC 10000-100: Devices 22 Release 1.02

5 Device model

5.1 General

Figure 4 depicts the main ObjectTypes of the base device model and their relationship. The drawing
is not intended to be complete. For the sake of simplicity only a few components and relations were
captured to give a rough idea of the overall structure.

Examples

OPC-UA

Device Model

OPC-UA

TopologyElementType

BaseObject Type

OPC UA Part 5

DeviceType

FolderType

OPC UA Part 5

Modular

Devices

RemoteIO

Configurable

ObjectType

BlockType

Block

Devices

FF or PROFI

Block Device

CNC

Robot

ComponentType

SoftwareType

FunctionalGroupType

Figure 4 – Device model overview

The boxes in this drawing show the ObjectTypes used in this specification as well as some elements
from other specifications that help understand some modelling decisions. The upper grey box shows
the OPC UA core ObjectTypes from which the TopologyElementType is derived. The grey box in the
second level shows the main ObjectTypes that the device model introduces. The components of those
ObjectTypes are illustrated only in an abstract way in this overall picture.

The grey box in the third level shows real-world examples as they will be used in products and plants.
In general, such subtypes are defined by other organizations.

The TopologyElementType is the base ObjectType for elements in a device topology. Its most

essential aspect is the functional grouping concept.

The ComponentType ObjectType provides a generic definition for a Device or parts of a Device where
parts include mechanics and/or software. DeviceType is commonly used to represent field Devices.

Modular Devices are introduced to support subdevices and Block Devices to support Blocks. Blocks
are typically used by field communication foundations as means to organise the functionality within a
Device. Specific types of Blocks will therefore be specified by these foundations.

The ConfigurableObjectType is used as a general means to create modular topology units. If needed
an instance of this type will be added to the head object of the modular unit. Modular Devices, for
example, will use this ObjectType to organise their modules. Block-oriented Devices use it to expose
and organise their Blocks.

Release 1.02 23 OPC 10000-100: Devices

5.2 Usage guidelines

Annex C describes guidelines for the usage of the device model as base for creating companion
specifications as well as guidelines on how to combine different aspects of the same device – defined
in different companion specifications - in one OPC UA application.

5.3 TopologyElementType

This ObjectType defines a generic model for elements in a device or component topology. Among
others, it introduces FunctionalGroups, ParameterSet, and MethodSet. Figure 5 shows the
TopologyElementType. It is formally defined in Table 8.

<some Object> or
ParameterSet

BaseObjectType

FolderType

FunctionalGroupType:
<GroupIdentifier>

TopologyElement

Type
FunctionalGroupType

<ParameterIdentifier>

<MethodIdentifier>

<some Object> or
MethodSet

Organizes

0..n
LockingServicesType:

Lock

Figure 5 – Components of the TopologyElementType

Table 8 – TopologyElementType definition

Attribute Value

BrowseName TopologyElementType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasSubtype ObjectType ComponentType Defined in 5.6

HasSubtype ObjectType BlockType Defined in 5.11

HasSubtype ObjectType ConnectionPointType Defined in 6.4

HasComponent Object <GroupIdentifier> FunctionalGroupType OptionalPlaceholder

HasComponent Object Identification FunctionalGroupType Optional

HasComponent Object Lock LockingServicesType Optional

HasComponent Object ParameterSet BaseObjectType Optional

HasComponent Object MethodSet BaseObjectType Optional

OPC 10000-100: Devices 24 Release 1.02

The TopologyElementType is abstract. There will be no instances of a TopologyElementType itself,
but there will be instances of subtypes of this type. In this specification, the term TopologyElement
generically refers to an instance of any ObjectType derived from the TopologyElementType.

FunctionalGroups are an essential aspect introduced by the TopologyElementType.
FunctionalGroups are used to structure Nodes like Properties, Parameters and Methods according to
their application such as configuration, diagnostics, asset management, condition monitoring and
others.

FunctionalGroups are specified in 5.4.

A FunctionalGroup called Identification can be used to organise identification information of this
TopologyElement (see 5.4.2). Identification information typically includes the Properties defined by
the VendorNameplate or TagNameplate Interfaces and additional application specific information.

TopologyElements may also support LockingServices (defined in 8.3.3).

ParameterSet and MethodSet are defined as standard containers for systems that have a flat list of
Parameters or Methods with unique names. In such cases, the Parameters are components of the
“ParameterSet” as a flat list of Parameters. The Methods are kept the same way in the “MethodSet”.
The “ParameterSet” Object is formally defined in Table 9.

Table 9 – ParameterSet definition

Attribute Value

BrowseName ParameterSet

References NodeClass BrowseName TypeDefinition ModellingRule

HasTypeDefinition ObjectType BaseObjectType

HasComponent Variable <ParameterIdentifier> BaseDataVariableType MandatoryPlaceholder

The “MethodSet” Object is formally defined in Table 10.

Table 10 – MethodSet definition

Attribute Value

BrowseName MethodSet

References NodeClass BrowseName TypeDefinition ModellingRule

HasTypeDefinition ObjectType BaseObjectType

HasComponent Method <MethodIdentifier> MandatoryPlaceholder

5.4 FunctionalGroupType

5.4.1 Model

This subtype of the OPC UA FolderType is used to structure Nodes like Properties, Parameters and
Methods according to their application (e.g. maintenance, diagnostics, condition monitoring).
Organizes References should be used when the elements are components in other parts of the
TopologyElement that the FunctionalGroup belongs to. This includes Properties, Variables, and
Methods of the TopologyElement or in Objects that are components of the TopologyElement either
directly or via a subcomponent. The same Property, Parameter or Method might be useful in different
application scenarios and therefore referenced from more than one FunctionalGroup.

FunctionalGroups can be nested.

Release 1.02 25 OPC 10000-100: Devices

FunctionalGroups can directly be instantiated. In this case, the BrowseName of a FunctionalGroup
should indicate its purpose. A list of recommended BrowseNames is in 5.4.2.

Figure 6 shows the FunctionalGroupType components. It is formally defined in Table 11.

FunctionalGroupType

FunctionalGroupType:

<GroupIdentifier>

FolderType

Organizes
BaseDataVariableType:

<ParameterIdentifier>

<MethodIdentifier>

0..n

UIElementType:

UIElement
0..1

UIElementType

BaseVariableType

PropertyType:

<PropertyIdentifier>

Figure 6 – FunctionalGroupType

Table 11 – FunctionalGroupType definition

Attribute Value

BrowseName FunctionalGroupType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FolderType defined in OPC 10000-5

HasComponent Object <GroupIdentifier> FunctionalGroupType OptionalPlaceholder

HasComponent Variable UIElement BaseDataType UIElementType Optional

All BrowseNames for Nodes referenced by a FunctionalGroup with an Organizes Reference shall be
unique.

The Organizes References may be present only at the instance, not the type. Depending on the
current state of the TopologyElement the Server may decide to hide or unhide certain
FunctionalGroups or (part of) their References. If a FunctionalGroup may be hidden on an instance
the TypeDefinition shall use an appropriate ModellingRule like “Optional”.

If desirable, Nodes can be also children of FunctionalGroups. If such Nodes are defined, it is
recommended to define a subtype of the FunctionalGroupType.

UIElement is the user interface element for this FunctionalGroup. See 5.4.3 for the definition of
UIElements.

Examples in Annex B.1 illustrate the use of FunctionalGroups.

OPC 10000-100: Devices 26 Release 1.02

5.4.2 Recommended FunctionalGroup BrowseNames

Table 12 includes a list of FunctionalGroups with name and purpose. If Servers expose a
FunctionalGroup that corresponds to the described purpose, they should use the recommended
BrowseName with the Namespace of this specification.

Table 12 – Recommended FunctionalGroup BrowseNames

BrowseName Purpose

Configuration Parameters representing the configuration items of the TopologyElement. If the
CurrentWrite bit is set in the AccessLevel Attribute they can be modified by Clients.

Tuning Parameters and Methods to optimize the behavior of the TopologyElement.

Maintenance Parameters and Methods useful for maintenance operations.

Diagnostics Parameters and Methods for diagnostics.

Statistics Parameters and Methods for statistics.

Status Parameters which describe the general health of the TopologyElement. This can include
diagnostic Parameters.

Operational Parameters and Methods useful for during normal operation, like process data.

Identification The Properties of the VendorNameplate Interface, like Manufacturer, SerialNumber or
Properties of the TagNameplate will usually be sufficient as identification. If other
Parameters or even Methods are required, all elements needed shall be organised in a
FunctionalGroup called Identification. See Annex B.1 for an example.

5.4.3 UIElement Type

Servers can expose UIElements providing user interfaces in the context of their FunctionalGroup
container. Clients can load such a user interface and display it on the Client side. The hierarchy of
FunctionalGroups represents the tree of user interface elements.

The UIElementType is abstract and is mainly used as filter when browsing a FunctionalGroup. Only
subtypes can be used for instances. No concrete UIElements are defined in this specification. FDI
(Field Device Integration, see IEC 62769) specifies two concrete subtypes

 UIDs (UI Descriptions), descriptive user interface elements, and

 UIPs (UI Plug-Ins), programmed user interface elements.

 The UIElementType is specified in Table 13.

Table 13 – UIElementType definition

Attribute Value

BrowseName UIElementType

IsAbstract True

DataType BaseDataType

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseDataVariableType defined in OPC 10000-5.

The Value attribute of the UIElement contains the user interface element. Subtypes have to define
the DataType (e.g. XmlElement or ByteString).

Release 1.02 27 OPC 10000-100: Devices

5.5 Interfaces

5.5.1 Overview

This clause describes Interfaces with specific functionality that may be applied to multiple types at
arbitrary positions in the type hierarchy.

Interfaces are defined in OPC 10001-7.

Figure 7 shows the Interfaces described in this specification.

BaseInterfaceType

IVendorNameplateType ISupportInfoType IDeviceHealthTypeITagNameplateType

Figure 7 – Overview of Interfaces for Devices and Device components

5.5.2 VendorNameplate Interface

IVendorNameplateType includes Properties that are commonly used to describe a TopologyElement
from a manufacturer point of view. They can be used as part of the identification. The Values of these
Properties are typically provided by the component vendor.

The VendorNameplate Interface is illustrated in Figure 8 and formally defined in Table 14.

IVendorNameplateType

Manufacturer

Model

ProductCode

DeviceClass

HardwareRevision

DeviceRevision

DeviceManual

SoftwareRevision

SerialNumber

ManufacturerUri

ProductInstanceUri

RevisionCounter

Figure 8 – VendorNameplate Interface

OPC 10000-100: Devices 28 Release 1.02

Table 14 – IVendorNameplateType definition

Attribute Value

BrowseName IVendorNameplateType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

Product-specific Properties

HasProperty Variable Manufacturer LocalizedText PropertyType Optional

HasProperty Variable ManufacturerUri String PropertyType Optional

HasProperty Variable Model LocalizedText PropertyType Optional

HasProperty Variable ProductCode String PropertyType Optional

HasProperty Variable HardwareRevision String PropertyType Optional

HasProperty Variable SoftwareRevision String PropertyType Optional

HasProperty Variable DeviceRevision String PropertyType Optional

HasProperty Variable DeviceManual String PropertyType Optional

HasProperty Variable DeviceClass String PropertyType Optional

Product instance-specific Properties

HasProperty Variable SerialNumber String PropertyType Optional

HasProperty Variable ProductInstanceUri String PropertyType Optional

HasProperty Variable RevisionCounter Int32 PropertyType Optional

Product type specific Properties:

Manufacturer provides the name of the company that manufactured the TopologyElement.
ManufacturerUri provides a unique identifier for this company. This identifier should be a fully
qualified domain name; however, it may be a GUID or similar construct that ensures global
uniqueness.

Model provides the name of the product.

ProductCode provides a unique combination of numbers and letters used to identify the product. It
may be the order information displayed on type shields or in ERP systems.

HardwareRevision provides the revision level of the hardware of a TopologyElement.

SoftwareRevision provides the version or revision level of the software component, the
software/firmware of a hardware component, or the software/firmware of the Device.

