

F O U N D A T I O N

®

OPC Unified Architecture

Specification

Part 3: Address Space Model

Release 1.04

November 22, 2017

OPC Unified Architecture, Part 3 ii Release 1.04

Specification
Type:

Industry Standard
Specification

Comments: Report or view errata:
http://www.opcfoundation.org/errat
a

Title: OPC Unified

Architecture

Part 3 :Address Space
Model

Date: November 22, 2017

Version: Release 1.04 Software: MS-Word

 Source: OPC UA Part 3 - Address Space
Model Release 1.04
Specification.docx

Author: OPC Foundation Status: Release

Release 1.04 iii OPC Unified Architecture, Part 3

CONTENTS

FIGURES .. ix

TABLES .. xi

1 Scope .. 1

2 Normative references ... 1

3 Terms, definitions, abbreviations and conventions ... 2

3.1 Terms and definitions ... 2

3.2 Abbreviations ... 3

3.3 Conventions .. 3

3.3.1 Conventions for AddressSpace figures .. 3

3.3.2 Conventions for defining NodeClasses .. 4

4 AddressSpace concepts ... 5

4.1 Overview ... 5

4.2 Object Model ... 5

4.3 Node Model ... 5

4.3.1 General .. 5

4.3.2 NodeClasses .. 6

4.3.3 Attributes .. 6

4.3.4 References ... 6

4.4 Variables ... 7

4.4.1 General .. 7

4.4.2 Properties ... 7

4.4.3 DataVariables ... 7

4.5 TypeDefinitionNodes .. 8

4.5.1 General .. 8

4.5.2 Complex TypeDefinitionNodes and their InstanceDeclarations 8

4.5.3 Subtyping ... 9

4.5.4 Instantiation of complex TypeDefinitionNodes .. 9

4.6 Event Model .. 10

4.6.1 General .. 10

4.6.2 EventTypes .. 11

4.6.3 Event Categorization ... 11

4.7 Methods .. 11

4.8 Roles ... 12

4.8.1 Overview .. 12

4.8.2 Well Known Roles ... 12

4.8.3 Evaluating Permissions with Roles .. 13

5 Standard NodeClasses ... 15

5.1 Overview ... 15

5.2 Base NodeClass .. 15

5.2.1 General .. 15

5.2.2 NodeId ... 15

5.2.3 NodeClass .. 16

5.2.4 BrowseName .. 16

5.2.5 DisplayName .. 16

5.2.6 Description ... 16

OPC Unified Architecture, Part 3 iv Release 1.04

5.2.7 WriteMask .. 16

5.2.8 UserWriteMask ... 17

5.2.9 RolePermissions ... 17

5.2.10 UserRolePermissions .. 18

5.2.11 AccessRestrictions ... 18

5.3 ReferenceType NodeClass ... 18

5.3.1 General .. 18

5.3.2 Attributes .. 19

5.3.3 References ... 20

5.4 View NodeClass... 21

5.5 Objects .. 23

5.5.1 Object NodeClass ... 23

5.5.2 ObjectType NodeClass ... 25

5.5.3 Standard ObjectType FolderType .. 26

5.5.4 Client-side creation of Objects of an ObjectType .. 26

5.6 Variables ... 26

5.6.1 General .. 26

5.6.2 Variable NodeClass .. 27

5.6.3 Properties ... 30

5.6.4 DataVariable... 30

5.6.5 VariableType NodeClass ... 31

5.6.6 Client-side creation of Variables of an VariableType 33

5.7 Method NodeClass ... 33

5.8 DataTypes ... 35

5.8.1 DataType Model ... 35

5.8.2 Encoding Rules for different kinds of DataTypes .. 36

5.8.3 DataType NodeClass .. 37

5.8.4 DataTypeEncoding and Encoding Information .. 39

5.9 Summary of Attributes of the NodeClasses ... 40

6 Type Model for ObjectTypes and VariableTypes .. 40

6.1 Overview ... 40

6.2 Definitions ... 40

6.2.1 InstanceDeclaration .. 40

6.2.2 Instances without ModellingRules .. 40

6.2.3 InstanceDeclarationHierarchy .. 41

6.2.4 Similar Node of InstanceDeclaration .. 41

6.2.5 BrowsePath .. 41

6.2.6 Attribute Handling of InstanceDeclarations .. 41

6.2.7 Attribute Handling of Variable and VariableTypes... 41

6.2.8 NodeIds of InstanceDeclarations ... 41

6.3 Subtyping of ObjectTypes and VariableTypes ... 41

6.3.1 Overview .. 41

6.3.2 Attributes .. 42

6.3.3 InstanceDeclarations .. 42

6.4 Instances of ObjectTypes and VariableTypes .. 45

6.4.1 Overview .. 45

6.4.2 Creating an Instance ... 45

6.4.3 Constraints on an Instance .. 46

6.4.4 ModellingRules ... 46

Release 1.04 v OPC Unified Architecture, Part 3

6.5 Changing Type Definitions that are already used .. 54

7 Standard ReferenceTypes .. 54

7.1 General ... 54

7.2 References ReferenceType .. 55

7.3 HierarchicalReferences ReferenceType .. 55

7.4 NonHierarchicalReferences ReferenceType .. 56

7.5 HasChild ReferenceType.. 56

7.6 Aggregates ReferenceType .. 56

7.7 HasComponent ReferenceType .. 56

7.8 HasProperty ReferenceType .. 56

7.9 HasOrderedComponent ReferenceType .. 57

7.10 HasSubtype ReferenceType ... 57

7.11 Organizes ReferenceType .. 57

7.12 HasModellingRule ReferenceType .. 57

7.13 HasTypeDefinition ReferenceType .. 57

7.14 HasEncoding ReferenceType ... 58

7.15 GeneratesEvent ... 58

7.16 AlwaysGeneratesEvent .. 58

7.17 HasEventSource .. 58

7.18 HasNotifier .. 59

8 Standard DataTypes ... 60

8.1 General ... 60

8.2 NodeId .. 60

8.2.1 General .. 60

8.2.2 NamespaceIndex .. 60

8.2.3 IdentifierType ... 61

8.2.4 Identifier value .. 61

8.3 QualifiedName ... 61

8.4 LocaleId .. 62

8.5 LocalizedText .. 62

8.6 Argument ... 62

8.7 BaseDataType ... 63

8.8 Boolean ... 63

8.9 Byte .. 63

8.10 ByteString.. 63

8.11 DateTime ... 63

8.12 Double ... 63

8.13 Duration .. 63

8.14 Enumeration .. 63

8.15 Float .. 64

8.16 Guid .. 64

8.17 SByte .. 64

8.18 IdType ... 64

8.19 Image .. 64

8.20 ImageBMP ... 64

8.21 ImageGIF .. 64

8.22 ImageJPG ... 64

8.23 ImagePNG ... 64

8.24 Integer ... 64

OPC Unified Architecture, Part 3 vi Release 1.04

8.25 Int16 .. 64

8.26 Int32 .. 64

8.27 Int64 .. 64

8.28 TimeZoneDataType .. 64

8.29 NamingRuleType ... 65

8.30 NodeClass ... 65

8.31 Number ... 65

8.32 String .. 65

8.33 Structure ... 65

8.34 UInteger .. 65

8.35 UInt16 ... 65

8.36 UInt32 ... 65

8.37 UInt64 ... 66

8.38 UtcTime ... 66

8.39 XmlElement ... 66

8.40 EnumValueType .. 66

8.41 OptionSet .. 67

8.42 Union .. 67

8.43 DateString ... 67

8.44 DecimalString .. 67

8.45 DurationString ... 67

8.46 NormalizedString ... 68

8.47 TimeString ... 68

8.48 DataTypeDefinition .. 68

8.49 StructureDefinition ... 68

8.50 EnumDefinition .. 69

8.51 StructureField .. 69

8.52 EnumField ... 70

8.53 AudioDataType .. 70

8.54 Decimal ... 70

8.55 PermissionType ... 70

8.56 AccessRestrictionsType ... 71

8.57 AccessLevelType ... 71

8.58 AccessLevelExType ... 72

8.59 EventNotifierType .. 72

8.60 AttributeWriteMask ... 73

9 Standard EventTypes ... 73

9.1 General ... 73

9.2 BaseEventType.. 74

9.3 SystemEventType .. 74

9.4 ProgressEventType .. 74

9.5 AuditEventType ... 74

9.6 AuditSecurityEventType ... 76

9.7 AuditChannelEventType ... 76

9.8 AuditOpenSecureChannelEventType .. 76

9.9 AuditSessionEventType ... 76

9.10 AuditCreateSessionEventType ... 76

9.11 AuditUrlMismatchEventType ... 76

9.12 AuditActivateSessionEventType ... 77

Release 1.04 vii OPC Unified Architecture, Part 3

9.13 AuditCancelEventType ... 77

9.14 AuditCertificateEventType .. 77

9.15 AuditCertificateDataMismatchEventType .. 77

9.16 AuditCertificateExpiredEventType .. 77

9.17 AuditCertificateInvalidEventType .. 77

9.18 AuditCertificateUntrustedEventType ... 77

9.19 AuditCertificateRevokedEventType ... 77

9.20 AuditCertificateMismatchEventType .. 77

9.21 AuditNodeManagementEventType .. 77

9.22 AuditAddNodesEventType .. 77

9.23 AuditDeleteNodesEventType .. 78

9.24 AuditAddReferencesEventType .. 78

9.25 AuditDeleteReferencesEventType .. 78

9.26 AuditUpdateEventType ... 78

9.27 AuditWriteUpdateEventType ... 78

9.28 AuditHistoryUpdateEventType .. 78

9.29 AuditUpdateMethodEventType ... 78

9.30 DeviceFailureEventType .. 78

9.31 SystemStatusChangeEventType ... 78

9.32 ModelChangeEvents .. 78

9.32.1 General .. 78

9.32.2 NodeVersion Property ... 78

9.32.3 Views ... 79

9.32.4 Event Compression ... 79

9.32.5 BaseModelChangeEventType .. 79

9.32.6 GeneralModelChangeEventType ... 79

9.32.7 Guidelines for ModelChangeEvents ... 79

9.33 SemanticChangeEventType ... 80

9.33.1 General .. 80

9.33.2 ViewVersion and NodeVersion Properties .. 80

9.33.3 Views ... 80

9.33.4 Event Compression ... 80

Annex A (informative) How to use the Address Space Model.. 81

A.1 Overview ... 81

A.2 Type definitions ... 81

A.3 ObjectTypes .. 81

A.4 VariableTypes .. 81

A.4.1 General .. 81

A.4.2 Properties or DataVariables .. 81

A.4.3 Many Variables and / or structured DataTypes ... 82

A.5 Views .. 82

A.6 Methods .. 83

A.7 Defining ReferenceTypes ... 83

A.8 Defining ModellingRules ... 83

Annex B (informative) OPC UA Meta Model in UML ... 84

B.1 Background ... 84

B.2 Notation ... 84

B.3 Meta Model .. 85

B.3.1 Base .. 85

OPC Unified Architecture, Part 3 viii Release 1.04

B.3.2 ReferenceType ... 86

B.3.3 Predefined ReferenceTypes .. 87

B.3.4 Attributes .. 87

B.3.5 Object and ObjectType.. 88

B.3.6 EventNotifier ... 89

B.3.7 Variable and VariableType .. 89

B.3.8 Method ... 90

B.3.9 DataType.. 91

B.3.10 View ... 92

Annex C (normative) Graphical Notation .. 93

C.1 General ... 93

C.2 Notation ... 93

C.2.1 Overview .. 93

C.2.2 Simple Notation .. 93

C.2.3 Extended Notation .. 94

Release 1.04 ix OPC Unified Architecture, Part 3

FIGURES

Figure 1 – AddressSpace Node diagrams ... 3

Figure 2 – OPC UA Object Model ... 5

Figure 3 – AddressSpace Node Model ... 6

Figure 4 – Reference Model ... 7

Figure 5 – Example of a Variable defined by a VariableType ... 8

Figure 6 – Example of a Complex TypeDefinition .. 9

Figure 7 – Object and its Components defined by an ObjectType .. 10

Figure 8 – Permissions in the Address Space ... 18

Figure 9 – Symmetric and Non-Symmetric References.. 20

Figure 10 – Variables, VariableTypes and their DataTypes ... 35

Figure 11 – DataType Model .. 36

Figure 12 – Example of DataType Modelling ... 39

Figure 13 – Subtyping TypeDefinitionNodes ... 42

Figure 14 – The Fully-Inherited InstanceDeclarationHierarchy for BetaType 44

Figure 15 – An Instance and its TypeDefinitionNode ... 45

Figure 16 – Example for several References between InstanceDeclarations 46

Figure 17 – Example on changing instances based on InstanceDeclarations 48

Figure 18 – Example on changing InstanceDeclarations based on an InstanceDeclaration .. 49

Figure 19 – Use of the Standard ModellingRule Mandatory ... 50

Figure 20 – Example using the Standard ModellingRules Optional and Mandatory 51

Figure 21 – Example on using ExposesItsArray .. 52

Figure 22 – Complex example on using ExposesItsArray .. 52

Figure 23 – Example using OptionalPlaceholder with an Object and Variable 52

Figure 24 – Example using OptionalPlaceholder with a Method ... 53

Figure 25 – Example on using MandatoryPlaceholder for Object and Variable 54

Figure 26 – Standard ReferenceType Hierarchy ... 55

Figure 27 – Event Reference Example ... 59

Figure 28 – Complex Event Reference Example ... 60

Figure 29 – Standard EventType Hierarchy .. 74

Figure 30 – Audit Behaviour of a Server ... 75

Figure 31 – Audit Behaviour of an Aggregating Server .. 76

Figure B.1 – Background of OPC UA Meta Model ... 84

Figure B.2 – Notation (I) .. 85

Figure B.3 – Notation (II) ... 85

Figure B.4 – Base .. 86

Figure B.5 – Reference and ReferenceType ... 86

Figure B.6 – Predefined ReferenceTypes ... 87

Figure B.7 – Attributes ... 88

Figure B.8 – Object and ObjectType ... 89

Figure B.9 – EventNotifier .. 89

Figure B.10 – Variable and VariableType ... 90

OPC Unified Architecture, Part 3 x Release 1.04

Figure B.11 – Method .. 91

Figure B.12 – DataType ... 92

Figure B.13 – View .. 92

Figure C.1 – Example of a Reference connecting two Nodes... 94

Figure C.2 – Example of using a TypeDefinition inside a Node .. 95

Figure C.3 – Example of exposing Attributes .. 95

Figure C.4 – Example of exposing Properties inline .. 96

Release 1.04 xi OPC Unified Architecture, Part 3

TABLES

Table 1 – NodeClass Table Conventions .. 4

Table 2 – Well-Known Roles .. 12

Table 3 – Example Roles ... 13

Table 4 – Example Nodes .. 14

Table 5 – Example Role Assignment .. 14

Table 6 – Examples of Evaluating Access .. 14

Table 7 – Base NodeClass... 15

Table 9 – ReferenceType NodeClass ... 19

Table 10 – View NodeClass ... 22

Table 11 – Object NodeClass... 24

Table 12 – ObjectType NodeClass ... 25

Table 13 – Variable NodeClass .. 27

Table 14 – VariableType NodeClass .. 32

Table 15 – Method NodeClass ... 34

Table 16 – DataType NodeClass .. 38

Table 17 – Overview of Attributes .. 40

Table 18 – The InstanceDeclarationHierarchy for BetaType .. 43

Table 19 – The Fully-Inherited InstanceDeclarationHierarchy for BetaType 43

Table 20 – Rule for ModellingRules Properties when Subtyping .. 47

Table 21 – Properties of ModellingRules .. 49

Table 22 – NodeId Definition .. 60

Table 23 – IdentifierType Values .. 61

Table 24 – NodeId Null Values ... 61

Table 25 – QualifiedName Definition .. 62

Table 26 – LocaleId Examples ... 62

Table 27 – LocalizedText Definition.. 62

Table 28 – Argument Definition .. 63

Table 29 – TimeZoneDataType Definition ... 65

Table 30 – NamingRuleType Values... 65

Table 31 – NodeClass Values .. 65

Table 32 – EnumValueType Definition .. 66

Table 33 – OptionSet Definition ... 67

Table 34 – StructureDefinition Structure ... 69

Table 35 – EnumDefinition Structure .. 69

Table 36 – StructureField Structure .. 69

Table 37 – EnumField Structure ... 70

Table 38 – PermissionType Definition .. 70

Table 39 – AccessRestrictionsType Definition .. 71

Table 40 – AccessLevelType Definition .. 72

Table 41 – AccessLevelExType Definition .. 72

Table 42 – EventNotifierType Definition ... 73

OPC Unified Architecture, Part 3 xii Release 1.04

Table 43 – Bit mask for WriteMask and UserWriteMask .. 73

Table C.1 – Notation of Nodes depending on the NodeClass... 93

Table C.2 – Simple Notation of Nodes depending on the NodeClass 94

Release 1.04 xiii OPC Unified Architecture, Part 3

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specificat ion for developers of OPC UA applications. The specification is a result of an analysis and
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2018, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and r etrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that a re
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specifica tion is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227 -7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

OPC Unified Architecture, Part 3 xiv Release 1.04

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

Release 1.04 xv OPC Unified Architecture, Part 3

Revision 1.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis

ID
Summary Resolution

3163 Reference broken In section 8.22 the reference to spec was fixed.

3127 Element order of LocalizedText

different from Part 6

Changed order in 8.5 from text / locale to locale

/ text to match Part 6 and implementations

3018 Handling of DataType Encoding

Information

Added Property to DataType NodeClass in 5.8.3

containing information about data type
definition. Added DataTypes for handling the
information in 8.48, 8.49, 8.50, 8.51, and 8.52.

Removed the old approach having
DataTypeDictionaries. This effects 5.6.2, where
Properties have been removed, 5.8, where the
old approach was defined in detail, and 5.5.1 as
well as 7, where the ReferenceType
HasDefinition and its usage was removed.

The old approach is moved to an annex of Part 5
and can still be applied by OPC UA Applications.

3243 Clarification on SemanticChange
bit

Changed description in 5.6.2 explaining that
SemanticChange bit also requires triggering
SementicsChanged bit in subscription and does
not have to be set if Property cannot change.

3535 Need attribute to indicate
atomicity

Added a new Attribute AccessLevelEx which
contains a bits to indicate atomic access
capability in 5.6.2

3306 Clarification of Server and Source
Time stamps

Added clarifying text to section 8.38

3161,

3181

Clarification of OptionSet Value
and ValueBits

Added clarifying text to Table 33 and 8.52

3681 User Authentication Addition Added Roles sections 4.8, 5.2.9,5.2.10 and
5.2.11

3416 Instance declaration nodes can
have an abstract type

Added clarifying text to section 6.2.1

2994

2995

Meta data to indicate encryption

is required
Added AccessRestrictions Attribute

3536 No access level flag for

optional IndexRange write

Added a new Attribute AccessLevelEx which
contains a bit to indicate array index range write
capability in 5.6.2

3676 AccessRestrictions requires
“Session required” flag

Added a new flag “SessionRequired” to
AccessRestrictions in 5.2.11

3652 Audio Data Type for Part 9 Added new DataType AudioDataType in 8.53

3504 AccessLevel StatusWrite bit Clarifying text added in 5.6.2

3511 Subtyping Unions needs

clarification
Clarifying text added in 8.42

3722 Decimal DataType Added new DataType Decimal in 8.54

3602 UserAccess, UserExecutable and

UserWriteMask clarification
Added clarification text to 5.2.8, 5.6.2 and 5.7.

https://www.opcfoundation.org/mantis/view.php?id=3163
https://www.opcfoundation.org/mantis/view.php?id=3127
https://www.opcfoundation.org/mantis/view.php?id=3018
https://www.opcfoundation.org/mantis/view.php?id=3243
https://www.opcfoundation.org/mantis/view.php?id=3535
https://www.opcfoundation.org/mantis/view.php?id=3306
https://www.opcfoundation.org/mantis/view.php?id=3161
https://www.opcfoundation.org/mantis/view.php?id=3181
https://www.opcfoundation.org/mantis/view.php?id=3681
https://www.opcfoundation.org/mantis/view.php?id=3416
https://www.opcfoundation.org/mantis/view.php?id=2994
https://www.opcfoundation.org/mantis/view.php?id=2995
https://www.opcfoundation.org/mantis/view.php?id=3536
https://www.opcfoundation.org/mantis/view.php?id=3676
https://www.opcfoundation.org/mantis/view.php?id=3652
https://www.opcfoundation.org/mantis/view.php?id=3504
https://www.opcfoundation.org/mantis/view.php?id=3511
https://www.opcfoundation.org/mantis/view.php?id=3722
https://www.opcfoundation.org/mantis/view.php?id=3602

OPC Unified Architecture, Part 3 xvi Release 1.04

3665 Application of Modelling rules for

Methods

Added text to OptionalPlaceholder 6.4.4.5.5 and

ManditoryPlaceholder 6.4.4.5.6 modelling rules
describing their use with Methods.

3797 MaxStringLength Added clarification text to 5.6.4.

3818 ValueAsText applicability Added clarification text to Table 13

3827 BrowseNames for component

variables for structures

Added BrowseName description to 5.6.4

3888 Array Dimensions for

StructureField fields

Added arrayDimensions to StructureField Table

36

3923 ArrayDimensions description

does not have meaning

Added clarification of ArrayDImensions in
Variable NodeClass Table 13, VariableType
NodeClass Table 14. Added arrayDimensions in
Argument DataType Table 28

https://www.opcfoundation.org/mantis/view.php?id=3665
https://www.opcfoundation.org/mantis/view.php?id=3797
https://www.opcfoundation.org/mantis/view.php?id=3818
https://www.opcfoundation.org/mantis/view.php?id=3827
https://www.opcfoundation.org/mantis/view.php?id=3888
https://www.opcfoundation.org/mantis/view.php?id=3923

OPC Unified Architecture, Part 3 1 Release 1.04

OPC Unified Architecture Specification

Part 3: Address Space Model

1 Scope

This specification describes the OPC Unified Architecture (OPC UA) AddressSpace and its
Objects. This Part is the OPC UA meta model on which OPC UA information models are based.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application.

Part 1: OPC UA Specification: Part 1 – Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

Part 2: OPC UA Specification: Part 2 – Security Model

http://www.opcfoundation.org/UA/Part2/

Part 4: OPC UA Specification: Part 4 – Services

http://www.opcfoundation.org/UA/Part4/

Part 5: OPC UA Specification: Part 5 – Information Model

http://www.opcfoundation.org/UA/Part5/

Part 6: OPC UA Specification: Part 6 – Mappings

http://www.opcfoundation.org/UA/Part6/

Part 8: OPC UA Specification: Part 8 – Data Access

http://www.opcfoundation.org/UA/Part8/

Part 9: OPC UA Specification: Part 9 – Alarms and conditions

http://www.opcfoundation.org/UA/Part9/

Part 11: OPC UA Specification: Part 11 – Historical Access

http://www.opcfoundation.org/UA/Part11/

ISO/IEC 10918-1: Information technology – Digital compression and coding of continuous-tone

still images: Requirements and guidelines

https://www.iso.org/standard/18902.html

ISO/IEC 15948: Information technology – Computer graphics and image processing – Portable
Network Graphics (PNG): Functional specification

https://www.iso.org/standard/29581.html

ISO 639 (all parts): Codes for the representation of names of languages

https://www.iso.org/iso-639-language-codes.html

ISO 3166 (all parts): Codes for the representation of names of countries and their subdivisions

https://www.iso.org/iso-3166-country-codes.html

http://www.opcfoundation.org/UA/Part1/
http://www.opcfoundation.org/UA/Part2/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part6/
http://www.opcfoundation.org/UA/Part8/
http://www.opcfoundation.org/UA/Part9/
http://www.opcfoundation.org/UA/Part11/
https://www.iso.org/standard/18902.htm
https://www.iso.org/standard/29581.html
https://www.iso.org/iso-639-language-codes.html
https://www.iso.org/iso-3166-country-codes.html

Release 1.04 2 OPC Unified Architecture, Part 3

ISO/IEC/IEEE 60559:2011: Information technology – Microprocessor Systems – Floating-Point

arithmetic

 https://www.iso.org/standard/57469.html

IETF RFC 5646: Tags for Identifying Languages

http://tools.ietf.org/html/rfc5646

ISO 8601-2000: Data elements and interchange formats

https://www.iso.org/standard/26780.html

Unicode Annex15: Unicode Standard Annex #15: Unicode Normalization Forms

http://www.unicode.org/reports/tr15/

W3C XML Schema Definition Language (XSD) Part 2: DataTypes

http://www.w3.org/TR/xmlschema-2/

TAI: International Atomic Time

http://www.bipm.org/en/bipm-services/timescales/tai.html

3 Terms, definitions, abbreviations and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in Part 1 as well as the
following apply.

3.1.1
DataType
instance of a DataType Node that is used together with the ValueRank Attribute to define the
data type of a Variable

3.1.2
DataTypeId
NodeId of a DataType Node

3.1.3
DataVariable
Variables that represent values of Objects, either directly or indirectly for complex Variables,
where the Variables are always the TargetNode of a HasComponent Reference

3.1.4
EventType
ObjectType Node that represents the type definition of an Event

3.1.5
Hierarchical Reference
Reference that is used to construct hierarchies in the AddressSpace

Note 1 to entry: All hierarchical ReferenceTypes are derived from HierarchicalReferences.

3.1.6
InstanceDeclaration
Node that is used by a complex TypeDefinitionNode to expose its complex structure

Note 1 to entry: It is an instance used by a type definition.

3.1.7
ModellingRule
metadata of an InstanceDeclaration that defines how the InstanceDeclaration will be used for
instantiation and also defines subtyping rules for an InstanceDeclaration

https://www.iso.org/standard/57469.html
https://www.iso.org/standard/57469.html
http://tools.ietf.org/html/rfc5646
https://www.iso.org/standard/26780.html
http://www.unicode.org/reports/tr15/
http://www.w3.org/TR/xmlschema-2/

OPC Unified Architecture, Part 3 3 Release 1.04

3.1.8
Property
Variables that are the TargetNode for a HasProperty Reference

Note 1 to entry: Properties describe the characteristics of a Node.

3.1.9
SourceNode
Node having a Reference to another Node

EXAMPLE: In the Reference “A contains B”, “A” is the SourceNode.

3.1.10
TargetNode
Node that is referenced by another Node

EXAMPLE: In the Reference “A Contains B”, “B” is the TargetNode.