DeviceRevision provides the overall revision level of a hardware component or the Device. As an
example, this Property can be used in ERP systems together with the ProductCode Property.

DeviceManual allows specifying an address of the user manual for a TopologyElement. It may be a
pathname in the file system or a URL (Web address).

DeviceClass indicates in which domain or for what purpose a certain ComponentType is used.
Examples are “ProgrammableController”, “RemoteIO”, and “TemperatureSensor”. This standard does
not predefine any DeviceClass names. More specific standards that utilize this Interface will likely
introduce such classifications (e.g. IEC 62769, [OPC 30000 - PLCopen], or [OPC 10020 - ADI]).

Product instance specific Properties:

SerialNumber is a unique production number of the manufacturer of the TopologyElement. This is
often stamped on the outside of a physical component and may be used for traceability and warranty
purposes.

ProductInstanceUri is a globally unique resource identifier of the manufacturer of the
TopologyElement. This is often stamped on the outside of a physical component and may be used
for traceability and warranty purposes. The maximum length is 255 characters. The syntax of the
ProductInstanceUri is: <ManufacturerUri>/<any string>. The manufacturer must ensure that the value
of the field <any string> is unique among all instances using the same ManufacturerUri.

Release 1.02 29 OPC 10000-100: Devices

Examples: “some-company.com/5ff40f78-9210-494f-8206-c2c082f0609c”, “some-company.com/snr-
16273849” or “some-company.com/model-xyz/snr-16273849”.

RevisionCounter is an incremental counter indicating the number of times the configuration data
within a TopologyElement has been modified. An example would be a temperature sensor where the
change of the unit would increment the RevisionCounter but a change of the measurement value
would not affect the RevisionCounter.

Companion specifications may specify additional semantics for the contents of these Properties.

Table 15 specifies the mapping of these Properties to the International Registration Data Identifiers
(IRDI) defined in ISO/ICE 11179-6. They should be used if a Server wants to expose a dictionary

reference as defined in OPC 10001-5.

Table 15 – VendorNameplate Mapping to IRDIs

Property IRDI

Manufacturer 0112/2///61987#ABA565 - manufacturer

ManufacturerUri -

Model 0112/2///61987#ABA567 - name of product

SerialNumber 0112/2///61987#ABA951 - serial number

HardwareRevision 0112/2///61987#ABA926 - hardware version

SoftwareRevision 0112/2///61987#ABA601 - software version

DeviceRevision -

RevisionCounter -

ProductCode 0112/2///61987#ABA300 – code of product

ProductInstanceUri -

DeviceManual -

DeviceClass 0112/2///61987#ABA566 - type of product

5.5.3 TagNameplate Interface

ITagNameplateType includes Properties that are commonly used to describe a TopologyElement from
a user point of view.

The TagNameplate Interface is illustrated in Figure 9 and formally defined in Table 16.

ITagNameplateType

AssetId

ComponentName

Figure 9 – TagNameplate Interface

Table 16 – ITagNameplateType definition

Attribute Value

BrowseName ITagNameplateType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

HasProperty Variable AssetId String PropertyType Optional

HasProperty Variable ComponentName LocalizedText PropertyType Optional

AssetId is a user writable alphanumeric character sequence uniquely identifying a component. The
ID is provided by the integrator or user of the device. It contains typically an identifier in a branch,

https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/4dddbceb4a29606ac125825e001de72b?OpenDocument&Highlight=0,aba565
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/527d2cfb1a4dff7ac125825e001de72d?OpenDocument&Highlight=0,aba567
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/661ff5e851c17a18c125825e001de7b2?OpenDocument&Highlight=0,aba951
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/2a4bcd2a965ee601c125825e001de799?OpenDocument&Highlight=0,aba926
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/cf43da0a89fab0ccc125825e001de74e?OpenDocument&Highlight=0,aba601
https://cdd.iec.ch/CDD/IEC61987/iec61987.nsf/PropertiesAllVersions/0112-2---61987%23ABA300?OpenDocument
https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058dc1c/5f261d1a0bf49635c125825e001de72c?OpenDocument&Highlight=0,aba566

OPC 10000-100: Devices 30 Release 1.02

use case or user specific naming scheme. This could be for example a reference to an electric
scheme.

ComponentName is a user writable name provided by the integrator or user of the component.

Table 17 specifies the mapping of these Properties to the International Registration Data Identifiers
(IRDI) defined in ISO/ICE 11179-6. They should be used if a Server wants to expose a dictionary

reference as defined in OPC 10001-5.

Table 17 – TagNameplate Mapping to IRDIs

Property IRDI

AssetId 0112/2///61987#ABA038 - identification code of device

ComponentName 0112/2///61987#ABA251 - designation of device

5.5.4 DeviceHealth Interface

The DeviceHealth Interface includes Properties and Alarms that are commonly used to expose the
health status of a Device. It is illustrated in Figure 10 and formally defined in Table 18.

IDeviceHealthType

DeviceHealth

FolderType
DeviceHealthAlarms

Figure 10 – DeviceHealth Interface

Table 18 – IDeviceHealthType definition

Attribute Value

BrowseName IDeviceHealthType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

HasComponent Variable DeviceHealth DeviceHealth
Enumeration

BaseDataVariableType Optional

HasComponent Object DeviceHealthAlarms FolderType Optional

DeviceHealth indicates the status as defined by NAMUR Recommendation NE107. Clients can read
or monitor this Variable to determine the device condition.

https://cdd.iec.ch/cdd/iec61987/cdddev.nsf/PropertiesAllVersions/0112-2---61987%23ABA038?opendocument
https://cdd.iec.ch/cdd/iec61987/cdddev.nsf/PropertiesAllVersions/0112-2---61987%23ABA251?opendocument

Release 1.02 31 OPC 10000-100: Devices

The DeviceHealthEnumeration DataType is an enumeration that defines the device condition. Its values

are defined in Table 19.

Table 19 – DeviceHealthEnumeration values

Value Description

NORMAL_0 The Device functions normally.

FAILURE_1 Malfunction of the Device or any of its peripherals. Typically caused device-internal or is
process related.

CHECK_FUNCTION_2 Functional checks are currently performed. Examples:

change of configuration, local operation, substitute value entered.

OFF_SPEC_3 "Off-spec" means that the Device is operating outside its specified range (e.g. measuring
or temperature range) or that internal diagnoses indicate deviations from measured or
set values due to internal problems in the Device or process characteristics.

MAINTENANCE_REQUIRED_4 Although the output signal is valid, the wear reserve is nearly exhausted or a function will
soon be restricted due to operational conditions e.g. build-up of deposits

DeviceHealthAlarms shall be used for instances of the DeviceHeal th Alarm Types specified in 5.12.

5.5.5 SupportInfo Interface

5.5.5.1 General

The SupportInfo Interface defines a number of additional data that a commonly exposed for Devices
and their components. These include mainly images, documents, or protocol-specific data. The
various types of information is organised into different folders. Each information element is
represented by a read-only Variable. The information can be retrieved by reading the Variable value.

Figure 11 Illustrates the SupportInfo Interface. It is formally defined in Table 20.

ISupportInfoType

DeviceTypeImage

0..n

Documentation

0..n

ProtocolSupport

0..n

ImageSet

0..n

BaseVariableType:

<ImageIdentifier>

BaseVariableType:

<DocumentIdentifier>

BaseVariableType:

<FileIdentifier>

BaseVariableType:

<ImageIdentifier>

Figure 11 –Support information Interface

OPC 10000-100: Devices 32 Release 1.02

Table 20 – ISupportInfoType definition

Attribute Value

BrowseName ISupportInfoType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseInterfaceType defined in OPC 10001-7

HasComponent Object DeviceTypeImage FolderType Optional

HasComponent Object Documentation FolderType Optional

HasComponent Object ProtocolSupport FolderType Optional

HasComponent Object ImageSet FolderType Optional

Clients need to be aware that the contents that these Variables represent may be large. Reading
large values with a single Read operation may not be possible due to configured limits in either the
Client or the Server stack. The default maximum size for an array of bytes is 1 megabyte. It is
recommended that Clients use the IndexRange in the OPC UA Read Service (see OPC 10000-4) to
read these Variables in chunks, for example, one-megabyte chunks. It is up to the Client whether it
starts without an index and repeats with an IndexRange only after an error or whether it always uses
an IndexRange.

The different types of support information are specified in 5.5.5.2 to 5.5.5.5.

5.5.5.2 Device Type Image

Pictures can be exposed as Variables organised in the DeviceTypeImage folder. There may be
multiple images of different resolutions. Each image is a separate Variable. The “DeviceTypeImage”
Folder is formally defined in Table 21.

Table 21 – DeviceTypeImage definition

Attribute Value

BrowseName DeviceTypeImage

References NodeClass BrowseName TypeDefinition DataType ModellingRule

HasTypeDefinition ObjectType FolderType (defined in OPC 10000-5.)

HasComponent Variable <ImageIdentifier> BaseDataVariableType Image MandatoryPlaceholder

All images are transferred as a ByteString. The DataType of the Variable specifies the image format.
OPC UA defines BMP, GIF, JPG and PNG (see OPC 10000-3).

5.5.5.3 Documentation

Documents are exposed as Variables organized in the Documentation folder. In most cases they will
represent a product manual, which can exist as a set of individual documents. The “ Documentation”
Folder is formally defined in Table 22.

Table 22 – Documentation definition

Attribute Value

BrowseName Documentation

References NodeClass BrowseName TypeDefinition DataType ModellingRule

HasTypeDefinition ObjectType FolderType (defined in OPC 10000-5.)

HasComponent Variable <DocumentIdentifier> BaseDataVariableType ByteString MandatoryPlaceholder

All documents are transferred as a ByteString. The BrowseName of each Variable will consist of the
filename including the extension that can be used to identify the document type. Typical extensions
are “.pdf” or “.txt”.

Release 1.02 33 OPC 10000-100: Devices

5.5.5.4 Protocol Support Files

Protocol support files are exposed as Variables organised in the ProtocolSupport folder. They may
represent various types of information as defined by a protocol. Examples are a GSD or a CFF file.
The “ProtocolSupport” Folder is formally defined in Table 23.

Table 23 – ProtocolSupport definition

Attribute Value

BrowseName ProtocolSupport

References NodeClass BrowseName TypeDefinition DataType ModellingRule

HasTypeDefinition ObjectType FolderType (defined in OPC 10000-5)

HasComponent Variable <ProtocolSupportIdentifier
>

BaseDataVariableTyp
e

ByteString MandatoryPlaceholder

All protocol support files are transferred as a ByteString. The BrowseName of each Variable shall
consist of the complete filename including the extension that can be used to identify the type of
information.

5.5.5.5 Images

Images that are used within UIElements are exposed as separate Variables rather than embedding
them in the element. All image Variables will be aggregated by the ImageSet folder. The UIElement
shall specify an image by its name that is also the BrowseName of the image Variable. Clients can
cache images so they don't have to be transferred more than once. The “ ImageSet” Folder is formally

defined in Table 24.

Table 24 – ImageSet definition

Attribute Value

BrowseName ImageSet

References NodeClass BrowseName TypeDefinition DataType ModellingRule

HasTypeDefinition ObjectType FolderType (defined in OPC 10000-5.)

HasComponent Variable <ImageIdentifier> BaseDataVariableType Image MandatoryPlaceholder

The DataType of the Variable specifies the image format. OPC UA defines BMP, GIF, JPG and PNG
(see OPC 10000-3).

OPC 10000-100: Devices 34 Release 1.02

5.6 ComponentType

Compared to DeviceType the ComponentType is more universal. It includes the same components
but does not mandate any Properties. This makes it usable for representation of a Device or parts of
a Device. Parts include both mechanical and software parts.

The ComponentType applies the VendorNameplate and the TagNameplate Interface. Figure 12
Illustrates the ComponentType. It is formally defined in Table 25.

BaseObjectType

ComponentType

TopologyElement
Type

Interfaces

IVendorNameplateType

ITagNameplateTypeHasInterface

Figure 12 – ComponentType

Table 25 – ComponentType definition

Attribute Value

BrowseName ComponentType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TopologyElementType defined in 5.3.