3.1.11
TypeDefinitionNode
Node that is used to define the type of another Node

Note 1 to entry: ObjectType and VariableType Nodes are TypeDefinitionNodes.

3.1.12
VariableType
Node that represents the type definition for a Variable

3.2 Abbreviations

UA Unified Architecture

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XML Extensible Markup Language

3.3 Conventions

3.3.1 Conventions for AddressSpace figures

Nodes and their References to each other are illustrated using figures. Figure 1 illustrates the
conventions used in these figures.

Node Class

Browse Name

 References
 HasComponent
 *
 *

 Attributes

TargetNode HasComponent

TargetNode

Figure 1 – AddressSpace Node diagrams

In these figures, rectangles represent Nodes. Node rectangles may be titled with one or two
lines of text. When two lines are used, the first text line in the rectangle identifies the NodeClass
and the second line contains the BrowseName. When one line is used, it contains the
BrowseName.

Node rectangles may contain boxes used to define their Attributes and References. Specific
names in these boxes identify specific Attributes and References.

Release 1.04 4 OPC Unified Architecture, Part 3

Shaded rectangles with rounded corners and with arrows passing through them represent
References. The arrow that passes through them begins at the SourceNode and points to the
TargetNode. References may also be shown by drawing an arrow that starts at the Reference
name in the “References” box and ends at the TargetNode.

3.3.2 Conventions for defining NodeClasses

Clause 5 defines AddressSpace NodeClasses. Table 1 describes the format of the tables used
to define NodeClasses.

Table 1 – NodeClass Table Conventions

Name Use Data Type Description

Attributes

 “Attribute name” “M” or “O” Data type of the
Attribute

Defines the Attribute

References

 “Reference name” “1”, “0..1”

or “0..*”
Not used Describes the use of the Reference by the NodeClass

Standard Properties

 “Property name” “M” or “O” Data type of the
Property

Defines the Property

The Name column contains the name of the Attribute, the name of the ReferenceType used to

create a Reference or the name of a Property referenced using the HasProperty Reference.

The Use column defines whether the Attribute or Property is mandatory (M) or optional (O).
When mandatory the Attribute or Property shall exist for every Node of the NodeClass. For
References it specifies the cardinality. The following values may apply:

• “0..*” identifies that there are no restrictions, that is, the Reference does not have to be
provided but there is no limitation how often it can be provided;

• “0..1” identifies that the Reference is provided at most once;

• “1” identifies that the Reference shall be provided exactly once.

The Data Type column contains the name of the DataType of the Attribute or Property. It is not
used for References.

The Description column contains the description of the Attribute, the Reference or the Property.

Only this standard may define Attributes. Thus, all Attributes of the NodeClass are specified in
the table and can only be extended by other parts of this series of standards.

This standard also defines ReferenceTypes, but ReferenceTypes can also be specified by a
Server or by a client using the NodeManagement Services specified in Part 4. Thus, the
NodeClass tables contained in this standard can contain the base ReferenceType called
References identifying that any ReferenceType may be used for the NodeClass, including
system specific ReferenceTypes. The NodeClass tables only specify how the NodeClasses can
be used as SourceNodes of References, not as TargetNodes. If a NodeClass table allows a
ReferenceType for its NodeClass to be used as SourceNode, this is also true for subtypes of
the ReferenceType. However, subtypes of the ReferenceType may restrict its SourceNodes.

This standard defines Properties, but Properties can be defined by other standard organizations
or vendors and Nodes can have Properties that are not standardised. Properties defined in this
standard are defined by their name, which is mapped to the BrowseName having the
NamespaceIndex 0, which represents the Namespace for OPC UA.

The Use column (optional or mandatory) does not imply a specific ModellingRule for Properties.
Different Server implementations will choose to use ModellingRules appropriate for them.

OPC Unified Architecture, Part 3 5 Release 1.04

4 AddressSpace concepts

4.1 Overview

The remainder of 4 defines the concepts of the AddressSpace. Clause 5 defines the
NodeClasses of the AddressSpace representing the AddressSpace concepts. Clause 6 defines
details on the type model for ObjectTypes and VariableTypes. Standard ReferenceTypes,
DataTypes and EventTypes are defined in Clauses 7 to 9.

The informative Annex A describes general considerations on how to use the Address Space
Model and the informative Annex B provides a UML Model of the Address Space Model. The
normative Annex C defines a graphical notation for OPC UA data.

4.2 Object Model

The primary objective of the OPC UA AddressSpace is to provide a standard way for Servers
to represent Objects to Clients. The OPC UA Object Model has been designed to meet this
objective. It defines Objects in terms of Variables and Methods. It also allows relationships to
other Objects to be expressed. Figure 2 illustrates the model.

Object

Variables

Methods

_____()
_____()

_____()
Event

Notifications

Data change
Notifications

References to
other Objects

Invoke

Read/Write

Figure 2 – OPC UA Object Model

The elements of this model are represented in the AddressSpace as Nodes. Each Node is
assigned to a NodeClass and each NodeClass represents a different element of the Object
Model. Clause 5 defines the NodeClasses used to represent this model.

4.3 Node Model

4.3.1 General

The set of Objects and related information that the OPC UA Server makes available to Clients
is referred to as its AddressSpace. The model for Objects is defined by the OPC UA Object
Model (see 4.2).

Objects and their components are represented in the AddressSpace as a set of Nodes
described by Attributes and interconnected by References. Figure 3 illustrates the model of a
Node and the remainder of 4.3 discusses the details of the Node Model.

Release 1.04 6 OPC Unified Architecture, Part 3

Node

Node

 References

 Attributes

 _____ References define relationships

to other nodes

Attributes describe a node

Figure 3 – AddressSpace Node Model

4.3.2 NodeClasses

NodeClasses are defined in terms of the Attributes and References that shall be instantiated
(given values) when a Node is defined in the AddressSpace. Attributes are discussed in 4.3.3
and References in 4.3.4.

Clause 5 defines the NodeClasses for the OPC UA AddressSpace. These NodeClasses are
referred to collectively as the metadata for the AddressSpace. Each Node in the AddressSpace
is an instance of one of these NodeClasses. No other NodeClasses shall be used to define
Nodes, and as a result, Clients and Servers are not allowed to define NodeClasses or extend
the definitions of these NodeClasses.

4.3.3 Attributes

Attributes are data elements that describe Nodes. Clients can access Attribute values using
Read, Write, Query, and Subscription/MonitoredItem Services. These Services are defined in
Part 4.

Attributes are elementary components of NodeClasses. Attribute definitions are included as
part of the NodeClass definitions in Clause 5 and, therefore, are not included in the
AddressSpace.

Each Attribute definition consists of an attribute id (for attribute ids of Attributes, see Part 6), a
name, a description, a data type and a mandatory/optional indicator. The set of Attributes
defined for each NodeClass shall not be extended by Clients or Servers.

When a Node is instantiated in the AddressSpace, the values of the NodeClass Attributes are
provided. The mandatory/optional indicator for the Attribute indicates whether the Attribute has
to be instantiated.

4.3.4 References

References are used to relate Nodes to each other. They can be accessed using the browsing
and querying Services defined in Part 4.

Like Attributes, they are defined as fundamental components of Nodes. Unlike Attributes,
References are defined as instances of ReferenceType Nodes. ReferenceType Nodes are
visible in the AddressSpace and are defined using the ReferenceType NodeClass (see 5.3).

The Node that contains the Reference is referred to as the SourceNode and the Node that is
referenced is referred to as the TargetNode. The combination of the SourceNode, the
ReferenceType and the TargetNode are used in OPC UA Services to uniquely identify
References. Thus, each Node can reference another Node with the same ReferenceType only
once. Any subtypes of concrete ReferenceTypes are considered to be equal to the base
concrete ReferenceTypes when identifying References (see 5.3 for subtypes of
ReferenceTypes). Figure 4 illustrates this model of a Reference.

OPC Unified Architecture, Part 3 7 Release 1.04

SourceNode

*ReferenceName TargetNode

* Name of the Reference’s ReferenceType

Figure 4 – Reference Model

The TargetNode of a Reference may be in the same AddressSpace or in the AddressSpace of
another OPC UA Server. TargetNodes located in other Servers are identified in OPC UA
Services using a combination of the remote Server name and the identifier assigned to the Node
by the remote Server.

OPC UA does not require that the TargetNode exists, thus References may point to a Node that
does not exist.

4.4 Variables

4.4.1 General

Variables are used to represent values. Two types of Variables are defined, Properties and
DataVariables. They differ in the kind of data that they represent and whether they can contain
other Variables.

4.4.2 Properties

Properties are Server-defined characteristics of Objects, DataVariables and other Nodes.
Properties differ from Attributes in that they characterise what the Node represents, such as a
device or a purchase order. Attributes define additional metadata that is instantiated for all
Nodes from a NodeClass. Attributes are common to all Nodes of a NodeClass and only defined
by this specification whereas Properties can be Server-defined.

For example, an Attribute defines the DataType of Variables whereas a Property can be used
to specify the engineering unit of some Variables.

To prevent recursion, Properties are not allowed to have Properties defined for them. To easily
identify Properties, the BrowseName of a Property shall be unique in the context of the Node
containing the Properties (see 5.6.3 for details).

A Node and its Properties shall always reside in the same Server.

4.4.3 DataVariables

DataVariables represent the content of an Object. For example, a file Object may be defined
that contains a stream of bytes. The stream of bytes may be defined as a DataVariable that is
an array of bytes. Properties may be used to expose the creation time and owner of the file
Object.

For example, if a DataVariable is defined by a data structure that contains two fields, “startTime”
and “endTime” then it might have a Property specific to that data structure, such as
“earliestStartTime”.

As another example, function blocks in control systems might be represented as Objects. The
parameters of the function block, such as its setpoints, may be represented as DataVariables.
The function block Object might also have Properties that describe its execution time and its
type.

DataVariables may have additional DataVariables, but only if they are complex. In this case,
their DataVariables shall always be elements of their complex definitions. Following the
example introduced by the description of Properties in 4.4.2, the Server could expose
“startTime” and “endTime” as separate components of the data structure.

Release 1.04 8 OPC Unified Architecture, Part 3

As another example, a complex DataVariable may define an aggregate of temperature values
generated by three separate temperature transmitters that are also visible in the AddressSpace.
In this case, this complex DataVariable could define HasComponent References from it to the
individual temperature values that it is composed of.

4.5 TypeDefinitionNodes

4.5.1 General

OPC UA Servers shall provide type definitions for Objects and Variables. The
HasTypeDefinition Reference shall be used to link an instance with its type definition
represented by a TypeDefinitionNode. Type definitions are required; however, Part 5 defines a
BaseObjectType, a PropertyType, and a BaseDataVariableType so a Server can use such a
base type if no more specialised type information is available. Objects and Variables inherit the
Attributes specified by their TypeDefinitionNode (see 6.4 for details).

In some cases, the NodeId used by the HasTypeDefinition Reference will be well-known to
Clients and Servers. Organizations may define TypeDefinitionNodes that are well-known in the
industry. Well-known NodeIds of TypeDefinitionNodes provide for commonality across OPC UA
Servers and allow Clients to interpret the TypeDefinitionNode without having to read it from the
Server. Therefore, Servers may use well-known NodeIds without representing the
corresponding TypeDefinitionNodes in their AddressSpace. However, the TypeDefinitionNodes
shall be provided for generic Clients. These TypeDefinitionNodes may exist in another Server.

The following example, illustrated in Figure 5, describes the use of the HasTypeDefinition
Reference. In this example, a setpoint parameter “SP” is represented as a DataVariable in the
AddressSpace. This DataVariable is part of an Object not shown in the figure.

To provide for a common setpoint definition that can be used by other Objects, a specialised
VariableType is used. Each setpoint DataVariable that uses this common definition will have a
HasTypeDefinition Reference that identifies the common “SetPoint” VariableType.

This value is dynamic, but its initial
value is inherited from the value of the
VariableType. The inherited value may
be overridden when the Variable is
created by the server.

Variable defined by
a VariableType.

Inherited Value may
be overridden.

TypeDefinitionNodes

VariableType
“SetPoint”

 Attributes
 Value

Variable
“SP”

 Attributes
 Value

 References
 HasTypeDefinition

1..N 0..N 0..N cc 0..N 1 0..N

Figure 5 – Example of a Variable defined by a VariableType

4.5.2 Complex TypeDefinitionNodes and their InstanceDeclarations

TypeDefinitionNodes can be complex. A complex TypeDefinitionNode also defines References
to other Nodes as part of the type definition. The ModellingRules defined in 6.4.4 specify how
those Nodes are handled when creating an instance of the type definition.

A TypeDefinitionNode references instances instead of other TypeDefinitionNodes to allow
unique names for several instances of the same type, to define default values and to add
References for those instances that are specific to this complex TypeDefinitionNode and not to
the TypeDefinitionNode of the instance. For example, in Figure 6 the ObjectType
“AI_BLK_TYPE”, representing a function block, has a HasComponent Reference to a Variable
“SP” of the VariableType “SetPoint”. “AI_BLK_TYPE” could have an additional setpoint Variable
of the same type using a different name. It could add a Property to the Variable that was not
defined by its TypeDefinitionNode “SetPoint”. And it could define a default value for “SP”, that
is, each instance of “AI_BLK_TYPE” would have a Variable “SP” initially set to this value.

OPC Unified Architecture, Part 3 9 Release 1.04

VariableType

“SetPoint”

 Attributes
 Value

ObjectType
“AI_BLK_TYPE”

 References
 HasComponent

Variable defined by a
VariableType.

Used by a TypeDefinitionNode
and is therefore an
InstanceDeclaration

This value is not
dynamic. Inherited value

may be overridden.

TypeDefinitionNodes

Variable
“SP”

 Attributes
 Value

 References
 HasTypeDefinition

1..N 0..N 0..N cc 0..N 1 0..N

Figure 6 – Example of a Complex TypeDefinition

This approach is commonly used in object-oriented programming languages in which the
variables of a class are defined as instances of other classes. When the class is instantiated,
each variable is also instantiated, but with the default values (constructor values) defined for
the containing class. That is, typically, the constructor for the component class runs first,
followed by the constructor for the containing class. The constructor for the containing class
may override component values set by the component class.

To distinguish instances used for the type definitions from instances that represent real data,
those instances are called InstanceDeclarations. However, this term is used to simplify this
specification, if an instance is an InstanceDeclaration or not is only visible in the AddressSpace
by following its References. Some instances may be shared and therefore referenced by
TypeDefinitionNodes, InstanceDeclarations and instances. This is similar to class variables in
object-oriented programming languages.

4.5.3 Subtyping

This standard allows subtyping of type definitions. The subtyping rules are defined in Clause 6.
Subtyping of ObjectTypes and VariableTypes allows:

• Clients that only know the supertype to handle an instance of the subtype as if it were an
instance of the supertype;

• instances of the supertype to be replaced by instances of the subtype;

• specialised types that inherit common characteristics of the base type.

In other words, subtypes reflect the structure defined by their supertype but may add additional
characteristics. For example, a vendor may wish to extend a general “TemperatureSensor”
VariableType by adding a Property providing the next maintenance interval. The vendor would
do this by creating a new VariableType which is a TargetNode for a HasSubtype reference from
the original VariableType and adding the new Property to it.

4.5.4 Instantiation of complex TypeDefinitionNodes

The instantiation of complex TypeDefinitionNodes depends on the ModellingRules defined in
6.4.4. However, the intention is that instances of a type definition will reflect the structure
defined by the TypeDefinitionNode. Figure 7 shows an instance of the TypeDefinitionNode
“AI_BLK_TYPE”, where the ModellingRule Mandatory, defined in 6.4.4.5.2, was applied for its
containing Variable. Thus, an instance of “AI_BLK_TYPE”, called AI_BLK_1”, has a
HasTypeDefinition Reference to “AI_BLK_TYPE”. It a lso contains a Variable “SP” having the
same BrowseName as the Variable “SP” used by the TypeDefinitionNode and thereby reflects
the structure defined by the TypeDefinitionNode.

Release 1.04 10 OPC Unified Architecture, Part 3

Variable Type

“SetPoint”

 Attributes
 Value

This value is dynamic, but
its initial value is inherited.
The inherited value may
be overridden when the
variable is created by the
server.

Object
“AI_BLK_1”

 References
 HasTypeDefinition
 HasComponent

ObjectType
“AI_BLK_TYPE”

 References
 HasComponent

Variable defined by a
VariableType.

This value is not
dynamic. Inherited value

may be overridden.

Variable defined by
being part of the

ObjectType.

Type Definition

Nodes

Variable
“SP”

 Attributes
 Value

 References
 HasTypeDefinition

Variable
“SP”

 Attributes
 Value

 References
 HasTypeDefinition

1..N 0..N 0..N cc 0..N 1 0..N

Figure 7 – Object and its Components defined by an ObjectType

A client knowing the ObjectType “AI_BLK_TYPE” can use this knowledge to directly browse to
the containing Nodes for each instance of this type. This allows programming against the
TypeDefinitionNode. For example, a graphical element may be programmed in the client that
handles all instances of “AI_BLK_TYPE” in the same way by showing the value of “SP”.

There are several constraints related to programming against the TypeDefinitionNode. A
TypeDefinitionNode or an InstanceDeclaration shall never reference two Nodes having the
same BrowseName using forward hierarchical References. Instances based on
InstanceDeclarations shall always keep the same BrowseName as the InstanceDeclaration they
are derived from. A special Service defined in Part 4 called TranslateBrowsePathsToNodeIds
may be used to identify the instances based on the InstanceDeclarations. Using the simple
Browse Service might not be sufficient since the uniqueness of the BrowseName is only
required for TypeDefinitionNodes and InstanceDeclarations, not for other instances. Thus,
“AI_BLK_1” may have another Variable with the BrowseName “SP”, although this one would
not be derived from an InstanceDeclaration of the TypeDefinitionNode.

Instances derived from an InstanceDeclaration shall be of the same TypeDefinitionNode or a
subtype of this TypeDefinitionNode.

A TypeDefinitionNode and its InstanceDeclarations shall always reside in the same Server.
However, instances may point with their HasTypeDefinition Reference to a TypeDefinitionNode
in a different Server.

4.6 Event Model

4.6.1 General

The Event Model defines a general purpose eventing system that can be used in many diverse
vertical markets.

Events represent specific transient occurrences. System configurat ion changes and system
errors are examples of Events. Event Notifications report the occurrence of an Event. Events
defined in this document are not directly visible in the OPC UA AddressSpace. Objects and
Views can be used to subscribe to Events. The EventNotifier Attribute of those Nodes identifies
if the Node allows subscribing to Events. Clients subscribe to such Nodes to receive
Notifications of Event occurrences.

Event Subscriptions use the Monitoring and Subscription Services defined in Part 4 to subscribe
to the Event Notifications of a Node.

OPC Unified Architecture, Part 3 11 Release 1.04

Any OPC UA Server that supports eventing shall expose at least one Node as EventNotifier.
The Server Object defined in Part 5 is used for this purpose. Events generated by the Server
are available via this Server Object. A Server is not expected to produce Events if the
connection to the event source is down for some reason (i.e. the system is offline).

Events may also be exposed through other Nodes anywhere in the AddressSpace. These Nodes
(identified via the EventNotifier Attribute) provide some subset of the Events generated by the
Server. The position in the AddressSpace dictates what this subset will be. For example, a
process area Object representing a functional area of the process would provide Events
originating from that area of the process only. It should be noted that this is only an example
and it is fully up to the Server to determine what Events should be provided by which Node.

4.6.2 EventTypes

Each Event is of a specific EventType. A Server may support many types. This part defines the
BaseEventType that all other EventTypes derive from. It is expected that other companion
specifications will define additional EventTypes deriving from the base types defined in this
part.

The EventTypes supported by a Server are exposed in the AddressSpace of a Server.
EventTypes are represented as ObjectTypes in the AddressSpace and do not have a special
NodeClass associated to them. Part 5 defines how a Server exposes the EventTypes in detail.

EventTypes defined in this document are specified as abstract and therefore never instantiated
in the AddressSpace. Event occurrences of those EventTypes are only exposed via a
Subscription. EventTypes exist in the AddressSpace to allow Clients to discover the EventType.
This information is used by a client when establishing and working with Event Subscriptions.
EventTypes defined by other parts of this series of standards or companion specifications as
well as Server specific EventTypes may be defined as not abstract and therefore instances of
those EventTypes may be visible in the AddressSpace although Events of those EventTypes
are also accessible via the Event Notification mechanisms.

Standard EventTypes are described in Clause 9. Their representation in the AddressSpace is
specified in Part 5.

4.6.3 Event Categorization

Events can be categorised by creating new EventTypes which are subtypes of existing
EventTypes but do not extend an existing type. They are used only to identify an event as being
of the new EventType. For example, the EventType DeviceFailureEventType could be subtyped
into TransmitterFailureEventType and ComputerFailureEventType. These new subtypes would
not add new Properties or change the semantic inherited from the DeviceFailureEventType
other than purely for categorization of the Events.

Event sources can also be organised into groups by using the Event ReferenceTypes described
in 7.16 and 7.18. For example, a Server may define Objects in the AddressSpace representing
Events related to physical devices, or Event areas of a plant or functionality contained in the
Server. Event References would be used to indicate which Event sources represent physical
devices and which ones represent some Server-based functionality. In addition, References
can be used to group the physical devices or Server-based functionality into hierarchical Event
areas. In some cases, an Event source may be categorised as being both a device and a Server
function. In this case, two relationships would be established. Refer to the description of the
Event ReferenceTypes for additional examples.

Clients can select a category or categories of Events by defining content filters that include
terms specifying the EventType of the Event or a grouping of Event sources. The two
mechanisms allow for a single Event to be categorised in multiple manners. A client could obtain
all Events related to a physical device or all failures of a particular device.

4.7 Methods

Methods are “lightweight” functions, whose scope is bounded by an owning (see Note) Object,
similar to the methods of a class in object-oriented programming or an owning ObjectType,
similar to static methods of a class. Methods are invoked by a client, proceed to completion on

Release 1.04 12 OPC Unified Architecture, Part 3

the Server and return the result to the client. The lifetime of the Method’s invocation instance
begins when the client calls the Method and ends when the result is returned.

NOTE The owning Object or ObjectType is specified in the service call when invoking the Method.

While Methods may affect the state of the owning Object, they have no explicit state of their
own. In this sense, they are stateless. Methods can have a varying number of input arguments
and return resultant arguments. Each Method is described by a Node of the Method NodeClass.
This Node contains the metadata that identifies the Method’s arguments and describes its
behaviour.

Methods are invoked by using the Call Service defined in Part 4.

Clients discover the Methods supported by a Server by browsing for the owning Objects
References that identify their supported Methods.

4.8 Roles

4.8.1 Overview

A Role is a function assumed by a Client when it accesses a Server. Roles are used to separate
authentication (determining who a Client is) from authorization (determining what the Client is
allowed to do). By separating these tasks Servers can allow centralized services to manage
user identities and credentials while the Server only manages the Permissions on its Nodes
assigned to Roles.

The set of Roles supported by a Server are published as components of the Roles Object
defined in Part 5. Servers should define a base set of Roles and allow configuration Clients to
add system specific Roles.

When a Session is created, the Server must determine what Roles are granted to that Session.
This specification defines standard mapping rules which Servers may support. Servers may
also use vendor specific mapping rules in addition to or instead of the standard rules.

The standard mapping rules allow Roles to be granted based on:

• User identity;

• Application identity;

• Endpoint;

User identity mappings can be based on user names, user certificates or user groups. Well
known groups include ‘AuthenticatedUser’ (any user with valid credentials) and ‘Anonymous’
(no user credentials provided).

Application identity mappings are based on the ApplicationUri specified in the Client Certificate.
Application identity can only be enforced if the Client proves possession of a trusted Certificate
by using it to create a Secure Channel or by providing a signature in ActivateSession (see Part
4).

Endpoint identity mappings are based on the URL used to connect to the Server. Endpoint
identity can be used to restrict access to Clients running on particular networks.

Part 5 defines the Objects, Methods and DataTypes used to represent and manage these
mapping rules in the Address Space.

4.8.2 Well Known Roles

All Servers should support the well-known Roles which are defined in Table 2. The NodeIds

for the well-known Roles are defined in Part 6.

 Table 2 – Well-Known Roles

BrowseName Suggested Permissions

Anonymous The Role has very limited access for use when a Session has anonymous credentials.

OPC Unified Architecture, Part 3 13 Release 1.04

AuthenticatedUser The Role has limited access for use when a Session has valid non-anonymous credentials
but has not been explicitly granted access to a Role.

Observer The Role is allowed to browse, read live data, read historical data/events or subscribe to
data/events.

Operator The Role is allowed to browse, read live data, read historical data/events or subscribe to
data/events.

In addition, the Session is allowed to write some live data and call some Methods.

Engineer The Role is allowed to browse, read/write configuration data, read historical data/events,
call Methods or subscribe to data/events.

Supervisor The Role is allowed to browse, read live data, read historical data/events, call Methods or
subscribe to data/events.

ConfigureAdmin The Role is allowed to change the non-security related configuration settings.

SecurityAdmin The Role is allowed to change security related settings.

4.8.3 Evaluating Permissions with Roles

When a Client attempts to access a Node, the Server goes through the list of Roles granted to
the Session and logically ORs the Permissions for the Role on the Node. If there are no Node
specific Permissions then the default Permissions for the Role in the DefaultRolePermissions
Property of the NamespaceMetadata for the namespace the Node belongs to are used (see
Part 5). The resulting mask is the effective Permissions. If the bits corresponding to current
operation are set, then the operation can proceed. If they are not set the Server returns
Bad_UserAccessDenied.

Roles appear under the Roles Object in the Server Address Space. Each Role has mapping
rules defined which appear as Properties of the Role Object (see Part 5). The examples shown
in Table 3 illustrate how the standard mapping rules can be used to determine which Roles a
Session has access to and, consequently, the Permissions that are granted to the Session.

 Table 3 – Example Roles

Role Mapping Rules Description

Anonymous Identities = Anonymous

Applications =

Endpoints =

An identity mapping rule that
specifies the Role applies to
anonymous users.

AuthenticatedUser Identities = AuthenticatedUser

Applications =

Endpoints =

An identity mapping rule that
specifies the Role applies to
authenticated users.

Operator1 Identities = User with name ‘Joe’

Applications = urn:OperatorStation1

Endpoints =

An identity mapping rule that
specifies specific users that
have access to the Role with a
application rule that restricts
access to a single Client
application.