HasSubtype ObjectType DeviceType Defined in 5.7.

HasSubtype ObjectType SoftwareType Defined in 5.8.

HasInterface ObjectType IVendorNameplateType Defined in 5.5.2.

HasInterface ObjectType ITagNameplateType Defined in 5.5.3.

Applied from IVendorNameplateType

HasProperty Variable Manufacturer LocalizedText PropertyType Optional

HasProperty Variable ManufacturerUri String PropertyType Optional

HasProperty Variable Model LocalizedText PropertyType Optional

HasProperty Variable ProductCode String PropertyType Optional

HasProperty Variable HardwareRevision String PropertyType Optional

HasProperty Variable SoftwareRevision String PropertyType Optional

HasProperty Variable DeviceRevision String PropertyType Optional

HasProperty Variable DeviceManual String PropertyType Optional

HasProperty Variable DeviceClass String PropertyType Optional

HasProperty Variable SerialNumber String PropertyType Optional

HasProperty Variable ProductInstanceUri String PropertyType Optional

HasProperty Variable RevisionCounter Int32 PropertyType Optional

Applied from ITagNameplateType

HasProperty Variable AssetId String PropertyType Optional

HasProperty Variable ComponentName LocalizedText PropertyType Optional

Release 1.02 35 OPC 10000-100: Devices

The ComponentType is abstract. DeviceType and SoftwareType are subtypes of ComponentType.
There will be no instances of a ComponentType itself, only of concrete subtypes.

IVendorNameplateType and its members are described in 5.5.2.

ITagNameplateType and its members are described in 5.5.3.

5.7 DeviceType

This ObjectType can be used to define the structure of a Device. Figure 13 shows the DeviceType. It
is formally defined in Table 26.

TopologyElementType

ComponentType
Interfaces

ISupportInfoType

IDeviceHealthType

DeviceType

Manufacturer

Model

SerialNumber

HardwareRevision

DeviceRevision

SoftwareRevision

ConnectionPointType
<CPIdentifier>

From ComponentType
But changed to mandatory for
backward compatibility

DeviceHealth

DeviceTypeImage
Documentation

ProtocolSupport
ImageSet

From SupportInfo Interface

From DeviceHealth Interface

HasI nterface

Figure 13 – DeviceType

OPC 10000-100: Devices 36 Release 1.02

Table 26 – DeviceType definition

Attribute Value

BrowseName DeviceType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ComponentType defined in 5.6

HasInterface ObjectType ISupportInfoType Defined in 5.5.3.

HasInterface ObjectType IDeviceHealthType Defined in 5.5.3.

HasComponent Object <CPIdentifier> ConnectionPointType OptionalPlaceholder

HasProperty Variable SerialNumber String PropertyType Mandatory

HasProperty Variable RevisionCounter Int32 PropertyType Mandatory

HasProperty Variable Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable Model LocalizedText PropertyType Mandatory

HasProperty Variable DeviceManual String PropertyType Mandatory

HasProperty Variable DeviceRevision String PropertyType Mandatory

HasProperty Variable SoftwareRevision String PropertyType Mandatory

HasProperty Variable HardwareRevision String PropertyType Mandatory

HasProperty Variable DeviceClass String PropertyType Optional

HasProperty Variable ManufacturerUri String PropertyType Optional

HasProperty Variable ProductCode String PropertyType Optional

HasProperty Variable ProductInstanceUri String PropertyType Optional

Applied from IDeviceHealthType

HasComponent Variable DeviceHealth DeviceHealthEn
umeration

BaseDataVariableType Optional

HasComponent Object DeviceHealthAlarms FolderType Optional

Applied from ISupportInfoType

HasComponent Object DeviceTypeImage FolderType Optional

HasComponent Object Documentation FolderType Optional

HasComponent Object ProtocolSupport FolderType Optional

HasComponent Object ImageSet FolderType Optional

DeviceType is a subtype of ComponentType which means it inherits all InstanceDeclarations.

The DeviceType ObjectType is abstract. There will be no instances of a DeviceType itself, only of
concrete subtypes.

ConnectionPoints (see 6.4) represent the interface (interface card) of a DeviceType instance to a
Network. Multiple ConnectionPoints may exist if multiple protocols and/or multiple Communication
Profiles are supported.

The Interfaces and their members are described in 5.5. Some of the Properties inherited from the
ComponentType are declared mandatory for backward compatibility.

Although mandatory, some of the Properties may not be supported for certain types of Devices. In
this case vendors shall provide the following defaults:

 Properties with DataType String: empty string

 Properties with DataType LocalizedText: empty text field

 RevisionCounter Property: - 1

Clients can ignore the Properties when they have these defaults.

When Properties are not supported, Servers should initialize the corresponding Property declaration
on the DeviceType with the default value. Relevant Browse Service requests can then return a
Reference to this Property on the type definition. That way, no extra Nodes are needed.

Release 1.02 37 OPC 10000-100: Devices

5.8 SoftwareType

This ObjectType can be used for software modules of a Device or a part of a Device. SoftwareType
is a concrete subtype of ComponentType and can be used directly.

Figure 14 Illustrates the SoftwareType. It is formally defined in Table 27.

TopologyElementType

SoftwareType

ComponentType

Figure 14 – SoftwareType

Table 27 – SoftwareType definition

Attribute Value

BrowseName SoftwareType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the ComponentType defined in 5.6.

HasProperty Variable Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable Model LocalizedText PropertyType Mandatory

HasProperty Variable SoftwareRevision String PropertyType Mandatory

SoftwareType is a subtype of ComponentType which means it inherits all InstanceDeclarations.

The Properties Manufacturer, Model, and SoftwareRevision inherited from ComponentType are
declared mandatory for SoftwareType instances.

5.9 DeviceSet entry point

The DeviceSet Object is the starting point to locate Devices. It shall either directly or indirectly
reference all instances of a subtype of ComponentType with a Hierarchical Reference. For complex
Devices that are composed of various components that are also Devices, only the root instance shall
be referenced from the DeviceSet Object. The components of such complex Devices shall be
locatable by following Hierarchical References from the root instance. An example is the Modular
Device defined in 9.4 and also illustrated in Figure 15.

Examples:

 UA Server represents a monolithic or modular Device: DeviceSet only contains one
instance

 UA Server represents a host system that has access to a number of Devices that it
manages: DeviceSet contains several instances that the host provides access to.

 UA Server represents a gateway Device that acts as representative for Devices that it has
access to: DeviceSet contains the gateway Device instance and instances for the Devices
that it represents.

 UA Server represents a robotic system consisting of mechanics and controls. DeviceSet
only contains the instance for the root of the robotic system. The mechanics and controls

OPC 10000-100: Devices 38 Release 1.02

are represented by ComponentType instances which are organised as sub-components

of the root instance.

Figure 15 shows the AddressSpace organisation with this standard entry point and examples.

Root

FolderType:

Objects
Organizes

<field device>

<complex device>

BaseObjectType:

DeviceSet

ComponentType

DeviceType

 .

<modular device>

CPU

CP

 .

SubDevices

Component_2

Component_1

Component_2a

SoftwareType

 .

Figure 15 – Standard entry point for Devices

The DeviceSet Node is formally defined in Table 28.

Table 28 – DeviceSet definition

Attribute Value

BrowseName DeviceSet

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType BaseObjectType

Release 1.02 39 OPC 10000-100: Devices

5.10 DeviceFeatures entry point

The DeviceFeatures Object can be used to organise other functional entities that are related to the
Devices referenced by the DeviceSet. Companion specifications may standardize such instances and
their BrowseNames. Figure 16 shows the AddressSpace organisation with this standard entry point.

Root

FolderType:

Objects
Organizes

BaseObjectType:

DeviceSet

BaseObjectType:

DeviceFeatures

Figure 16 – Standard entry point for DeviceFeatures

The DeviceFeatures Node is formally defined in Table 29.

Table 29 – DeviceFeatures definition

Attribute Value

BrowseName DeviceFeatures

References NodeClass BrowseName TypeDefinition

OrganizedBy by the DeviceSet Object defined in 5.9

HasTypeDefinition ObjectType BaseObjectType

5.11 BlockType

This ObjectType defines the structure of a Block Object. Figure 17 depicts the BlockType hierarchy.
It is formally defined in Table 30.

BlockType

FFBlockType PROFIBlockType Other BlockType

TopologyElementType

Figure 17 – BlockType hierarchy

FFBlockType and PROFIBlockType are examples. They are not further defined in this specification.
It is expected that industry groups will standardize general purpose BlockTypes.

OPC 10000-100: Devices 40 Release 1.02

Table 30 – BlockType definition

Attribute Value

BrowseName BlockType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TopologyElementType defined in 5.2

HasProperty Variable RevisionCounter Int32 PropertyType Optional

HasProperty Variable ActualMode LocalizedText PropertyType Optional

HasProperty Variable PermittedMode LocalizedText[] PropertyType Optional

HasProperty Variable NormalMode LocalizedText[] PropertyType Optional

HasProperty Variable TargetMode LocalizedText[] PropertyType Optional

BlockType is a subtype of TopologyElementType and inherits the elements for Parameters, Methods
and FunctionalGroups.

The BlockType is abstract. There will be no instances of a BlockType itself, but there will be instances
of subtypes of this Type. In this specification, the term Block generically refers to an instance of any
subtype of the BlockType.

The RevisionCounter is an incremental counter indicating the number of times the static data within
the Block has been modified. A value of -1 indicates that no revision information is available.

The following Properties refer to the Block Mode (e.g. “Manual”, “Out of Service”).

The ActualMode Property reflects the current mode of operation.

The PermittedMode defines the modes of operation that are allowed for the Block based on

application requirements.

The NormalMode is the mode the Block should be set to during normal operating conditions.
Depending on the Block configuration, multiple modes may exist.

The TargetMode indicates the mode of operation that is desired for the Block. Depending on the Block
configuration, multiple modes may exist.

5.12 DeviceHealth Alarm Types

5.12.1 General

The DeviceHealth Property defined in 5.5.4 provides a basic way to expose the health state of a
device based on NAMUR NE 107.

This section defines AlarmTypes that can be used to indicate an abnormal device condition together
with diagnostic information text as defined by NAMUR NE 107 as well as additional manufacturer
specific information.

Figure 18 informally describes the AlarmTypes for DeviceHealth.

Release 1.02 41 OPC 10000-100: Devices

Defined in [UA Part 9]
InstrumentDiagnostic

AlarmType

DeviceHealthDiagnostic

AlarmType

Failure

AlarmType
CheckFunction

AlarmType
OffSpec

AlarmType
MaintenanceRequired

AlarmType

Figure 18 – Device Health Alarm type hierarchy

5.12.2 DeviceHealthDiagnosticAlarmType

The DeviceHealthDiagnosticAlarmType is a specialization of the InstrumentDiagnosticAlarmType
intended to represent abnormal device conditions as defined by NAMUR NE 107. This type can be
used in filters for monitored items. Only subtypes of this type will be used in actual implementations.
The Alarm becomes active when the device condition is abnormal. It is formally defined in Table 31.

Table 31 – DeviceHealthDiagnosticAlarmType definition

Attribute Value

BrowseName DeviceHealthDiagnosticAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the InstrumentDiagnosticAlarmType defined in OPC 10000-9.

HasSubtype ObjectType FailureAlarmType Defined in clause 5.12.3

HasSubtype ObjectType CheckFunctionAlarmType Defined in clause 5.12.4

HasSubtype ObjectType OffSpecAlarmType Defined in clause 5.12.5

HasSubtype ObjectType MaintenanceRequiredAlarmType Defined in clause 5.12.6

Conditions of subtypes of DeviceHealthDiagnosticAlarmType become active when the device enters

the corresponding abnormal state.

The Message field in the Event notification shall be used for additional information associated with
the health status (e.g. the possible cause of the abnormal state and suggested actions to return to
normal).

A Device may be in more than one abnormal state at a time in which case multiple Conditions will be

active.

5.12.3 FailureAlarmType

The FailureAlarmType is formally defined in Table 32.