Operator2 Identities = Users with name ‘Joe’ or ‘Ann’

Applications = urn:OperatorStation2

Endpoints =

An identity mapping rule that
specifies specific users that
have access to the Role with a
application rule that restricts
access to a single Client
application.

Supervisor Identities = User with name ‘Root’

Applications =

Endpoints =

An identity mapping rule that
specifies specific users that
have access to the Role

Administrator Identities = User with name ‘Root’

Applications =

Endpoints = opc.tcp://127.0.0.1:48000

An identity mapping rule that
specifies specific users that
have access to the Role when
they connect via a specific
Endpoint.

Release 1.04 14 OPC Unified Architecture, Part 3

The examples also make use of the Nodes defined in Table 4. The table specifies the value of

the RolePermissions Attribute for each Node.

Table 4 – Example Nodes

Node Role Permissions

Unit1.Measurement AuthenticatedUser = Browse

Operator1 = Browse, Read

Unit2.Measurement AuthenticatedUser = Browse

Operator2 = Browse, Read

SetPoint AuthenticatedUser = Browse

Operator1 and Operator2 = Browse, Read, Write

Supervisor = Browse, Read

DisableDevice AuthenticatedUser = Browse

Operator1 and Operator2 = Browse, Read

Administrator = Browse, Read, Write

When a Client creates a Session the Roles assigned to the Session depend on the rules defined
for each Role. Table 5 lists the assigned Roles for different Sessions created with different
Users, Client applications and Endpoints.

Table 5 – Example Role Assignment

User Provided by Client Roles Assigned to Session

Anonymous Anonymous

Sam AuthenticatedUser

Joe using OperatorStation1 application. AuthenticatedUser, Operator1

Joe using OperatorStation2 application. AuthenticatedUser, Operator2

Joe using generic application. AuthenticatedUser

Root using OperatorStation1 application. AuthenticatedUser, Supervisor

Root using generic application and 127.0.0.1 endpoint. AuthenticatedUser, Supervisor, Administrator

Root using generic application and another endpoint . AuthenticatedUser, Supervisor

When a Client application accesses a Node the RolePermissions for the Node are compared to

the Roles assigned to the Session. Any Permissions available to at least one Role is granted
to the Client. Table 6 provides a number of scenarios and examples and the resulting decision
on access.

Table 6 – Examples of Evaluating Access

Use Case Role Permissions

Anonymous user on localhost browses
Unit1.Measurement Node.

Access denied because no rule defined for Anonymous users.

User ‘Sam’ using OperatorStation1
application browses Unit1.Measurement
Node.

Allowed because AuthenticatedUser is granted Browse
Permission.

User ‘Sam’ using OperatorStation2
application reads Value of
Unit1.Measurement Node.

Access denied because AuthenticatedUser is not granted Read
Permission.

User ‘Joe’ using OperatorStation1
application reads Value of
Unit1.Measurement Node.

Allowed because Operator1 is granted Read Permission.

User ‘Joe’ using OperatorStation2
application reads Value of
Unit1.Measurement Node.

Access denied because AuthenticatedUser and Operator2 are not
granted Read Permission.

OPC Unified Architecture, Part 3 15 Release 1.04

User ‘Joe’ using generic OPC UA
application reads Value of Measurement
Node.

Access denied because AuthenticatedUser is not granted Read
Permission.

User ‘Joe’ using OperatorStation1
application write Value of SetPoint Node.

Allowed because Operator1 is granted Write Permission.

User ‘Root’ using OperatorStation1
application write the Value of SetPoint
Node.

Denied because AuthenticatedUser and Supervisor are not
granted Write Permission.

User ‘Joe’ using OperatorStation1
application write Value of DisableDevice
Node.

Access denied because AuthenticatedUser and Operator1 are not
granted Write Permission.

User ‘Root’ using OperatorStation1
application write the Value of
DisableDevice Node.

Access denied because AuthenticatedUser and Supervisor are not
granted Write Permission.

User ‘Root’ using endpoint 127.0.0.1 to
write Value of DisableDevice Node.

Allowed because Administrator is granted Write Permission.

5 Standard NodeClasses

5.1 Overview

Clause 5 defines the NodeClasses used to define Nodes in the OPC UA AddressSpace.
NodeClasses are derived from a common Base NodeClass. This NodeClass is defined first,
followed by those used to organise the AddressSpace and then by the NodeClasses used to
represent Objects.

The NodeClasses defined to represent Objects fall into three categories: those used to define
instances, those used to define types for those instances and those used to define data types.
Subclause 6.3 describes the rules for subtyping and 6.4 the rules for instantiation of the type
definitions.

5.2 Base NodeClass

5.2.1 General

The OPC UA Address Space Model defines a Base NodeClass from which all other
NodeClasses are derived. The derived NodeClasses represent the various components of the
OPC UA Object Model (see 4.2). The Attributes of the Base NodeClass are specified in Table 7.
There are no References specified for the Base NodeClass.

Table 7 – Base NodeClass

Name Use Data Type Description

Attributes

 NodeId M NodeId See 5.2.2

 NodeClass M NodeClass See 5.2.3

 BrowseName M QualifiedName See 5.2.4

 DisplayName M LocalizedText See 5.2.5

 Description O LocalizedText See 5.2.6

 WriteMask O AttributeWriteMask See 5.2.7

 UserWriteMask O AttributeWriteMask See 5.2.8

 RolePermissions O RolePermissionType[] See 5.2.9

 UserRolePermissions O RolePermissionType[] See 5.2.10

 AccessRestrictions O AccessRestrictionsType See 5.2.11

References No References specified for this NodeClass

5.2.2 NodeId

Nodes are unambiguously identified using a constructed identifier called the NodeId. Some
Servers may accept alternative NodeIds in addition to the canonical NodeId represented in this
Attribute. A Server shall persist the NodeId of a Node, that is, it shall not generate new NodeIds
when rebooting. The structure of the NodeId is defined in 8.2.

Release 1.04 16 OPC Unified Architecture, Part 3

5.2.3 NodeClass

The NodeClass Attribute identifies the NodeClass of a Node. Its data type is defined in 8.30.

5.2.4 BrowseName

Nodes have a BrowseName Attribute that is used as a non-localised human-readable name
when browsing the AddressSpace to create paths out of BrowseNames. The
TranslateBrowsePathsToNodeIds Service defined in Part 4 can be used to follow a path
constructed of BrowseNames.

A BrowseName should never be used to display the name of a Node. The DisplayName should
be used instead for this purpose.

Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a Node. Different
Nodes may have the same BrowseName.

Subclause 8.3 defines the structure of the BrowseName. It contains a namespace and a string.
The namespace is provided to make the BrowseName unique in some cases in the context of
a Node (e.g. Properties of a Node) although not unique in the context of the Server. If different
organizations define BrowseNames for Properties, the namespace of the BrowseName provided
by the organization makes the BrowseName unique, although different organizations may use
the same string having a slightly different meaning.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the
namespace of the standards body although the namespace of the NodeId reflects something
else, for example the local Server.

It is recommended that standard bodies defining standard type definitions use their namespace
for the NodeId of the TypeDefinitionNode as well as for the BrowseName of the
TypeDefinitionNode.

The string-part of the BrowseName is case sensitive. That is, Clients shall consider them case
sensitive. Servers are allowed to handle BrowseNames passed in Service requests as case
insensitive. Examples are the TranslateBrowsePathsToNodeIds Service or Event filter.

5.2.5 DisplayName

The DisplayName Attribute contains the localised name of the Node. Clients should use this
Attribute if they want to display the name of the Node to the user. They should not use the
BrowseName for this purpose. The Server may maintain one or more localised representations
for each DisplayName. Clients negotiate the locale to be returned when they open a session
with the Server. Refer to Part 4 for a description of session establishment and locales.
Subclause 8.5 defines the structure of the DisplayName. The string part of the DisplayName is
restricted to 512 characters.

5.2.6 Description

The optional Description Attribute shall explain the meaning of the Node in a localised text using
the same mechanisms for localisation as described for the DisplayName in 5.2.5.

5.2.7 WriteMask

The optional WriteMask Attribute exposes the possibilities of a client to write the Attributes of
the Node. The WriteMask Attribute does not take any user access rights into account, that is,
although an Attribute is writable this may be restricted to a certain user/user group.

If the OPC UA Server does not have the ability to get the WriteMask information for a specific
Attribute from the underlying system, it should state that it is writable. If a write operation is
called on the Attribute, the Server should transfer this request and return the corresponding
StatusCode if such a request is rejected. StatusCodes are defined in Part 4.

The AttributeWriteMask DataType is defined in 0.

OPC Unified Architecture, Part 3 17 Release 1.04

5.2.8 UserWriteMask

The optional UserWriteMask Attribute exposes the possibilities of a client to write the Attributes
of the Node taking user access rights into account. It uses the AttributeWriteMask DataType
which is defined in 0.

The UserWriteMask Attribute can only further restrict the WriteMask Attribute, when it is set to
not writable in the general case that applies for every user.

Clients cannot assume an Attribute can be written based on the UserWriteMask Attribute.It is
possible that the Server may return an access denied error due to some server specific change
which was not reflected in the state of this Attribute at the time the Client accessed it.

5.2.9 RolePermissions

The optional RolePermissions Attribute specifies the Permissions that apply to a Node for all
Roles which have access to the Node. The value of the Attribute is an array of
RolePermissionType Structures (see Table 8).

Table 8 – RolePermissionType

Name Type Description

RolePermissionType Structure Specifies the Permissions for a Role

 roleId NodeId The NodeId of the Role Object.

 permissions PermissionType A mask specifying which Permissions are available to the Role.

Servers may allow administrators to write to the RolePermissions Attribute.

If not specified, the value of DefaultRolePermissions Property from the NamespaceMetadata
Object associated with the Node shall be used instead. If the NamespaceMetadata Object does
not define the Property or does not exist, then the Server should not publish any information
about how it manages Permissions.

If a Server supports Permissions for a particular Namespace it shall add the
DefaultRolePermissions Property to the NamespaceMetadata Object for that Namespace (see
Figure 8). If a particular Node in the Namespace needs to override the default values, the Server
adds the RolePermissions Attribute to the Node. The DefaultRolePermissions Property and
RolePermissions Attribute shall only be readable by administrators. If a Server allows the
Permissions to be changed these values shall be writeable. If the Server allows the Permissions
to be overridden for a particular Node but does not currently have any Node Permissions
configured, then the value of the Attribute shall be an empty array. If the administrator wishes
to remove overridden Permissions, an empty array shall be written to this Attribute. Servers
shall prevent Permissions from being changed in such a way as to render the Server inoperable.

If a Server publishes information about the Roles for a Namespace assigned to the current
Session, it shall add the DefaultUserRolePermissions Property to the NamespaceMetadata
Object for that Namespace. The value of this Property shall be a readonly list of Permissions
for each Role assigned to the current Session. If a particular Node in the Namespace overrides
the default RolePermissions the Server shall also override the DefaultUserRolePermissions by
adding the UserRolePermissions Attribute to the Node. If the Server allows the Permissions to
be overridden for a particular Node but does not currently have any Node Permissions
configured, then the Server shall return the value of the DefaultUserRolePermissions Property
for the Node Namespace.

If a Server implements a vendor specific Role Permission model for a Namespace, it shall not
add the DefaultRolePermissions or DefaultUserRolePermissions Properties to the Namespace
Metadata Object.

Release 1.04 18 OPC Unified Architecture, Part 3

<Namespace>

Default

RolePermissions

Namespace

MetadataType

DefaultUser

RolePermissions

DefaultAccess

Restrictions

Figure 8 – Permissions in the Address Space

5.2.10 UserRolePermissions

The optional UserRolePermissions Attribute specifies the Permissions that apply to a Node for
all Roles granted to current Session. The value of the Attribute is an array of
RolePermissionType Structures (see Table 8).

Clients may determine their effective Permissions by logically ORing the Permissions for each
Role in the array.

The value of this Attribute is derived from the rules used by the Server to map Sessions to
Roles. This mapping may be vendor specific or it may use the standard Role model defined in
4.8.

This Attribute shall not be writeable.

If not specified, the value of DefaultUserRolePermissions Property from the Namespace
Metadata Object associated with the Node is used instead. If the NamespaceMetadata Object
does not define the Property or does not exist, then the Server does not publish any information
about Roles mapped to the current Session.

5.2.11 AccessRestrictions

The optional AccessRestrictions Attribute specifies the AccessRestrictions that apply to a Node.
Its data type is defined in 8.56. If a Server supports AccessRestrictions for a particular
Namespace it adds the DefaultAccessRestrictions Property to the NamespaceMetadata Object
for that Namespace (see Figure 8). If a particular Node in the Namespace needs to override
the default value the Server adds the AccessRestrictions Attribute to the Node.

If a Server implements a vendor specific access restriction model for a Namespace, it does not
add the DefaultAccessRestrictions Property to the NamespaceMetadata Object.

5.3 ReferenceType NodeClass

5.3.1 General

References are defined as instances of ReferenceType Nodes. ReferenceType Nodes are
visible in the AddressSpace and are defined using the ReferenceType NodeClass as specified
in Table 9. In contrast, a Reference is an inherent part of a Node and no NodeClass is used to
represent References.

This standard defines a set of ReferenceTypes provided as an inherent part of the OPC UA
Address Space Model. These ReferenceTypes are defined in Clause 7 and their representation
in the AddressSpace is defined in Part 5. Servers may also define ReferenceTypes. In addition,
Part 4 defines NodeManagement Services that allow Clients to add ReferenceTypes to the
AddressSpace.

OPC Unified Architecture, Part 3 19 Release 1.04

Table 9 – ReferenceType NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass

Attributes
M -- Inherited from the Base NodeClass. See 5.2.

 IsAbstract M Boolean A boolean Attribute with the following values:
 TRUE it is an abstract ReferenceType, i.e. no Reference

of this type shall exist, only of its subtypes.
 FALSE it is not an abstract ReferenceType, i.e.

References of this type can exist.

 Symmetric M Boolean A boolean Attribute with the following values:
 TRUE the meaning of the ReferenceType is the same as

seen from both the SourceNode and the
TargetNode.

 FALSE the meaning of the ReferenceType as seen from
the TargetNode is the inverse of that as seen from
the SourceNode.

 InverseName O LocalizedText The inverse name of the Reference, which is the meaning of
the ReferenceType as seen from the TargetNode.

References

 HasProperty 0..* Used to identify the Properties (see 5.3.3.2).

 HasSubtype 0..* Used to identify subtypes (see 5.3.3.3).

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a

Node.

The NodeVersion Property is updated each time a Reference is
added or deleted to the Node the Property belongs to. Attribute
value changes do not cause the NodeVersion to change.
Clients may read the NodeVersion Property or subscribe to it to
determine when the structure of a Node has changed.

5.3.2 Attributes

The ReferenceType NodeClass inherits the base Attributes from the Base NodeClass defined
in 5.2. The inherited BrowseName Attribute is used to specify the meaning of the
ReferenceType as seen from the SourceNode. For example, the ReferenceType with the
BrowseName “Contains” is used in References that specify that the SourceNode contains the
TargetNode. The inherited DisplayName Attribute contains a translation of the BrowseName.

The BrowseName of a ReferenceType shall be unique in a Server. It is not allowed that two
different ReferenceTypes have the same BrowseName.

The IsAbstract Attribute indicates if the ReferenceType is abstract. Abstract ReferenceTypes
cannot be instantiated and are used only for organizational reasons, for examp le to specify
some general semantics or constraints that its subtypes inherit.

The Symmetric Attribute is used to indicate whether or not the meaning of the ReferenceType
is the same for both the SourceNode and TargetNode.

If a ReferenceType is symmetric, the InverseName Attribute shall be omitted. Examples of
symmetric ReferenceTypes are “Connects To” and “Communicates With”. Both imply the same
semantic coming from the SourceNode or the TargetNode. Therefore both directions are
considered to be forward References.

If the ReferenceType is non-symmetric and not abstract, the InverseName Attribute shall be
set. The InverseName Attribute specifies the meaning of the ReferenceType as seen from the
TargetNode. Examples of non-symmetric ReferenceTypes include “Contains” and “Contained
In”, and “Receives From” and “Sends To”.

References that use the InverseName, such as “Contained In” References, are referred to as
inverse References.

Figure 9 provides examples of symmetric and non-symmetric References and the use of the
BrowseName and the InverseName.

Release 1.04 20 OPC Unified Architecture, Part 3

Contains

This Reference Type
provides the type

definition for all “Contains”
and “ContainedIn”

References

ContainedIn

CommunicatesWith

CommunicatesWith

“Device” “Block” “Block”

ReferenceType “Contains”

symmetric = FALSE
InverseName = “ContainedIn”

ReferenceType “CommunicatesWith”

symmetric = TRUE

1..N 0..N 0..N cc 0..N 1 0..N

Figure 9 – Symmetric and Non-Symmetric References

It might not always be possible for Servers to instantiate both forward and inverse References
for non-symmetric ReferenceTypes as shown in Figure 9. When they do, the References are
referred to as bidirectional. Although not required, it is recommended that all hierarchical
References be instantiated as bidirectional to ensure browse connectivity. A bidirectional
Reference is modelled as two separate References.

As an example of a unidirectional Reference, it is often the case that a signal sink knows its
signal source, but this signal source does not know its signal sink. The signal sink would have
a “Sourced By” Reference to the signal source, without the signal source having the
corresponding “Sourced To” inverse References to its signal sinks.

The DisplayName and the InverseName are the only standardised places to indicate the
semantic of a ReferenceType. There may be more complex semantics associated with a
ReferenceType than can be expressed in those Attributes (e.g. the semantic of HasSubtype).
This standard does not specify how this semantic should be exposed. However, the Description
Attribute can be used for this purpose. This standard provides a semantic for the
ReferenceTypes specified in Clause 7.

A ReferenceType can have constraints restricting its use. For example, it can specify that
starting from Node A and only following References of this ReferenceType or one of its
subtypes, it shall never be able to return to A, that is, a “No Loop” constraint.

This standard does not specify how those constraints could or should be made ava ilable in the
AddressSpace. Nevertheless, for the standard ReferenceTypes, some constraints are specified
in Clause 7. This standard does not restrict the kind of constraints valid for a ReferenceType.
It can, for example, also affect an ObjectType. The restriction that a ReferenceType can only
be used by relating Nodes of some NodeClasses with a defined cardinality is a special
constraint of a ReferenceType.

5.3.3 References

5.3.3.1 General

HasSubtype References and HasProperty References are the only ReferenceTypes that may
be used with ReferenceType Nodes as SourceNode. ReferenceType Nodes shall not be the
SourceNode of other types of References.

5.3.3.2 HasProperty References

HasProperty References are used to identify the Properties of a ReferenceType and shall only
refer to Nodes of the Variable NodeClass.

The Property NodeVersion is used to indicate the version of the ReferenceType.

There are no additional Properties defined for ReferenceTypes in this standard. Additional parts
this series of standards may define additional Properties for ReferenceTypes.

OPC Unified Architecture, Part 3 21 Release 1.04

5.3.3.3 HasSubtype References

HasSubtype References are used to define subtypes of ReferenceTypes. It is not required to
provide the HasSubtype Reference for the supertype, but it is required that the subtype provides
the inverse Reference to its supertype. The following rules for subtyping apply.

a) The semantic of a ReferenceType (e.g. “spans a hierarchy”) is inherited to its subtypes and
can be refined there (e.g. “spans a special hierarchy”). The DisplayName, and also the
InverseName for non-symmetric ReferenceTypes, reflect the specialization.

b) If a ReferenceType specifies some constraints (e.g. “allow no loops”) this is inherited and
can only be refined (e.g. inheriting “no loops” could be refined as “shall be a tree – only one
parent”) but not lowered (e.g. “allow loops”).

c) The constraints concerning which NodeClasses can be referenced are also inherited and
can only be further restricted. That is, if a ReferenceType “A” is not allowed to relate an
Object with an ObjectType, this is also true for its subtypes.

d) A ReferenceType shall have exactly one supertype, except for the References
ReferenceType defined in 7.2 as the root type of the ReferenceType hierarchy. The
ReferenceType hierarchy does not support multiple inheritances.

5.4 View NodeClass

Underlying systems are often large and Clients often have an interest in only a specific subset
of the data. They do not need, or want, to be burdened with viewing Nodes in the AddressSpace
for which they have no interest.

To address this problem, this standard defines the concept of a View. Each View defines a
subset of the Nodes in the AddressSpace. The entire AddressSpace is the default View. Each
Node in a View may contain only a subset of its References, as defined by the creator of the
View. The View Node acts as the root for the Nodes in the View. Views are defined using the
View NodeClass, which is specified in Table 10.

All Nodes contained in a View shall be accessible starting from the View Node when browsing
in the context of the View. It is not expected that all containing Nodes can be browsed directly
from the View Node but rather browsed from other Nodes contained in the View.

A View Node may not only be used as additional entry point into the AddressSpace but as a
construct to organize the AddressSpace and thus as the only entry point into a subset of the
AddressSpace. Therefore Clients shall not ignore View Nodes when exposing the
AddressSpace. Simple Clients that do not deal with Views for filtering purposes can, for
example, handle a View Node like an Object of type FolderType (see 5.5.3).

Release 1.04 22 OPC Unified Architecture, Part 3

Table 10 – View NodeClass

Name Use Data
Type

Description

Attributes

 Base NodeClass

Attributes
M -- Inherited from the Base NodeClass. See 5.2.

 ContainsNoLoops M Boolean If set to “true” this Attribute indicates that by following the References
in the context of the View there are no loops, i.e. starting from a Node
“A” contained in the View and following the forward References in the
context of the View Node “A” will not be reached again. It does not
specify that there is only one path starting from the View Node to
reach a Node contained in the View.

If set to “false” this Attribute indicates that following References in the
context of the View may lead to loops.

 EventNotifier M Byte The EventNotifier Attribute is used to indicate if the Node can be used
to subscribe to Events or to read / write historic Events.

The EventNotifier is an 8-bit unsigned integer with the structure
defined in the following table.

The second two bits also indicate if the history of the Events is
available via the OPC UA Server.

Field Bit Description

SubscribeTo

Events
0 Indicates if it can be used to subscribe to

Events
(0 means cannot be used to subscribe to
Events, 1 means can be used to subscribe to
Events)

Reserved 1 Reserved for future use. Shall always be zero.

HistoryRead 2 Indicates if the history of the Events is

readable
(0 means not readable, 1 means readable)

HistoryWrite 3 Indicates if the history of the Events is
writable
(0 means not writable, 1 means writable)

Reserved 4:7 Reserved for future use. Shall always be zero

References

 HierarchicalReferences 0..* Top level Nodes in a View are referenced by hierarchical References

(see 7.3).

 HasProperty 0..* HasProperty References identify the Properties of the View.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added
or deleted to the Node the Property belongs to. Attribute value
changes do not cause the NodeVersion to change. Clients may read
the NodeVersion Property or subscribe to it to determine when the
structure of a Node has changed.

 ViewVersion O UInt32 The version number for the View. When Nodes are added to or

removed from a View, the value of the ViewVersion Property is
updated. Clients may detect changes to the composition of a View
using this Property. The value of the ViewVersion shall always be
greater than 0.

The View NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. It

also defines two additional Attributes.

The mandatory ContainsNoLoops Attribute is set to false if the Server is not able to identify if
the View contains loops or not.

The mandatory EventNotifier Attribute identifies if the View can be used to subscribe to Events
that either occur in the content of the View or as ModelChangeEvents (see 9.32) of the content
of the View or to read / write the history of the Events. A View that supports Events shall provide
all Events that occur in any Object used as EventNotifier that is part of the content of the View.
In addition, it shall provide all ModelChangeEvents that occur in the context of the View.

To avoid recursion, i.e. getting all Events of the Server, the Server Object defined in Part 5 shall
never be part of any View since it provides all Events of the Server.

OPC Unified Architecture, Part 3 23 Release 1.04

Views are defined by the Server. The browsing and querying Services defined in Part 4 expect
the NodeId of a View Node to provide these Services in the context of the View.

HasProperty References are used to identify the Properties of a View. The Property
NodeVersion is used to indicate the version of the View Node. The ViewVersion Property
indicates the version of the content of the View. In contrast to the NodeVersion, the ViewVersion
Property is updated even if Nodes not directly referenced by the View Node are added to or
deleted from the View. This Property is optional because it might not be possible for Servers to
detect changes in the View contents. Servers may also generate a ModelChangeEvent,
described in 9.32, if Nodes are added to or deleted from the View. There are no additional
Properties defined for Views in this document. Additional parts of this series of standards may
define additional Properties for Views.

Views can be the SourceNode of any hierarchical Reference. They shall not be the SourceNode
of any non-hierarchical Reference.

5.5 Objects

5.5.1 Object NodeClass

Objects are used to represent systems, system components, real -world objects and software
objects. Objects are defined using the Object NodeClass, specified in Table 11.

Release 1.04 24 OPC Unified Architecture, Part 3

Table 11 – Object NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass

Attributes
M -- Inherited from the Base NodeClass. See 5.2.

 EventNotifier M EventNotifierType The EventNotifier Attribute is used to indicate if the Node can be used
to subscribe to Events or the read / write historic Events.

The EventNotifierType is defined in 0.

References

 HasComponent 0..* HasComponent References identify the DataVariables, the Methods
and Objects contained in the Object.

 HasProperty 0..* HasProperty References identify the Properties of the Object.

 HasModellingRule 0..1 Objects can point to at most one ModellingRule Object using a
HasModellingRule Reference (see 6.4.4 for details on
ModellingRules).

 HasTypeDefinition 1 The HasTypeDefinition Reference points to the type definition of the

Object. Each Object shall have exactly one type definition and
therefore be the SourceNode of exactly one HasTypeDefinition
Reference pointing to an ObjectType. See 4.5 for a description of type
definitions.

 HasEventSource 0..* The HasEventSource Reference points to event sources of the Object.
References of this type can only be used for Objects having their
“SubscribeToEvents” bit set in the EventNotifier Attribute. See 7.17 for
details.

 HasNotifier 0..* The HasNotifier Reference points to notifiers of the Object. References

of this type can only be used for Objects having their
“SubscribeToEvents” bit set in the EventNotifier Attribute. See 7.18 for
details.

 Organizes 0..* This Reference should be used only for Objects of the ObjectType
FolderType (see 5.5.3).

 <other

References>
0..* Objects may contain other References.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added
or deleted to the Node the Property belongs to. Attribute value
changes do not cause the NodeVersion to change. Clients may read
the NodeVersion Property or subscribe to it to determine when the
structure of a Node has changed.