Table 32 – FailureAlarmType definition

Attribute Value

BrowseName FailureAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 5.12.2.

OPC 10000-100: Devices 42 Release 1.02

5.12.4 CheckFunctionAlarmType

The CheckFunctionAlarmType is formally defined in Table 33.

Table 33 – CheckFunctionAlarmType definition

Attribute Value

BrowseName CheckFunctionAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 5.12.2.

5.12.5 OffSpecAlarmType

The OffSpecAlarmType is formally defined in Table 34.

Table 34 – OffSpecAlarmType definition

Attribute Value

BrowseName OffSpecAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 5.12.2.

5.12.6 MaintenanceRequiredAlarmType

The MaintenanceRequiredAlarmType is formally defined in Table 35.

Table 35 – MaintenanceRequiredAlarmType definition

Attribute Value

BrowseName MaintenanceRequiredAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DeviceHealthDiagnosticAlarmType defined in 5.12.2.

Release 1.02 43 OPC 10000-100: Devices

6 Device communication model

6.1 General

Clause 6 introduces References, the ProtocolType, and basic TopologyElementTypes needed to
create a communication topology. The types for this model are illustrated in Figure 19.

Examples

Device

Communication

 Model

OPC-UA

TopologyElementType

BaseObject Type

OPC UA Part 5

HART

FF
PROFI

ProtocolType

UA TCP<some fieldbus cp>

UA_TCP_ConnectionType

ConnectionPointType
NetworkType

Figure 19 – Device communication model overview

OPC 10000-100: Devices 44 Release 1.02

A ProtocolType ObjectType represents a specific communication protocol (e.g. FieldBus)
implemented by a certain TopologyElement. Examples are shown in Figure 21.

The ConnectionPointType represents the logical interface of a Device to a Network.

A Network is the logical representation of wired and wireless technologies.

Figure 20 provides an overall example.

profinet_io

ModularDevice:

Station 1

Module: CPU

Module: CP

PN Network

PN CP 1

Objects

DeviceSet

Organizes

NetworkSet

FI B101

CP_B1

CP_B2

FI B102

Entry Points

Device

Network

ConnectionPoint

ConnectsTo Reference

profinet_io

profinet_io

profinet_io

Figure 20 – Example of a communication topology

6.2 ProtocolType

The ProtocolType ObjectType and its subtypes are used to specify a specific communication (e.g.
FieldBus) protocol that is supported by a Device (respectively by its ConnectionPoint) or Network.

Release 1.02 45 OPC 10000-100: Devices

The BrowseName of each instance of a ProtocolType shall define the Communication Profile (see

Figure 21).

Figure 21 shows the ProtocolType including some specific types and instances that represent
Communication Profiles of that type. It is formally defined in Table 36.

PROFINETType

BaseObjectType

HARTBusType

ProtocolType

PROFIBUSType

FFBusType

other

hart_fsk

Instance

Space
TypeSpace

hart_ip

foundation_hse

profinet_io

OPCUAType

UA_HTTPS

UA_TCP

Figure 21 – Example of a ProtocolType hierarchy with instances
that represent specific communication profiles

Table 36 – ProtocolType definition

Attribute Value

BrowseName ProtocolType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

OPC 10000-100: Devices 46 Release 1.02

6.3 Network

A Network is the logical representation of wired and wireless technologies and represents the
communication means for Devices that are connected to it. A Network instance is qualified by its
Communication Profile components.

Figure 22 shows the type hierarchy and the NetworkType components. It is formally defined in Table
37.

ConnectionPointType:

<CP Identifier>

BaseObjectType

NetworkType 0..n

ProtocolType

Connects

To

LockingServicesType:

Lock

0..1
ProtocolType

<ProfileId>

HART

FF PROFI

Figure 22 – NetworkType

Table 37 – NetworkType definition

Attribute Value

BrowseName NetworkType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Object <ProfileIdentifier> ProtocolType MandatoryPlaceholder

ConnectsTo Object <CPIdentifier> ConnectionPointType OptionalPlaceholder

HasComponent Object Lock LockingServicesType Optional

The <ProfileIdentifier> specifies the Protocol and Communication Profile that this Network is used
for.

<CPIdentifier> (referenced by a ConnectsTo Reference) references the ConnectionPoint(s) that have
been configured for this Network. All ConnectionPoints shall adhere to the same Protocol as the
Network. See also Figure 25 for a usage example. They represent the protocol-specific access points
for the connected Devices.

In addition, Networks may also support LockingServices (defined in 8.3).

Release 1.02 47 OPC 10000-100: Devices

6.4 ConnectionPoint

This ObjectType represents the logical interface of a Device to a Network. A specific subtype shall
be defined for each protocol. Figure 23 shows the ConnectionPointType including some specific

types.

PROFINET
ConnectionPoint

TopologyElementType

HARTBus
ConnectionPoint

ConnectionPointType

PROFIBUS
ConnectionPoint

FFBus
ConnectionPoint

other

Figure 23 – Example of ConnectionPointType hierarchy

A Device can have more than one such interface to the same or to different Networks. Different
interfaces usually exist for different protocols. Figure 24 shows the ConnectionPointType

components. It is formally defined in Table 38.

BaseObjectType

ConnectionPoint

Type

Topology Element

Type
ProtocolType

HART

FF PROFI

NetworkType:

<Identifier>
ConnectsTo

ProtocolType

<ProfileId>

FunctionalGroupType:

NetworkAddress

Figure 24 – ConnectionPointType

Table 38 – ConnectionPointType definition

Attribute Value

BrowseName ConnectionPointType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the TopologyElementType defined in 5.2.

HasComponent Object NetworkAddress FunctionalGroupType Mandatory

HasComponent Object <ProfileIdentifier> ProtocolType MandatoryPlaceholder

ConnectsTo Object <NetworkIdentifier> NetworkType OptionalPlaceholder

OPC 10000-100: Devices 48 Release 1.02

ConnectionPoints are components of a Device, represented by a subtype of ComponentType. To
allow navigation from a Network to the connected Devices, the ConnectionPoints shall have the
inverse Reference (ComponentOf) to the Device.

ConnectionPoints have Properties and other components that they inherit from the
TopologyElementType.

The NetworkAddress FunctionalGroup includes all Parameters needed to specify the protocol-specific
address information of the connected Device. These Parameters may be components of the
NetworkAddress FunctionalGroup, of the ParameterSet, or another Object.

<ProfileIdentifier> identifies the Communication Profile that this ConnectionPoint supports.
ProtocolType and Communication Profile are defined in 6.2. It implies that this ConnectionPoint can be
used to connect Networks and Devices of the same Communication Profile.

ConnectionPoints are between a Network and a Device. The location in the topology is configured by
means of the ConnectsTo ReferenceType. Figure 25 illustrates some usage models.

DeviceType

FI B101

Network_B CP_B1

CP_B2

DeviceType

FI B102

<some>DeviceType:

Master

CP_Master

ConnectionPoint

Type

ConnectsToParent

ConnectsTo

ConnectsTo

Figure 25 – ConnectionPoint usage

6.5 ConnectsTo and ConnectsToParent ReferenceTypes

The ConnectsTo ReferenceType is a concrete ReferenceType used to indicate that source and target
Node have a topological connection. It is both hierarchical and symmetric, because this is natural for
this Reference. The ConnectsTo Reference exists between a Network and the connected Devices (or
their ConnectionPoint, respectively). Browsing a Network returns the connected Devices; browsing
from a Device, one can follow the ConnectsTo Reference from the Device’s ConnectionPoint to the
Network.

The ConnectsToParent ReferenceType is a concrete ReferenceType used to define the parent (i.e.
the communication Device) of a Network. It is a subtype of The ConnectsTo ReferenceType.

The two ReferenceTypes are illustrated in Figure 26.

Release 1.02 49 OPC 10000-100: Devices

References

HierarchicalReferences

ConnectsTo

ConnectsToParent

Figure 26 – Type Hierarchy for ConnectsTo and ConnectsToParent References

The representation in the AddressSpace is specified in Table 39 and Table 40.

Table 39 – ConnectsTo ReferenceType

Attributes Value

BrowseName ConnectsTo

Symmetric True

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HierarchicalReferences ReferenceType defined in OPC 10000-5.

Table 40 – ConnectsToParent ReferenceType

Attributes Value

BrowseName ConnectsToParent

Symmetric True

IsAbstract False

References NodeClass BrowseName Comment

Subtype of ConnectsTo ReferenceType

Figure 27 illustrates how this Reference can be used to express topological relationships and parental
relationships. In this example two Devices are connected; the module DPcomm is the communication
Device for the Network.

NetworkType:

DP Network

FieldDeviceType:

DP Device

ConnectionPoint:

DP CP 2

ModularDevice:

Station 2

Module:

DPcomm
ConnectionPoint:

DP CP 1

ConnectsToParent

ConnectsTo

Figure 27 – Example with ConnectsTo and ConnectsToParent References

OPC 10000-100: Devices 50 Release 1.02

6.6 NetworkSet Object

All Networks shall be components of the NetworkSet Object.

The NetworkSet Node is formally defined in Table 41.

Table 41 – NetworkSet definition

Attribute Value

BrowseName NetworkSet

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType BaseObjectType

Release 1.02 51 OPC 10000-100: Devices

7 Device integration host model

7.1 General

A Device Integration Host is a Server that manages integration of multiple Devices in an automation
system and provides Clients with access to information about Devices regardless of where the
information is stored, for example, in the Device itself or in a data store. The Device communication

is internal to the host and may be based on field-specific protocols.

The Information Model specifies the entities that can be accessed in a Device Integration Host. This
standard does not define how these elements are instantiated. The host may use network scanning
services, the OPC UA Node Management Services or proprietary configuration tools.

One of the main tasks of the Information Model is to reflect the topology of the automation system.
Therefore it represents the Devices of the automation system as well as the connecting
communication networks including their properties, relationships, and the operations that can be
performed on them.

Figure 28 and Figure 29 illustrate an example configuration and the configured topology as it will
appear in the Server AddressSpace (details left out).

Figure 28 – Example of an automation system

The PC in Figure 28 represents the Server (the Device Integration Host). The Server communicates
with Devices connected to Network “A” via native communication, and it communicates with Devices
connected to Network “B” via nested communication.

“A”

CP

 Device 2

PC
1

Network ”A”

Network ”B”

CPU CPU

Station 1 Station 2

OPC 10000-100: Devices 52 Release 1.02

Device Topology

Network “B”

Network “B”

Device

B_CP 2

Station 1

CPU

CP

Network “A”

A_CP 1

Network “A” Card

FolderType:

Objects

Station 2

CPU

B_CP 1

DeviceSet

Organizes

ConnectsTo

ConnectsTo

ConnectsTo

B_ CP 0

ConnectsToParent

A_CP 0

ConnectsToParent

NetworkSet

Entry Points

Device

Network

ConnectionPoint

Figure 29 – Example of a Device topology

Coloured boxes are used to recognize the various types of information.

Entry points assure common behaviour across different implementations:

 DeviceTopology: Starting node for the topology configuration. See 7.2.

 DeviceSet: See 5.9.

 NetworkSet: See 6.6.

7.2 DeviceTopology Object

The Device Topology reflects the communication topology of the Devices. It includes Devices and the
Networks. The entry point DeviceTopology is the starting point within the AddressSpace and is used
to organise the communication Devices for the top level Networks that provide access to all instances
that constitute the Device Topology ((sub-)networks, devices and communication elements).

The DeviceTopology node is formally defined in Table 42.

Release 1.02 53 OPC 10000-100: Devices

Table 42 – DeviceTopology definition

Attribute Value

BrowseName DeviceTopology

References NodeClass BrowseName DataType TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType BaseObjectType Defined in OPC 10000-5.

HasProperty Variable OnlineAccess Boolean PropertyType

OnlineAccess provides a hint of whether the Server is currently able to communicate to Devices in

the topology. “False” means that no communication is available.

7.3 Online/Offline

7.3.1 General

Management of the Device Topology is a configuration task, i.e., the elements in the topology
(Devices, Networks, and Connection Points) are usually configured “offline” and – at a later time –

will be validated against their physical representative in a real network.