 Icon O Image The Icon Property provides an image that can be used by Clients when
displaying the Node. It is expected that the Icon Property contains a
relatively small image.

 NamingRule O NamingRuleType The NamingRule Property defines the NamingRule of a ModellingRule

(see 6.4.4.2.1 for details). This Property shall only be used for Objects
of the type ModellingRuleType defined in 6.4.4.

The Object NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2.

The mandatory EventNotifier Attribute identifies whether the Object can be used to subscribe
to Events or to read and write the history of the Events.

The Object NodeClass uses the HasComponent Reference to define the DataVariables, Objects
and Methods of an Object.

It uses the HasProperty Reference to define the Properties of an Object. The Property
NodeVersion is used to indicate the version of the Object. The Property Icon provides an icon
of the Object. The Property NamingRule defines the NamingRule of a ModellingRule and shall
only be applied to Objects of type ModellingRuleType. There are no additional Properties
defined for Objects in this document. Additional parts of this series of standards may define
additional Properties for Objects.

To specify its ModellingRule, an Object can use at most one HasModellingRule Reference
pointing to a ModellingRule Object. ModellingRules are defined in 6.4.4.

HasNotifier and HasEventSource References are used to provide information about eventing
and can only be applied to Objects used as event notifiers. Details are defined in 7.16 and 7.18.

OPC Unified Architecture, Part 3 25 Release 1.04

The HasTypeDefinition Reference points to the ObjectType used as type definition of the
Object.

Objects may use any additional References to define relationships to other Nodes. No
restrictions are placed on the types of References used or on the NodeClasses of the Nodes
that may be referenced. However, restrictions may be defined by the ReferenceType excluding
its use for Objects. Standard ReferenceTypes are described in Clause 7.

If the Object is used as an InstanceDeclaration (see 4.5) then all Nodes referenced with forward
hierarchical References direction shall have unique BrowseNames in the context of this Object.

If the Object is created based on an InstanceDeclaration then it shall have the same
BrowseName as its InstanceDeclaration.

5.5.2 ObjectType NodeClass

ObjectTypes provide definitions for Objects. ObjectTypes are defined using the ObjectType
NodeClass, which is specified in Table 12.

Table 12 – ObjectType NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass
Attributes

M -- Inherited from the Base NodeClass. See 5.2.

 IsAbstract M Boolean A boolean Attribute with the following values:
 TRUE it is an abstract ObjectType, i.e. no Objects of this type shall

exist, only Objects of its subtypes.
 FALSE it is not an abstract ObjectType, i.e. Objects of this type can

exist.

References

 HasComponent 0..* HasComponent References identify the DataVariables, the Methods, and
Objects contained in the ObjectType.

If and how the referenced Nodes are instantiated when an Object of this
type is instantiated, is specified in 6.4.

 HasProperty 0..* HasProperty References identify the Properties of the ObjectType. If and
how the Properties are instantiated when an Object of this type is
instantiated, is specified in 6.4.

 HasSubtype 0..* HasSubtype References identify ObjectTypes that are subtypes of this

type. The inverse SubtypeOf Reference identifies the parent type of this
type.

 GeneratesEvent 0..* GeneratesEvent References identify the type of Events instances of this
type may generate.

 <other References> 0..* ObjectTypes may contain other References that can be instantiated by

Objects defined by this ObjectType.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or
deleted to the Node the Property belongs to. Attribute value changes do
not cause the NodeVersion to change. Clients may read the NodeVersion
Property or subscribe to it to determine when the structure of a Node has
changed.

 Icon O Image The Icon Property provides an image that can be used by Clients when
displaying the Node. It is expected that the Icon Property contains a
relatively small image.

The ObjectType NodeClass inherits the base Attributes from the Base NodeClass defined in

5.2. The additional IsAbstract Attribute indicates if the ObjectType is abstract or not.

The ObjectType NodeClass uses the HasComponent References to define the DataVariables,
Objects, and Methods for it.

The HasProperty Reference is used to identify the Properties. The Property NodeVersion is
used to indicate the version of the ObjectType. The Property Icon provides an icon of the
ObjectType. There are no additional Properties defined for ObjectTypes in this document.
Additional parts of this series of standards may define additional Properties for ObjectTypes.

Release 1.04 26 OPC Unified Architecture, Part 3

HasSubtype References are used to subtype ObjectTypes. ObjectType subtypes inherit the
general semantics from the parent type. The general rules for subtyping apply as defined in
Clause 6. It is not required to provide the HasSubtype Reference for the supertype, but it is
required that the subtype provides the inverse Reference to its supertype.

GeneratesEvent References identify the type of Events that instances of the ObjectType may
generate. These Objects may be the source of an Event of the specified type or one of its
subtypes. Servers should make GeneratesEvent References bidirectional References.
However, it is allowed to be unidirectional when the Server is not able to expose the inverse
direction pointing from the EventType to each ObjectType supporting the EventType. Note that
the EventNotifier Attribute of an Object and the GeneratesEvent References of its ObjectType
are completely unrelated. Objects that can generate Events might not be used as Objects to
which Clients subscribe to get the corresponding Event notifications.

GeneratesEvent References are optional, i.e. Objects may generate Events of an EventType
that is not exposed by its ObjectType.

ObjectTypes may use any additional References to define relationships to other Nodes. No
restrictions are placed on the types of References used or on the NodeClasses of the Nodes
that may be referenced. However, restrictions may be defined by the ReferenceType excluding
its use for ObjectTypes. Standard ReferenceTypes are described in Clause 7.

All Nodes referenced with forward hierarchical References shall have unique BrowseNames in
the context of an ObjectType (see 4.5).

5.5.3 Standard ObjectType FolderType

The ObjectType FolderType is formally defined in Part 5. Its purpose is to provide Objects that
have no other semantic than organizing of the AddressSpace. A special ReferenceType is
introduced for those Folder Objects, the Organizes ReferenceType. The SourceNode of such a
Reference should always be a View or an Object of the ObjectType FolderType; the TargetNode
can be of any NodeClass. Organizes References can be used in any combination with HasChild
References (HasComponent, HasProperty, etc.; see 7.5) and do not prevent loops. Thus, they
can be used to span multiple hierarchies.

5.5.4 Client-side creation of Objects of an ObjectType

Objects are always based on an ObjectType, i.e. they have a HasTypeDefinition Reference
pointing to its ObjectType.

Clients can create Objects using the AddNodes Service defined in Part 4. The Service requires
specifying the TypeDefinitionNode of the Object. An Object created by the AddNodes Service
contains all components defined by its ObjectType dependent on the ModellingRules specified
for the components. However, the Server may add additional components and References to
the Object and its components that are not defined by the ObjectType. This behaviour is Server
dependent. The ObjectType only specifies the minimum set of components that shall exist for
each Object of an ObjectType.

In addition to the AddNodes Service ObjectTypes may have a special Method with the
BrowseName “Create”. This Method is used to create an Object of this ObjectType. This Method
may be useful for the creation of Objects where the semantic of the creation should differ from
the default behaviour expected in the context of the AddNodes Service. For example, the values
should directly differ from the default values or additional Objects should be added, etc. The
input and output arguments of this Method depend on the ObjectType; the only commonality is
the BrowseName identifying that this Method will create an Object based on the ObjectType.
Servers should not provide a Method on an ObjectType with the BrowseName “Create” for any
other purpose than creating Objects of the ObjectType.

5.6 Variables

5.6.1 General

Two types of Variables are defined, Properties and DataVariables. Although they differ in the
way they are used as described in 4.4 and have different constraints described in the remainder

OPC Unified Architecture, Part 3 27 Release 1.04

of 5.6 they use the same NodeClass described in 5.6.2. The constraints of Properties based on
this NodeClass are defined in 5.6.3, the constraints of DataVariables in 5.6.4.

5.6.2 Variable NodeClass

Variables are used to represent values which may be simple or complex. Variables are defined
by VariableTypes, as specified in 5.6.5.

Variables are always defined as Properties or DataVariables of other Nodes in the
AddressSpace. They are never defined by themselves. A Variable is always part of at least one
other Node, but may be related to any number of other Nodes. Variables are defined using the
Variable NodeClass, specified in Table 13.

Table 13 – Variable NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass Attributes M -- Inherited from the Base NodeClass. See 5.2.

 Value M Defined by the

DataType
Attribute

The most recent value of the Variable that the Server has. Its

data type is defined by the DataType Attribute. It is the only
Attribute that does not have a data type associated with it. This
allows all Variables to have a value defined by the same Value
Attribute.

 DataType M NodeId NodeId of the DataType definition for the Value Attribute.
Standard DataTypes are defined in Clause 8.

 ValueRank M Int32 This Attribute indicates whether the Value Attribute of the

Variable is an array and how many dimensions the array has.

It may have the following values:

n > 1: the Value is an array with the specified number of
dimensions.

OneDimension (1): The value is an array with one dimension.

OneOrMoreDimensions (0): The value is an array with one or
more dimensions.

Scalar (−1): The value is not an array.

Any (−2): The value can be a scalar or an array with any
number of dimensions.

ScalarOrOneDimension (−3): The value can be a scalar or a
one dimensional array.

All DataTypes are considered to be scalar, even if they have
array-like semantics like ByteString and String.

 ArrayDimensions O UInt32[] This Attribute specifies the maximum supported length of each
dimension. If the maximum is unknown the value shall be 0.

The number of elements shall be equal to the value of the
ValueRank Attribute. This Attribute shall be null if ValueRank ≤
0.

For example, if a Variable is defined by the following C array:

 Int32 myArray[346];

then this Variable’s DataType would point to an Int32 and the
Variable’s ValueRank has the value 1 and the ArrayDimensions
is an array with one entry having the value 346.

The maximum number of elements of an array transferred on
the wire is 2147483647 (max Int32).

 AccessLevel M AccessLevelType The AccessLevel Attribute is used to indicate how the Value of
a Variable can be accessed (read/write) and if it contains
current and/or historic data. The AccessLevel does not take
any user access rights into account, i.e. although the Variable
is writable this may be restricted to a certain user / user group.

The AccessLevelType is defined in 8.57.

 UserAccessLevel M AccessLevelType The UserAccessLevel Attribute is used to indicate how the

Value of a Variable can be accessed (read/write) and if it
contains current or historic data taking user access rights into
account.

The AccessLevelType is defined in 8.57.

 MinimumSamplingInterval O Duration The MinimumSamplingInterval Attribute indicates how “current”
the Value of the Variable will be kept. It specifies (in
milliseconds) how fast the Server can reasonably sample the
value for changes (see Part 4 for a detailed description of
sampling interval).

Release 1.04 28 OPC Unified Architecture, Part 3

Name Use Data Type Description

A MinimumSamplingInterval of 0 indicates that the Server is to
monitor the item continuously. A MinimumSamplingInterval of -
1 means indeterminate.

 Historizing M Boolean The Historizing Attribute indicates whether the Server is

actively collecting data for the history of the Variable. This
differs from the AccessLevel Attribute which identifies if the
Variable has any historical data. A value of TRUE indicates that
the Server is actively collecting data. A value of FALSE
indicates the Server is not actively collecting data. Default
value is FALSE.

 AccessLevelEx O AccessLevelExTy
pe

The AccessLevelEx Attribute is used to indicate how the Value
of a Variable can be accessed (read/write), if it contains current
and/or historic data and its atomicity. The AccessLevelEx does
not take any user access rights into account, i.e. although the
Variable is writable this may be restricted to a certain user /
user group. The AccessLevelEx is an extended version of the
AccessLevel attribute and as such contains the 8 bits of the
AccessLevel attribute as the first 8 bits.

The AccessLevelEx is a 32-bit unsigned integer with the
structure defined in the 8.58.

If this Attribute is not provided the information provided by
these additional Fields is unknown.

References

 HasModellingRule 0..1 Variables can point to at most one ModellingRule Object using
a HasModellingRule Reference (see 6.4.4 for details on
ModellingRules).

 HasProperty 0..* HasProperty References are used to identify the Properties of a

DataVariable.

Properties are not allowed to be the SourceNode of
HasProperty References.

 HasComponent 0..* HasComponent References are used by complex

DataVariables to identify their composed DataVariables.

Properties are not allowed to use this Reference.

 HasTypeDefinition 1 The HasTypeDefinition Reference points to the type definition

of the Variable. Each Variable shall have exactly one type
definition and therefore be the SourceNode of exactly one
HasTypeDefinition Reference pointing to a VariableType. See
4.5 for a description of type definitions.

 <other References> 0..* Data Variables may be the SourceNode of any other
References.

Properties may only be the SourceNode of any non-hierarchical
Reference.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a
DataVariable. It does not apply to Properties.

The NodeVersion Property is updated each time a Reference is
added or deleted to the Node the Property belongs to. Attribute
value changes except for the DataType Attribute do not cause
the NodeVersion to change. Clients may read the NodeVersion
Property or subscribe to it to determine when the structure of a
Node has changed.

Although the relationship of a Variable to its DataType is not
modelled using References, changes to the DataType Attribute
of a Variable lead to an update of the NodeVersion Property.

 LocalTime O TimeZone

DataType

The LocalTime Property is only used for DataVariables. It does

not apply to Properties.

This Property is a structure containing the Offset and the
DaylightSavingInOffset flag. The Offset specifies the time
difference (in minutes) between the SourceTimestamp (UTC)
associated with the value and the time at the location in which
the value was obtained. The SourceTimestamp is defined in
Part 4.