To support explicit access to either the online or the offline information, each element may be
represented by two instances that are schematically identical, i.e., there exist component Objects,
FunctionalGroups, and so on. A Reference connects online and offline representations and allows to

navigate between them.

This is illustrated in Figure 30.

SomeType_A:

Station 1

Module: CPU

Module: CP

NetworkType:
PN Network

PN CP 1

DeviceSet

ConnectsTo

NetworkSet

SomeType_A:

Online

Online

Parameters

Offline

Parameters

IsOnline

ConnectionPoint

Figure 30 – Online component for access to Device data

If Online/Offline is supported, the main (leading) instance represents the offlin e information. Its
HasTypeDefinition Reference points to the concrete configured or identified ObjectType. All
Parameters of this instance represent offline data points and reading or writing them will typically
result in configuration database access. Properties will also represent offline information.

A Device can be engineered through the offline instance without online access.

OPC 10000-100: Devices 54 Release 1.02

The online data for a topology element are kept in an associated Object with the BrowseName Online
as illustrated in Figure 30. The Online Object is referenced via an IsOnline Reference. It is always of
the same ObjectType as the offline instance.

The online Parameter Nodes reflect values in a physical element (typically a Device), i.e., reading or
writing to a Parameter value will then result in a communication request to this element. When
elements are not connected, reading or writing to the online Parameter will re turn a proper status
code (Bad_NotConnected).

The transfer of information (Parameters) between offline nodes and the physical device in correct
order is supported through TransferToDevice, TransferFromDevice together with
FetchTransferResultData. These Methods are exposed by means of an AddIn instance of
TransferServicesType described in 8.2.2.

Both offline and online are created and driven by the same ObjectType. According to their usability,
certain components (Parameters, Methods, and FunctionalGroups) may exist only in either the online
or the offline element.

A Parameter in the offline ParameterSet and its corresponding counterpart in the online ParameterSet
shall have the same BrowseName. Their NodeIds need to be different, though, since this is the
identifier passed by the Client in read/write requests.

The Identification FunctionalGroup organises Parameters that help identify a topology element.
Clients can compare the values of these Parameters in the online and the offline instance to detect
mismatches between the configuration data and the currently connected element.

7.3.2 IsOnline ReferenceType

The IsOnline ReferenceType is a concrete ReferenceType used to bind the offline representation of
a Device to the online representation. The source and target Node of References of this type shall
be an instance of the same subtype of a ComponentType. Each Device shall be the source of at
most one Reference of type IsOnline.

The IsOnline ReferenceType is illustrated in Figure 31. Its representation in the AddressSpace is

specified in Table 43.

References

HierarchicalReferences

HasChild

Aggregates

IsOnline

Figure 31 – Type hierarchy for IsOnline Reference

Release 1.02 55 OPC 10000-100: Devices

Table 43 – IsOnline ReferenceType

Attributes Value

BrowseName IsOnline

InverseName OnlineOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of Aggregates ReferenceType defined in OPC 10000-5.

OPC 10000-100: Devices 56 Release 1.02

8 AddIn Capabilities

8.1 Overview

OPC 10001-7 specifies the AddIn model as a mechanism to add dedicated features to an Object or
ObjectType using aggregation.

The following features are based on this AddIn model.

8.2 Offline-Online data transfer

8.2.1 Definition

The transfer of information (Parameters) between offline nodes and the physical device is supported
through OPC UA Methods. These Methods are built on device specific knowledge and functionality.

The transfer is usually terminated if an error occurs for any of the Parameters. No automatic retry will
be conducted by the Server. However, whenever possible after a failure, the Server should bring the
Device back into a functional state. The Client has to retry by calling the transfer Method again.

The transfer may involve thousands of Parameters so that it can take a long time (up to minutes),
and with a result that may be too large for a single response. Therefore, the initiation of the transfer
and the collection of result data are performed with separate Methods.

The Device shall have been locked by the Client prior to invoking these Methods (see 8.3).

8.2.2 TransferServices Type

The TransferServicesType provides the Methods needed to transfer data to and from the online
Device. Figure 32 shows the TransferServicesType definition. It is formally defined in Table 44.

BaseObjectType

TransferServicesType

TransferFrom

Device

TransferToDevice

FetchTransfer

ResultData

Figure 32 – TransferServicesType

Release 1.02 57 OPC 10000-100: Devices

Table 44 – TransferServicesType definition

Attribute Value

BrowseName TransferServicesType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Method TransferToDevice Mandatory

HasComponent Method TransferFromDevice Mandatory

HasComponent Method FetchTransferResultData Mandatory

The StatusCode Bad_MethodInvalid shall be returned from the Call Service for Objects where locking
is not supported. Bad_UserAccessDenied shall be returned if the Client User does not have the
permission to call the Methods.

8.2.3 TransferServices Object

The support of TransferServices for an Object is declared by aggregating an instance of the
TransferServicesType as illustrated in Figure 33.

MD002

Instance

Space
TypeSpace

XYZ-DeviceTypeTransferServices

Type

TransferFrom

Device

TransferToDevice

Transfer

FetchTransfer

ResultData

Figure 33 – TransferServices

This Object is used as container for the TransferServices Methods and shall have the BrowseName
Transfer. HasComponent is used to reference from a Device to its “TransferServices” Object.

The TransferServiceType and each instance may share the same Methods.

8.2.4 TransferToDevice Method

TransferToDevice initiates the transfer of offline configured data (Parameters) to the physical device.
This Method has no input arguments. Which Parameters are transferred is based on Server-internal

knowledge.

The Server shall ensure integrity of the data before starting the transfer. Once the transfer has been
started successfully, the Method returns immediately with InitTransferStatus = 0. Any status
information regarding the transfer itself has to be collected using the FetchTransferResultData
Method.

OPC 10000-100: Devices 58 Release 1.02

The Server will reset any cached value for Nodes in the online instance representing Parameters
affected by the transfer. That way the cache will be re-populated from the Device next time they are
requested.

The signature of this Method is specified below. Table 45 and Table 46 specify the arguments and
AddressSpace representation, respectively.

Signature

TransferToDevice(

 [out] Int32 TransferID,

 [out] Int32 InitTransferStatus);

Table 45 – TransferToDevice Method arguments

Argument Description

TransferID Transfer Identifier. This ID has to be used when calling FetchTransferResultData.

InitTransferStatus Specifies if the transfer has been initiated.

0 – OK

-1 – E_NotLocked – the Device is not locked by the calling Client

-2 – E_NotOnline – the Device is not online / cannot be accessed

Table 46 – TransferToDevice Method AddressSpace definition

Attribute Value

BrowseName TransferToDevice

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

8.2.5 TransferFromDevice Method

TransferFromDevice initiates the transfer of values from the physical device to corresponding
Parameters in the offline representation of the Device. This Method has no input arguments. Which
Parameters are transferred is based on Server-internal knowledge.

Once the transfer has been started successfully, the Method returns immediately with
InitTransferStatus = 0. Any status information regarding the transfer itself has to be collected using
the FetchTransferResultData Method.

The signature of this Method is specified below. Table 47 and Table 48 specify the arguments and
AddressSpace representation, respectively.

Signature

TransferFromDevice(

 [out] Int32 TransferID,

 [out] Int32 InitTransferStatus);

Table 47 – TransferFromDevice Method arguments

Argument Description

TransferID Transfer Identifier. This ID has to be used when calling FetchTransferResultData.

InitTransferStatus Specifies if the transfer has been initiated.

0 – OK

-1 – E_NotLocked – the Device is not locked by the calling Client

-2 – E_NotOnline – the Device is not online / cannot be accessed

Release 1.02 59 OPC 10000-100: Devices

Table 48 – TransferFromDevice Method AddressSpace definition

Attribute Value

BrowseName TransferFromDevice

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

8.2.6 FetchTransferResultData Method

The TransferToDevice and TransferFromDevice Methods execute asynchronously after sending a
response to the Client. Execution status and execution results are collected during execution and can
be retrieved using the FetchTransferResultData Method. The TransferID is used as identifier to

retrieve the data.

The Client is assumed to fetch the result data in a timely manner. However, because of the
asynchronous execution and the possibility of data loss due to transmission errors to the Client, the
Server shall wait some time (some minutes) before deleting data that have not been acknowledged.
This should be even beyond Session termination, i.e. Clients that have to re-establish a Session after

an error may try to retrieve missing result data.

Result data will be deleted with each new transfer request for the same Device.

FetchTransferResultData is used to request the execution status and a set of result data. If called
before the transfer is finished it will return only partial data. The amount of data returned may be
further limited if it would be too large. “Too large” in this context means that the Server is not able to
return a larger response or that the number of results to return exceeds the maximum number of
results that was specified by the Client when calling this Method.

Each result returned to the Client is assigned a sequence number. The Client acknowledges that it
received the result by passing the sequence number in the new call to this Method. The Server can
delete the acknowledged result and will return the next result set with a new sequence number.

Clients shall not call the Method before the previous one returned. If it returns with an error (e.g.
Bad_Timeout), the Client can call the FetchTransferResultData with a sequence number 0. In this
case the Server will resend the last result set.

The Server will return Bad_NothingToDo in the Method-specific StatusCode of the Call Service if the

transfer is finished and no further result data are available.

The signature of this Method is specified below. Table 49 and Table 50 specify the arguments and
AddressSpace representation, respectively.

Signature

FetchTransferResultData(

 [in] Int32 TransferID,

 [in] Int32 SequenceNumber,

 [in] Int32 MaxParameterResultsToReturn,

 [in] Boolean OmitGoodResults,

 [out] FetchResultType FetchResultData);

OPC 10000-100: Devices 60 Release 1.02

Table 49 –FetchTransferResultData Method arguments

Argument Description

TransferID Transfer Identifier returned from TransferToDevice or TransferFromDevice.

SequenceNumber The sequence number being acknowledged. The Server may delete the result set
with this sequence number.

“0” is used in the first call after initialising a transfer and also if the previous call of
FetchTransferResultData failed.

MaxParameterResultsToReturn The number of Parameters in TransferResult.ParameterDefs that the Client wants
the Server to return in the response. The Server is allowed to further limit the
response, but shall not exceed this limit.

A value of 0 indicates that the Client is imposing no limitation.

OmitGoodResults If TRUE, the Server will omit data for Parameters which have been correctly
transferred. Note that this causes all good results to be released.

FetchResultData Two subtypes are possible:

 TransferResultError Type is returned if the transfer failed completely

 TransferResultData Type is returned if the transfer was performed. Status
information is returned for each transferred Parameter.

Table 50 – FetchTransferResultData Method AddressSpace definition

Attribute Value

BrowseName FetchTransferResultData

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

The FetchResultDataType is an abstract type. It is the base DataType for concrete result types of the
FetchTransferResultData. Its elements are defined in Table 51.

Table 51 – FetchResultDataType structure

Attribute Value

BrowseName FetchResultDataType

IsAbstract True

Subtype of Structure defined in OPC 10000-3

References NodeClass BrowseName DataType

HasSubtype DataType TransferResultErrorDataType Defined in Table 52.

HasSubtype DataType TransferResultDataDataType Defined in Table 53.

The TransferResultErrorDataType is a subtype of the FetchResultDataType and represents an error
result. It is defined in Table 52.

Table 52 – TransferResultError DataType structure

Name Type Description

TransferResultError

DataType

Structure This structure is returned in case of errors. No result data are returned. Further
calls with the same TransferID are not possible.

 status Int32 -1 – Invalid TransferID: The Id is unknown. Possible reason: all results have been
fetched or the result may have been deleted.

-2 – Transfer aborted: The transfer operation was aborted; no results exist.

-3 – DeviceError: An error in the device or the communication to the Device
occurred. “diagnostics” may contain device- or protocol-specific error information.

-4 – UnknownFailure: The transfer failed. “diagnostics” may contain Device- or
Protocol-specific error information.

 diagnostics DiagnosticInfo Diagnostic information. This parameter is empty if diagnostics information was not
requested in the request header or if no diagnostic information was encountered in
processing of the request. The DiagnosticInfo type is defined in OPC 10000-4.

Release 1.02 61 OPC 10000-100: Devices

The TransferResultData DataType is a subtype of the FetchResultDataType and includes parameter-

results from the transfer operation. It is defined in Table 53.

Table 53 – TransferResultData DataType structure

Name Type Description

TransferResultData

DataType

Structure A set of results from the transfer operation.

 sequenceNumber Int32 The sequence number of this result set.

 endOfResults Boolean TRUE – all result data have been fetched. Additional FetchTransferResultData
calls with the same TransferID will return a FetchTransferError with
status=InvalidTransferID.

FALSE – further result data shall be expected.

 parameterDefs structure[] Specific value for each Parameter that has been transferred. If OmitGoodResults is
TRUE, parameterDefs will only contain Parameters which have not been
transferred correctly.

 NodePath QualifiedName[] List of BrowseNames that represent the relative path from the Device Object to the
Parameter following hierarchical references. The Client may use these names for
TranslateBrowsePathsToNodeIds to retrieve the Parameter NodeId for the online
or the offline representation.

 statusCode StatusCode OPC UA StatusCode as defined in OPC 10000-4 and in OPC 10000-8.

 diagnostics DiagnosticInfo Diagnostic information. This parameter is empty if diagnostics information was not
requested in the request header or if no diagnostic information was encountered in
processing of the request. The DiagnosticInfo type is defined in OPC 10000-4.

8.3 Locking

8.3.1 Overview

Locking is the means to avoid concurrent modifications to a TopologyElement or Network and their
components. Clients shall use the locking services if they need to make a set of changes (for example,
several Write operations and Method invocations) and where a consistent state is available only after
all of these changes have been performed. The main purpose of locking a TopologyElement is
avoiding concurrent modifications. The main purpose of locking a Network is avoiding concurrent

topology changes.

A lock from one Client usually allows other Clients to view (navigate/read) the locked element. Servers
may choose to implement an exclusive locking where other Clients have no access at all (e.g. in
cases where even read operations require certain settings in a TopologyElement).

When locking a TopologyElement, the lock applies to the complete TopologyElement (including all

components such as blocks or modules).

Servers may allow independent locking of component TopologyElements, if no lock is applied to the
top-level TopologyElement.

If the Online/Offline model is supported (see 7.3), the lock always applies to both the online and the
offline version.

When locking a Network, the lock applies to the Network and all connected TopologyElements. If any
of the connected TopologyElements provides access to a sub-ordinate Network (like a gateway), the
sub-ordinate Network and its connected TopologyElements are locked as well.

OPC 10000-100: Devices 62 Release 1.02

8.3.2 LockingServices Type

The LockingServicesType provides the Methods needed to lock or unlock. Figure 34 shows the
LockingServicesType definition. It is formally defined in Table 54.

LockingServicesType

BaseObjectType

ExitLock

InitLockLocked

LockingClient

LockingUser

Remaining
LockTime

RenewLock

BreakLock

0:DefaultInstanceBrowseName
Value = Lock

Figure 34 – LockingServicesType

Table 54 – LockingServicesType definition

Attribute Value

BrowseName LockingServicesType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5.

HasComponent Method InitLock Mandatory

HasComponent Method RenewLock Mandatory

HasComponent Method ExitLock Mandatory

HasComponent Method BreakLock Mandatory

HasProperty Variable 0:DefaultInstanceBrowseName

“Lock”

String PropertyType

HasProperty Variable Locked Boolean PropertyType Mandatory

HasProperty Variable LockingClient String PropertyType Mandatory

HasProperty Variable LockingUser String PropertyType Mandatory

HasProperty Variable RemainingLockTime Duration PropertyType Mandatory

The StatusCode Bad_MethodInvalid shall be returned from the Call Service for Objects where locking
is not supported. Bad_UserAccessDenied shall be returned if the Client User does not have the
permission to call the Methods.

The DefaultInstanceBrowseName Property – defined in OPC 10000-3 – is used to specify the
recommended BrowseName for instances of the LockingServicesType.

The following LockingServices Properties offer lock-status information.

Locked when True indicates that this element has been locked by some Client and that no or just
limited access is available for other Clients.

LockingClient contains the ApplicationUri of the Client as provided in the CreateSession Service call
(see OPC 10000-4).

Release 1.02 63 OPC 10000-100: Devices

LockingUser contains the identity of the user. It is obtained directly or indirectly from the
UserIdentityToken passed by the Client in the ActivateSession Service call (see OPC 10000-4).

RemainingLockTime denotes the remaining time in milliseconds after which the lock will automatically
be timed out by the Server. This time is based upon MaxInactiveLockTime (see 8.3.4).

8.3.3 LockingServices Object

The support of LockingServices for an Object is declared by aggregating an instance of the
LockingServicesType as illustrated in Figure 35.

MD002

Instance

Space
TypeSpace

XYZ-TopologyElement

Type
LockingServices

Type

ExitLock

InitLock

Locked

Locked

Lock

LockingClient

LockingUser

Remaining

LockTime

LockingClient

LockingUser

Remaining

LockTime

RenewLock

BreakLock

Figure 35 – LockingServices

This Object is used as container for the LockingServices Methods and Properties and should have
the BrowseName Lock. HasComponent or HasAddIn are used to reference from a TopologyElement
(for example, a Device) to its “LockingServices” Object.

The LockingServiceType and each instance may share the same Methods. All Properties are distinct.

8.3.4 MaxInactiveLockTime Property

The MaxInactiveLockTime Property shall be added to the ServerCapabilities Object (see OPC 10000-
5).

It contains a Server-specific period of time in milliseconds until which the Server will revoke the lock.
The Server will initiate a timer based on this time as part of processing the InitLock request. Calling
the RenewLock Method as well as other Service calls from the Client for the locked element shall
reset the timer. The lock will never be disabled during execution of a Service that requires a lock.

Inactivity for MaxInactiveLockTime will trigger a timeout. As a result the Server will release the lock.

A timeout shall not cancel any already executing Services like Write.

The MaxInactiveLockTime Property is formally defined in Table 55.

Table 55 – MaxInactiveLockTime Property definition

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable MaxInactiveLockTime Duration PropertyType Mandatory

OPC 10000-100: Devices 64 Release 1.02

8.3.5 InitLock Method

InitLock restricts access for other Clients.

A call of this Method for an element that is already locked will be rejected. This may also be due to
an implicit lock created by the Server. If InitLock is requested for a Network, it will be rejected if any
of the Devices connected to this Network or any sub-ordinate Network including their connected
Devices is already locked.

While locked, requests from other Clients to modify the locked element (e.g., writing to Parameters,
modifying the topology, or invoking Methods) will be rejected. However, requests to read or navigate
will typically work. Servers may choose to implement an exclusive locking where other Clients have
no access at all (e.g. in cases where even read operations require certain settings in a
TopologyElement).

The lock is removed when ExitLock is called. It is automatically removed when the Session ends.
This is typically the case when the connection to the Client breaks and the Session times out. Servers
shall also maintain an automatic unlock if Clients do not access the locked element for a certain time

(see 8.3.4).

The signature of this Method is specified below. Table 56 and Table 57 specify the arguments and
AddressSpace representation, respectively.

Signature

InitLock(

 [in] String Context,

 [out] Int32 InitLockStatus);

Table 56 – InitLock Method Arguments

Argument Description

Context A string used to provide context information about the current activity going on in the
Client.

InitLockStatus 0 – OK

-1 – E_AlreadyLocked – the element is already locked

-2 – E_Invalid – the element cannot be locked

Table 57 – InitLock Method AddressSpace definition

Attribute Value

BrowseName InitLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

8.3.6 ExitLock Method

ExitLock removes the lock. This Method may only be called from the same Session from which
InitLock had been called.

The signature of this Method is specified below. Table 58 and Table 59 specify the arguments and
AddressSpace representation, respectively.

Signature

ExitLock(

 [out] Int32 ExitLockStatus);

Release 1.02 65 OPC 10000-100: Devices

Table 58 – ExitLock Method Arguments

Argument Description

ExitLockStatus 0 – OK

-1 – E_NotLocked – the Object is not locked

Table 59 – ExitLock Method AddressSpace definition

Attribute Value

BrowseName ExitLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

8.3.7 RenewLock Method

The lock timer is automatically renewed whenever the Client initiates a request for the locked element
or while Nodes of the locked element are subscribed to. RenewLock is used to reset the lock timer to
the value of the MaxInactiveLockTime Property and prevent the Server from automatically aborting
the lock. This Method may only be called from the same Session from which InitLock had been called.

The signature of this Method is specified below. Table 60 and Table 61 specify the arguments and
AddressSpace representation, respectively.

Signature

RenewLock(

 [out] Int32 RenewLockStatus);

Table 60 – RenewLock Method Arguments

Argument Description

RenewLockStatus 0 – OK

-1 – E_NotLocked – the Object is not locked

Table 61 – RenewLock Method AddressSpace definition

Attribute Value

BrowseName RenewLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

8.3.8 BreakLock Method

BreakLock allows a Client (with sufficiently high user rights) to break the lock held by another Client.
This Method will typically be available only to users with administrator privileges. BreakLock should

be used with care as the locked element may be in an inconsistent state.

The signature of this Method is specified below. Table 62 and Table 63 specify the arguments and
AddressSpace representation, respectively.

Signature

BreakLock(

 [out] Int32 BreakLockStatus);

Table 62 – BreakLock Method Arguments

Argument Description

BreakLockStatus 0 – OK

-1 – E_NotLocked – the Object is not locked

OPC 10000-100: Devices 66 Release 1.02

Table 63 – BreakLock Method AddressSpace definition

Attribute Value

BrowseName BreakLock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable OutputArguments Argument[] PropertyType Mandatory

Release 1.02 67 OPC 10000-100: Devices

9 Specialized topology elements

9.1 General

This section defines specialized types that are commonly used for Field Devices. It makes use of the
ConfigurableObjectType as a way to add functionality using composition.

9.2 Configurable components

9.2.1 General pattern

Subclause 9.2 defines a generic pattern to expose and configure components. It defines the following
principles:

 A configurable Object shall contain a folder called SupportedTypes that references the
list of Types available for configuring components using Organizes References. Sub-
folders can be used for further structuring of the set. The names of these sub -folders are
vendor specific.

 The configured instances shall be components of the configurable Object.

Figure 36 illustrates these principles.

FolderType:

SupportedTypes

BaseObjectType

Some configurable

ObjectType
T_2

T_3

T_4

T_5

T_1

Organizes Organizes

Figure 36 – Configurable component pattern

In some cases the SupportedTypes folder on the instance may be different to the one on the Type
and may contain only a subset. It may be for example that only one instance of each Type can be
configured. In this case the list of supported Types will shrink with each configured component. If the
list of supported Types is allowed to shrink on an instance, the TypeDefinition shall use an appropriate
ModellingRule like “Optional”.

9.2.2 ConfigurableObjectType

This ObjectType implements the configurable component pattern and is used when an Object or an
instance declaration needs nothing but configuration capability. Figure 37 illustrates the

OPC 10000-100: Devices 68 Release 1.02

ConfigurableObjectType. It is formally defined in Table 64. Concrete examples are in Clauses 9.3

and 9.4.

BaseObjectType:

<ObjectIdentifier>

ConfigurableObject
Type

BaseObjectType

FolderType:

SupportedTypes

Organizes

0..n

T_1

T_2 T_3

Figure 37 – ConfigurableObjectType

Table 64 – ConfigurableObjectType definition

Attribute Value

BrowseName ConfigurableObjectType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in OPC 10000-5

HasComponent Object SupportedTypes FolderType Mandatory

HasComponent Object <ObjectIdentifier> BaseObjectType OptionalPlaceholder

The SupportedTypes folder is used to maintain the set of (subtypes of) BaseObjectTypes that can be
instantiated in this configurable Object (the course of action to instantiate components is outside the

scope of this specification).

The configured instances shall be components of the ConfigurableObject.

Release 1.02 69 OPC 10000-100: Devices

9.3 Block Devices

A block-oriented Device can be composed using the modelling elements defined in this specification.
A block-oriented Device includes a configurable set of Blocks. Figure 38 shows the general structure
of block-oriented Devices.

Block-Oriented

Device

BlockType:

Block_E

Some

BlockDevice_A

Instance

Space
TypeSpace

DeviceType or

ComponentType

TopologyElement

Type

Some

Block Device Type

BlockType:

Block_B
FolderType:

SupportedTypes

ConfigurableObjectType:

Blocks

BlockType

1..1

1..1

A C DB E

FolderType:

SupportedTypes

ConfigurableObjectType:

Blocks

Figure 38 – Block-oriented Device structure example

An Object called Blocks is used as a container for the actual BlockType instances. It is of the
ConfigurableObjectType which includes the SupportedTypes folder. The SupportedTypes folder for
Blocks is used to maintain the set of (subtypes of) BlockTypes that can be instantiated. The
supported Blocks may be restricted by the block-oriented Device. In Figure 38 the BlockTypes B and
E have already been instantiated. In this example, only one instance of thes e types is allowed and
the SupportedTypes folder therefore does not reference these types anymore. See 9.2.1 for the
complete definition of the ConfigurableObjectType.

9.4 Modular Devices

A Modular Device is represented by a (subtype of) ComponentType that is composed of a top-Device
and a set of subdevices (modules). The top-Device often is the head module with the program logic
but a large part of the functionality depends on the used subdevices. The supported subdevices may
be restricted by the Modular Device. Figure 39 shows the general structure of Modular Devices.

OPC 10000-100: Devices 70 Release 1.02

Modular

Device

Module_D

Some

ModularDevice_Z

Instance

Space
TypeSpace

Modules

DeviceType or

ComponentType

TopologyElement

Type

Some

Modular Device Type

Module_C

FolderType:

SupportedTypes

ConfigurableObjectType:

SubDevices
1..1

1..1

A C DB E

FolderType:

SupportedTypes

ConfigurableObjectType:

SubDevices

Figure 39 – Modular Device structure example

The modules (subdevices) of Modular Devices are aggregated in the SubDevices Object. It is of the
ConfigurableObjectType, which includes the SupportedTypes folder. The SupportedTypes folder for
SubDevices is used to maintain the set modules that can be added to the Modular Device. Modules
are not in the DeviceSet Object.

Depending on the actual configuration, Modular Device instances might already have a set of pre-
configured subdevices. Furthermore, the SupportedTypes folder might only refer to a subset of all
possible subdevices for the Modular Device. In Figure 39 the modules C and D have already been
instantiated. In this example, only one instance of these types is allowed and the SupportedTypes
folder therefore does not reference these types anymore. See clause 9.2.1 for the complete definition
of the ConfigurableObjectType.

Subdevices may themselves be Modular Devices.

Release 1.02 71 OPC 10000-100: Devices

10 Profiles

10.1 General

Profiles are named groupings of ConformanceUnits as defined in OPC 10000-7. The term Facet in
the title of a Profile indicates that this Profile is expected to be part of another larger Profile or
concerns a specific aspect of OPC UA. Profiles with the term Facet in their title are expected to be
combined with other Profiles to define the complete functionality of an OPC UA Server or Client.

This specification defines Facets for Servers or Clients when they plan to support OPC UA for
Devices. They are described in 10.2 and 10.3.

10.2 Device Server Facets

The following tables specify the Facets available for Servers that implement the Devices companion
standard. Table 65 describes Conformance Units included in the minimum needed Facet. It includes
the organisation of instantiated Devices in the Server AddressSpace.

Table 65 – BaseDevice_Server_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Information Model Supports Objects that conform to the types specified in the chapter
Device model of this companion standard.
This includes in particular Objects of (subtypes of) ComponentType and
FunctionalGroups.

M

DI DeviceSet Supports the DeviceSet object to aggregate Device instances. M

DI Nameplate Supports Properties of the VendorNameplate Interface defined in 5.5.2. O

DI Software Component Supports Objects of SoftwareType or a subtype. O

DI DeviceHealth Supports the DeviceHealth Property defined in 5.5.3. O

DI DeviceSupportInfo Server provides additional data for its Devices as defined in 5.5.5. O

Table 66 defines a Facet for the identification FunctionalGroup of Devices. This includes the option
of identifying the Protocol(s).

Table 66 – DeviceIdentification_Server_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Identification Supports the Identification FunctionalGroup for Devices. M

DI Protocol Supports the ProtocolType and instances of it to identify the used
communication profiles for specific instances.

O

Table 67 defines extensions specifically needed for BlockDevices.

Table 67 – BlockDevice_Server_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Blocks Supports the BlockType (or subtypes respectively) and the Blocks Object
in some of the instantiated Devices.

M

Table 68 defines a Facet for the Locking AddIn Capability. This includes the option of breaking a lock.

Table 68 – Locking_Server_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Locking Supports the LockingService for certain TopologyElements. M

DI BreakLocking Supports the BreakLock Method to break the lock held by another Client. O

Table 69 defines a Facet for the support of the Device Communication model.

OPC 10000-100: Devices 72 Release 1.02

Table 69 – DeviceCommunication_Server_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Network Supports the NetworkType to instantiate Network instances. M

DI ConnectionPoint Supports subtypes of the ConnectionPointType. M

DI NetworkSet Supports the NetworkSet Object to aggregate all Network instances. M

DI ConnectsTo Supports the ConnectsTo Reference to associate Devices with a Network. M

Table 70 defines a Facet for the support of the Device Integration Host model .

Table 70 – DeviceIntegrationHost_Server_Facet definition

Conformance Unit Description Optional/

Mandatory

DI DeviceTopology Supports the DeviceTopology Object as starting Node for the
communication topology of the Devices to integrate.

M

DI Offline Supports offline and online representations of Devices including the
Methods to transfer data from or to the Device.

M

10.3 Device Client Facets

The following tables specify the Facets available for Clients that implement the Devices companion
standard. Table 71 describes Conformance Units included in the minimum needed Facet.

Table 71 – BaseDevice_Client_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Client Information
Model

Consumes Objects that conform to the types specified in the chapter
Device model of this companion standard.
This includes in particular Objects of (subtypes of) ComponentType and
FunctionalGroups.

M

DI Client DeviceSet Uses the DeviceSet Object to detect available Devices. M

DI Client Nameplate Consumes Properties of the VendorNameplate Interface defined in 5.5.2. O

DI Client Software
Component

Consumes Objects of SoftwareType or a subtype. O

DI Client DeviceHealth Uses the DeviceHealth Property defined in 5.5.3. O

DI Client
DeviceSupportInfo

Uses available additional data for Devices as defined in 5.5.5. O

Table 72 defines a Facet for the identification FunctionalGroup of Devices. This includes the option
of identifying the Protocol(s).

Table 72 – DeviceIdentification_Client_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Client Identification Consumes the Identification FunctionalGroup for Devices including the
(optional) reference to supported protocol(s).

M

Table 73 defines extensions specifically needed for BlockDevices.

Table 73 – BlockDevice_Client_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Client Blocks Understands and uses BlockDevices and their Blocks including
FunctionalGroups on both Device and Block level.

M

Table 74 defines a Facet for the Locking AddIn Capability. This includes the option of breaking a lock.

Release 1.02 73 OPC 10000-100: Devices

Table 74 – Locking_Client_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Locking Uses the LockingService where available. M

DI BreakLocking Support use of the BreakLock Method to break the lock held by another
Client.

O

Table 75 defines a Facet for the support of the Device Communication model.

Table 75 – DeviceCommunication_Client_Facet definition

Conformance Unit Description Optional/

Mandatory

DI Network Uses the NetworkType to instantiate Network instances. M

DI ConnectionPoint Uses subtypes of the ConnectionPointType. M

DI NetworkSet Uses the NetworkSet Object to store or find Network instances. M

DI ConnectsTo Uses the ConnectsTo Reference to associate Devices with a Network. M

Table 76 defines a Facet for the support of the Device Integration Host model.

Table 76 – DeviceIntegrationHost_Client_Facet definition

Conformance Unit Description Optional/

Mandatory

DI DeviceTopology Uses the DeviceTopology Object as starting Node for the communication
topology of the Devices to integrate.

M

DI Offline Uses offline and online representations of Devices including the Methods
to transfer data from or to the Device.

M

OPC 10000-100: Devices 74 Release 1.02

11 Namespaces

11.1 Namespace Metadata

Editor note: Update the table on release date

Table 77 defines the namespace metadata for this specification. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all
Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component
of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType

ObjectType and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file.
The UANodeSet XML schema is defined in OPC 10000-6.

Table 77 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/DI/

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/DI/

HasProperty NamespaceVersion String 1.02

HasProperty NamespacePublicationDate DateTime 2019-xx-xx

HasProperty IsNamespaceSubset Boolean Vendor-specific

HasProperty StaticNodeIdTypes IdType[] Null

HasProperty StaticNumericNodeIdRange NumericRange[] {0:9999}

HasProperty StaticStringNodeIdPattern String Null

11.2 Handling of OPC UA namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities.
The Attributes NodeId and BrowseName are identifiers. A Node in the UA Address Space is
unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to
unambiguously identify a Node. Different Nodes may have the same BrowseName. They are used to
build a browse path between two nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the namespace of
the standards body although the namespace of the NodeId reflects something else, for example the
EngineeringUnits Property. All NodeIds of Nodes not defined in this specification shall not use the

standard namespaces.

Table 78 provides a list of mandatory and optional namespaces used in a DI OPC UA Server.

Table 78 – Namespaces used in an OPC UA for Devices Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the
OPC UA specification. This namespace shall have namespace
index 0.

Mandatory

Local Server URI Namespace for Nodes defined in the local Server. This may
include types and instances used in a Device represented by
the Server. This namespace shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA/DI/ Namespace for NodeIds and BrowseNames defined in this
specification. The namespace index is Server specific.

Mandatory

Vendor specific types and instances A Server may provide vendor specific types like types derived
from TopologyElementType or NetworkType or vendor-specific
instances of those types in a vendor specific namespace.

Optional

Release 1.02 75 OPC 10000-100: Devices

Table 79 provides a list of namespaces and their index used for BrowseNames in this specification.
The default namespace of this specification is not listed since all BrowseNames without prefix use
this default namespace.

Table 79 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

OPC 10000-100: Devices 76 Release 1.02

Annex A
(normative)

Namespace and mappings

This Annex defines the numeric identifiers for all of the numeric NodeIds defined in this standard.
The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance

Node that appears in the specification and the Identifier is the numeric value for the NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the instance
Node to the BrowseName for the containing instance or type. An underscore character is used to
separate each BrowseName in the path. Let’s take for example, the DeviceType ObjectType Node
which has the SerialNumber Property. The SymbolName for the SerialNumber InstanceDeclaration
within the DeviceType declaration is: DeviceType_SerialNumber.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/DI/

The CSV released with this version of the standard can be found at:
http://www.opcfoundation.org/UADevices/1.2/NodeIds.csv

NOTE 1 The latest CSV that is compatible with this version of the standard can be found at:

http://www.opcfoundation.org/UADevices/NodeIds.csv

A computer processible version of the complete Information Model defined in this standard is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema released with this version of the standard can be found at:
http://www.opcfoundation.org/UADevices/1.2/Opc.Ua.Di.NodeSet2.xml

NOTE 2 The latest Information Model schema that is compatible with this version of the standard can be found a t:

http://www.opcfoundation.org/UADevices/Opc.Ua.Di.NodeSet2.xml

http://opcfoundation.org/DI/
http://www.opcfoundation.org/UADevices/1.2/NodeIds.csv
http://www.opcfoundation.org/UADevices/NodeIds.csv
http://www.opcfoundation.org/UADevices/1.2/Opc.Ua.Di.NodeSet2.xml
http://www.opcfoundation.org/UADevices/Opc.Ua.Di.NodeSet2.xml

Release 1.02 77 OPC 10000-100: Devices

Annex B
(informative)

Examples

This Annex includes examples referenced in the normative sections.

B.1 Functional Group Usages

The examples in Figure B.1 and Figure B.2 illustrate the use of FunctionalGroups:

ParameterSet::
BaseObjectType

DeviceType

Configuration

AnalyserDeviceType

FunctionalGroupType

Status

FactorySettings
Organizes

<ParameterIdentifier>::
BaseDataVariableType

*<GroupIdentifier>

Figure B.1 – Analyser Device use for FunctionalGroups

DeviceType

CtrlConfigurationType

BaseObjectType:

ParameterSet

BaseObjectType:

MethodSet

Start

Stop

FunctionalGroupType:

Diagnostics

FunctionalGroupType:

Configuration

Organizes

Organizes

ResourceType:

<Resource Name>

FunctionalGroupType:

GlobalVars

FunctionalGroupType:

AccessVars

FunctionalGroupType:

ConfigVars

ConfigurableComponentsType:

Resources

Var1

Var3

Var2

Organizes

Organizes

Organizes

Figure B.2 – PLCopen use for FunctionalGroups

OPC 10000-100: Devices 78 Release 1.02

B.2 Identification Functional Group

The Properties of a TopologyElement, like Manufacturer, SerialNumber, will usually be sufficient as
identification. If other Parameters or even Methods are required, all elements needed shall be
organised in a FunctionalGroup called Identification. Figure B.3 illustrates the Identification
FunctionalGroup with an example.

Note that companion standards are expected to define the Identification contents for their model.

 Example!

BaseObjectType:

ParameterSet

FunctionalGroupType:

Identification

TopologyElement

Type

BaseDataVariableType:

ManufacturerId

OrganizesBaseDataVariableType:

ModelId

PropertyType:

SerialNumber

ProtocolType:

ProtocolId

Figure B.3 – Example of an Identification FunctionalGroup

Release 1.02 79 OPC 10000-100: Devices

Annex C
(informative)

Guidelines for the usage of OPC UA for Devices as base for Companion

Specifications

This informative Annex describes guidelines for the usage of this specification as base for creating
companion specifications as well as guidelines on how to combine different companion specifications
based on this specification describing different aspects of the same device in one OPC UA
application.

C.1 Overview

This specification is used as base for many other companion specifications like

 OPC UA for IEC61131-3

 OPC UA Information Model for FDT Technology

 AutoId

 OPC UA for IO-Link.

Those companion specifications define different aspects of devices, for example

 some specific functionality (like the scan operation of a RFID reader in the AutoId spec),

 the view of the device accessed by a specific protocol (like IO-Link),

 or the configuration capabilities of a device as defined in a vendor -specific device package
(like FDI or FDT).

When an OPC UA application wants to combine those different aspects of one device in its address
space, there are potential problems as shown in Figure C.1. The example shows the application of
the AutoId specification as well as the FDT specification for the same device. For simplicity, only the
base ObjectTypes are shown. In reality, there has to be a subtype of the abstract FdtDeviceType and
there would be very likely a vendor-specific subtype of the RfidReaderDeviceType.

As shown in the figure, there are actually two Objects of different ObjectTypes representing different
aspects of the same device in the real world.

OPC 10000-100: Devices 80 Release 1.02

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

MyDevice

FdtDeviceType

MyDevice

Both objects represent
the same device in the

real world

Figure C.1 – Example of applying two companion specifications based on OPC UA for
Devices

In order to avoid multiple-inheritance, which is not further defined in OPC UA, it is not possible to
directly combine both ObjectTypes into one ObjectType containing all aspects of the device. And an
Object cannot be defined by two ObjectTypes. Therefore, in order to expose the information, that
both Objects actually represent different aspects of the same device, composition should be used as
shown in Figure C.2.

Release 1.02 81 OPC 10000-100: Devices

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

AutoIdView

FdtDeviceType

FDTView

MyDevice

Figure C.2 – Using composition to compose one device representation defined by two
companion specifications

In this case, the device is represented by an Object “MyDevice” where the vendor of the OPC UA
Application can provide its specific knowledge of the device. In addition, the Object has two
components called FDTView and AutoIdView in the figure, containing the information as defined in
the corresponding companion specifications.

C.2 Guidelines to define Companion Specifications based on OPC UA for Devices

As shown in the previous section, composition can be used to combine the ObjectTypes defined by
various specifications describing aspects of a device in order to combine the information in one OPC
UA application. This can lead, as shown in the example in Figure C.2, to the usage of several
instances of the DeviceType to represent one device. In order to avoid this, it is recommended that
companion specifications do not directly derive from the DeviceType but instead derive from the
TopologyElementType or other subtypes of the TopologyElementType (but not the DeviceType). This
allows an OPC UA application to represent the device by one instance of the DeviceType and
compose potentially several other aspects without the need to use the DeviceType again.

The DeviceType defines several Properties identifying the device as mandatory. By the above
described approach, the Properties do not need to be repeated several times as needed in the
example in Figure C.2. Here, the mandatory SerialNumber is a Property of MyDevice, FDTView, and
AutoIdView. However, companion specification can still define some of those Propert ies on their
ObjectTypes, either optional in order to allow the usage of their ObjectTypes without an additional
Object (for example if only one companion specification is supported by the OPC UA application) or
mandatory, if a specific access-path to the information shall be exposed. For example, the
SerialNumber accessed by a specific protocol might be different than the SerialNumber managed
directly by the DeviceVendor. Whereas Profibus or IO-Link represent the SerialNumber as a String,
the HART protocol uses three Bytes. So, if a companion specification should expose the
SerialNumber accessed via HART, it can add it as mandatory Property to its ObjectType. To conclude,
it is recommended that companion specification provide the Properties of the DeviceTyp e by
implementing the IVendorNameplateType, which adds all the Properties optionally to the ObjectType.

OPC 10000-100: Devices 82 Release 1.02

If desired, they can make some of those Properties mandatory to force that a specific access path is
used (e.g. via a specific protocol).

In order to easily identify the components representing different views on the device, it is
recommended to use the AddIn concept to define a standardized BrowseName for the Object
(DefaultInstanceBrowseName Property). In the example in Figure C.2 that would mean that
FdtDeviceType would have defined a DefaultInstanceBrowseName “FDTView”, and thus OPC UA
Clients can easily find the FDT specific data of the device by looking for an Instance called “FDTView”,
for example by using the TranslateBrowsePathsToNodeIds Service.

C.3 Guidelines on how to combine different companion specifications based on
OPC UA for Devices in one OPC UA application

When supporting several companion specifications in one OPC UA application it is recommended to
use the composition approach as described in section C.1. To expose the possibilities further, the
example is extended as shown in Figure C.3. Again, subtypes for the concrete type of device are not
considered for simplicity. The IOLinkDeviceType is already not derived from DeviceType but
TopologyElementType. As the FDT and AutoID specifications derive from DeviceType, the device is
represented by several instances of the DeviceType.

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

AutoIdView

FdtDeviceType

FDTView

MyDevice

TopologyElementType

OPC UA for IO-Link

IOLinkDeviceType

IO-LinkView

Figure C.3 – Example of applying several companion specifications (I)

In order to limit the usage of DeviceType instances, an alternative approach is shown in Figure C.4.
Here, the RfidReaderDeviceType is used as main Object to represent the device, and the objects
defined by the other companion specifications are composed.

Release 1.02 83 OPC 10000-100: Devices

OPC UA for AutoID OPC UA for FDT Technology

OPC UA for Devices

DeviceType

AutoIdDeviceType

RfidReaderDeviceType

FdtDeviceType

FDTView

MyDevice

TopologyElementType

OPC UA for IO-Link

IOLinkDeviceType

IO-LinkView

Figure C.4 – Example of applying several companion specifications (II)

It is recommended to use one of the two approaches described above.

OPC 10000-100: Devices 84 Release 1.02

Bibliography

IEC 61784: Industrial Communication Networks - Profiles

IEC 61499-1 ed2.0: Function Blocks –Part 1: Architecture

IEC 62591: Industrial communication networks - Wireless communication network and communication
profiles - WirelessHART™

[IEC 61131], IEC standard for Programmable Logic Controllers (PLCs)

	Figures
	Tables
	1 Scope
	2 Reference documents
	3 Terms, definitions, abbreviations, and used data types
	3.1 Terms and definitions
	3.2 Abbreviations
	3.3 Conventions used in this Document
	3.3.1 Conventions for Terms
	3.3.2 Conventions for Node Descriptions
	3.3.3 NodeIds and BrowseNames
	3.3.3.1 NodeIds
	3.3.3.2 BrowseNames

	3.3.4 Common Attributes
	3.3.4.1 General
	3.3.4.2 Objects
	3.3.4.3 Variables
	3.3.4.4 VariableTypes
	3.3.4.5 Methods

	4 Introduction to OPC UA
	4.1 What is OPC UA?
	4.2 Basics of OPC UA
	4.2.1 Information Modelling in OPC UA
	4.2.1.1 Concepts
	4.2.1.2 Graphical Notation

	4.2.2 OPC UA Profiles
	4.2.3 Namespaces
	4.2.4 Companion Specifications

	5 Device model
	5.1 General
	5.2 Usage guidelines
	5.3 TopologyElementType
	5.4 FunctionalGroupType
	5.4.1 Model
	5.4.2 Recommended FunctionalGroup BrowseNames
	5.4.3 UIElement Type

	5.5 Interfaces
	5.5.1 Overview
	5.5.2 VendorNameplate Interface
	5.5.3 TagNameplate Interface
	5.5.4 DeviceHealth Interface
	5.5.5 SupportInfo Interface
	5.5.5.1 General
	5.5.5.2 Device Type Image
	5.5.5.3 Documentation
	5.5.5.4 Protocol Support Files
	5.5.5.5 Images

	5.6 ComponentType
	5.7 DeviceType
	5.8 SoftwareType
	5.9 DeviceSet entry point
	5.10 DeviceFeatures entry point
	5.11 BlockType
	5.12 DeviceHealth Alarm Types
	5.12.1 General
	5.12.2 DeviceHealthDiagnosticAlarmType
	5.12.3 FailureAlarmType
	5.12.4 CheckFunctionAlarmType
	5.12.5 OffSpecAlarmType
	5.12.6 MaintenanceRequiredAlarmType

	6 Device communication model
	6.1 General
	6.2 ProtocolType
	6.3 Network
	6.4 ConnectionPoint
	6.5 ConnectsTo and ConnectsToParent ReferenceTypes
	6.6 NetworkSet Object

	7 Device integration host model
	7.1 General
	7.2 DeviceTopology Object
	7.3 Online/Offline
	7.3.1 General
	7.3.2 IsOnline ReferenceType

	8 AddIn Capabilities
	8.1 Overview
	8.2 Offline-Online data transfer
	8.2.1 Definition
	8.2.2 TransferServices Type
	8.2.3 TransferServices Object
	8.2.4 TransferToDevice Method
	8.2.5 TransferFromDevice Method
	8.2.6 FetchTransferResultData Method

	8.3 Locking
	8.3.1 Overview
	8.3.2 LockingServices Type
	8.3.3 LockingServices Object
	8.3.4 MaxInactiveLockTime Property
	8.3.5 InitLock Method
	8.3.6 ExitLock Method
	8.3.7 RenewLock Method
	8.3.8 BreakLock Method

	9 Specialized topology elements
	9.1 General
	9.2 Configurable components
	9.2.1 General pattern
	9.2.2 ConfigurableObjectType

	9.3 Block Devices
	9.4 Modular Devices

	10 Profiles
	10.1 General
	10.2 Device Server Facets
	10.3 Device Client Facets

	11 Namespaces
	11.1 Namespace Metadata
	11.2 Handling of OPC UA namespaces

	Annex A (normative) Namespace and mappings
	Annex B (informative) Examples
	B.1 Functional Group Usages
	B.2 Identification Functional Group

	Annex C (informative) Guidelines for the usage of OPC UA for Devices as base for Companion Specifications
	C.1 Overview
	C.2 Guidelines to define Companion Specifications based on OPC UA for Devices
	C.3 Guidelines on how to combine different companion specifications based on OPC UA for Devices in one OPC UA application

	Bibliography