If DaylightSavingInOffset is TRUE, then Standard/Daylight
savings time (DST) at the originating location is in effect and
Offset includes the DST correction. If FALSE then the Offset
does not include DST correction and DST may or may not have
been in effect.

OPC Unified Architecture, Part 3 29 Release 1.04

Name Use Data Type Description

 AllowNulls O Boolean The AllowNulls Property is only used for DataVariables. It does

not apply to Properties.

This Property specifies if a null value is allowed for the Value
Attribute of the DataVariable. If it is set to true, the Server may
return null values and accept writing of null values. If it is set to
false, the Server shall never return a null value and shall reject
any request writing a null value.

If this Property is not provided, it is Server-specific if null values
are allowed or not.

 ValueAsText O Localized
Text

It is used for DataVariables with a finite set of LocalizedTexts
associated with its value. For example any DataVariables
having an Enumeration DataType.

This optional Property provides the localized text
representation of the value. It can be used by Clients only
interested in displaying the text to subscribe to the Property
instead of the value attribute.

 MaxStringLength O UInt32 Only used for DataVariables having a String DataType.

This optional Property indicates the maximum number of bytes
supported by the DataVariable.

 MaxCharacters O UInt32 Only used for DataVariables having a String DataType.

This optional Property indicates the maximum number of
Unicode characters supported by the DataVariable.

 MaxByteStringLength O UInt32 Only used for DataVariables having a ByteString DataType.

This optional Property indicates the maximum number of bytes
supported by the DataVariable.

 MaxArrayLength O UInt32 Only used for DataVariables having its ValueRank Attribute not
set to scalar.

This optional Property indicates the maximum length of an
array supported by the DataVariable. In a multidimensional
array it indicates the overall length. For example, a three-
dimensional array of 2 x 3 x 10 has the array length of 60.

NOTE In order to expose the length of an array of bytes do not
use the DataType ByteString but an array of the DataType
Byte. In that case the MaxArrayLength applies.

 EngineeringUnits O EU

Information
Only used for DataVariables having a Number DataType.

This optional Property indicates the engineering units for the
value of the DataVariable (e.g. hertz or seconds). Details about
the Property and what engineering units should be used are
defined in
Part 8. The DataType EUInformation is also defined in Part 8.

The Variable NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2.

The Variable NodeClass also defines a set of Attributes that describe the Variable’s Runtime
value. The Value Attribute represents the Variable value. The DataType, ValueRank and
ArrayDimensions Attributes provide the capability to describe simple and complex values.

The AccessLevel Attribute indicates the accessibility of the Value of a Variable not taking user
access rights into account. If the OPC UA Server does not have the ability to get the
AccessLevel information from the underlying system then it should state that it is readable and
writable. If a read or write operation is called on the Variable then the Server should transfer
this request and return the corresponding StatusCode even if such a request is rejected.
StatusCodes are defined in Part 4.

The SemanticChange flag of the AccessLevel Attribute is used for Properties that may change
and define semantic aspects of the parent Node. For example, the EngineeringUnit Property
describes the semantic of a DataVariable, whereas the Icon Property does not. In this example,
if the EngineeringUnit Property may change while the Server is running, the SemanticChange
flag shall be set for it.

Servers that support Event subscriptions shall generate a SemanticChangeEvent whenever a
Property with SemanticChange flag set changes.

If a Variable having a Property with SemanticChange flag set is used in a Subscription and the
Property value changes, then the SemanticsChanged bit of the StatusCode shall be set as
defined in Part 4. Clients subscribing to a Variable should look at the StatusCode to identify if
the semantic has changed and retrieve the relevant Properties before processing the value
returned from the Subscription.

Release 1.04 30 OPC Unified Architecture, Part 3

The UserAccessLevel Attribute indicates the accessibility of the Value of a Variable taking user
access rights into account. If the OPC UA Server does not have the ability to get any user
access rights related information from the underlying system then it should use the same bit
mask as used in the AccessLevel Attribute. The UserAccessLevel Attribute can restrict the
accessibility indicated by the AccessLevel Attribute, but not exceed it. Clients should not
assume access rights based on the UserAccessLevel Attribute. For example it is possible that
the Server returns an error due to some server specific change which was not reflected in the
state of this Attribute at the time the Client accessed the Variable.

The MinimumSamplingInterval Attribute specifies how fast the Server can reasonably sample
the value for changes. The accuracy of this value (the ability of the Server to attain “best case”
performance) can be greatly affected by system load and other factors.

The Historizing Attribute indicates whether the Server is actively collecting data for the history
of the Variable. See Part 11 for details on historizing Variables.

Clients may read or write Variable values, or monitor them for value changes, as specified in
Part 4. Part 8 defines additional rules when using the Services for automation data.

To specify its ModellingRule, a Variable can use at most one HasModellingRule Reference
pointing to a ModellingRule Object. ModellingRules are defined in 6.4.4.

If the Variable is created based on an InstanceDeclaration (see 4.5) it shall have the same
BrowseName as its InstanceDeclaration.

The other References are described separately for Properties and DataVariables in the
remainder of 5.6

5.6.3 Properties

Properties are used to define the characteristics of Nodes. Properties are defined using the
Variable NodeClass, specified in Table 13. However, they restrict their use.

Properties are the leaf of any hierarchy; therefore they shall not be the SourceNode of any
hierarchical References. This includes the HasComponent or HasProperty Reference, that is,
Properties do not contain Properties and cannot expose their complex structure. However, they
may be the SourceNode of any non-hierarchical References.

The HasTypeDefinition Reference points to the VariableType of the Property. Since Properties
are uniquely identified by their BrowseName, all Properties shall point to the PropertyType
defined in Part 5.

Properties shall always be defined in the context of another Node and shall be the TargetNode
of at least one HasProperty Reference. To distinguish them from DataVariables, they shall not
be the TargetNode of any HasComponent Reference. Thus, a HasProperty Reference pointing
to a Variable Node defines this Node as a Property.

The BrowseName of a Property is always unique in the context of a Node. It is not permitted
for a Node to refer to two Variables using HasProperty References having the same
BrowseName.

5.6.4 DataVariable

DataVariables represent the content of an Object. DataVariables are defined using the Variable
NodeClass, specified in Table 13.

DataVariables identify their Properties using HasProperty References. Complex DataVariables
use HasComponent References to expose their component DataVariables.

The Property NodeVersion indicates the version of the DataVariable.

The Property LocalTime indicates the difference between the SourceTimestamp of the value
and the standard time at the location in which the value was obtained .

The Property AllowNulls indicates if null values are allowed for the Value Attribute.

OPC Unified Architecture, Part 3 31 Release 1.04

The Property ValueAsText provides a localized text representation for enumeration values.

The Property MaxStringLength indicates the maximum number of bytes of a String value. If a
Server does not impose a maximum number of bytes or is not able to determine the maximum
number of bytes this Property shall not be provided. If this Property is provided then the
MaxCharacters Property shall not be provided.

The Property MaxCharacters indicates the maximum number of Unicode characters of a string
value. If a Server does not impose a maximum number of Unicode characters or is not able to
determine the maximum number of Unicode characters this Property shall not be provided. If
this Property is provided then the MaxStringLength Property shall not be provided.

The Property MaxByteStringLength indicates the maximum number of bytes of a ByteString
value. If a Server does not impose a maximum number of bytes or is not able to determine the
maximum number of bytes this Property shall not be provided.

The Property MaxArrayLength indicates the maximum allowed array length of the value.

The Property EngineeringUnits indicates the engineering units of the value. There are no
additional Properties defined for DataVariables in this part of this document. Additional parts of
this series of standards may define additional Properties for DataVariables. Part 8 defines a set
of Properties that can be used for DataVariables.

DataVariables may use additional References to define relationships to other Nodes. No
restrictions are placed on the types of References used or on the NodeClasses of the Nodes
that may be referenced. However, restrictions may be defined by the ReferenceType excluding
its use for DataVariables. Standard ReferenceTypes are described in Clause 7.

A DataVariable is intended to be defined in the context of an Object. However, complex
DataVariables may expose other DataVariables, and ObjectTypes and complex VariableTypes
may also contain DataVariables. Therefore each DataVariable shall be the TargetNode of at
least one HasComponent Reference coming from an Object, an ObjectType, a DataVariable or
a VariableType. DataVariables shall not be the TargetNode of any HasProperty References.
Therefore, a HasComponent Reference pointing to a Variable Node identifies it as a
DataVariable.

The HasTypeDefinition Reference points to the VariableType used as type definition of the
DataVariable.

If the DataVariable is used as InstanceDeclaration (see 4.5) all Nodes referenced with forward
hierarchical References shall have unique BrowseNames in the context of this DataVariable.

5.6.5 VariableType NodeClass

VariableTypes are used to provide type definitions for Variables. VariableTypes are defined
using the VariableType NodeClass, as specified in Table 14.

Release 1.04 32 OPC Unified Architecture, Part 3

Table 14 – VariableType NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass Attributes M -- Inherited from the Base NodeClass. See 5.2

 Value O Defined by
the
DataType
attribute

The default Value for instances of this type.

 DataType M NodeId NodeId of the data type definition for instances of this type.

 ValueRank M Int32 This Attribute indicates whether the Value Attribute of the VariableType
is an array and how many dimensions the array has.

It may have the following values:

n > 1: the Value is an array with the specified number of dimensions.

OneDimension (1): The value is an array with one dimension.

OneOrMoreDimensions (0): The value is an array with one or more
dimensions.

Scalar (−1): The value is not an array.

Any (−2): The value can be a scalar or an array with any number of
dimensions.

ScalarOrOneDimension (−3): The value can be a scalar or a one
dimensional array.

NOTE All DataTypes are considered to be scalar, even if they have
array-like semantics like ByteString and String.

 ArrayDimensions O UInt32[] This Attribute specifies the length of each dimension for an array

value. The Attribute specifies the maximum supported length of each
dimension. If the maximum is unknown the value is 0.

The number of elements shall be equal to the value of the ValueRank
Attribute. This Attribute shall be null if ValueRank ≤ 0.

For example, if a VariableType is defined by the following C array:

 Int32 myArray[346];

then this VariableType’s DataType would point to an Int32, the
VariableType’s ValueRank has the value 1 and the ArrayDimensions is
an array with one entry having the value 346.

 IsAbstract M Boolean A boolean Attribute with the following values:
 TRUE it is an abstract VariableType, i.e. no Variable of this

type shall exist, only of its subtypes.
 FALSE it is not an abstract VariableType, i.e. Variables of this

type can exist.

References

 HasProperty 0..* HasProperty References are used to identify the Properties of the

VariableType. The referenced Nodes may be instantiated by the
instances of this type, depending on the ModellingRules defined in
6.4.4.

 HasComponent 0..* HasComponent References are used for complex VariableTypes to
identify their containing DataVariables. Complex VariableTypes can
only be used for DataVariables. The referenced Nodes may be
instantiated by the instances of this type, depending on the
ModellingRules defined in 6.4.4.

 HasSubtype 0..* HasSubtype References identify VariableTypes that are subtypes of

this type. The inverse subtype of Reference identifies the parent type
of this type.

 GeneratesEvent 0..* GeneratesEvent References identify the type of Events instances of
this type may generate.

 <other References> 0..* VariableTypes may contain other References that can be instantiated

by Variables defined by this VariableType. ModellingRules are defined
in 6.4.4.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added
or deleted to the Node the Property belongs to. Attribute value
changes except for the DataType Attribute do not cause the
NodeVersion to change. Clients may read the NodeVersion Property
or subscribe to it to determine when the structure of a Node has
changed.

Although the relationship of a VariableType to its DataType is not
modelled using References, changes to the DataType Attribute of a
VariableType lead to an update of the NodeVersion Property.

OPC Unified Architecture, Part 3 33 Release 1.04

The VariableType NodeClass inherits the base Attributes from the Base NodeClass defined in

5.2. The VariableType NodeClass also defines a set of Attributes that describe the default or
initial value of its instance Variables. The Value Attribute represents the default value. The
DataType, ValueRank and ArrayDimensions Attributes provide the capability to describe simple
and complex values. The IsAbstract Attribute defines if the type can be directly instantiated.

The VariableType NodeClass uses HasProperty References to define the Properties and
HasComponent References to define DataVariables. Whether they are instantiated depends on
the ModellingRules defined in 6.4.4.

The Property NodeVersion indicates the version of the VariableType. There are no additional
Properties defined for VariableTypes in this document. Additional parts of this series of
standards may define additional Properties for VariableTypes. Part 8 defines a set of Properties
that can be used for VariableTypes.

HasSubtype References are used to subtype VariableTypes. VariableType subtypes inherit the
general semantics from the parent type. The general rules for subtyping are defined in Clause
6. It is not required to provide the HasSubtype Reference for the supertype, but it is required
that the subtype provides the inverse Reference to its supertype.

GeneratesEvent References identify that Variables of the VariableType may be the source of
an Event of the specified EventType or one of its subtypes. Servers should make
GeneratesEvent References bidirectional References. However, it is allowed to be
unidirectional when the Server is not able to expose the inverse direction pointing from the
EventType to each VariableType supporting the EventType.

GeneratesEvent References are optional, i.e. Variables may generate Events of an EventType
that is not exposed by its VariableType.

VariableTypes may use any additional References to define relationships to other Nodes. No
restrictions are placed on the types of References used or on the NodeClasses of the Nodes
that may be referenced. However, restrictions may be defined by the ReferenceType excluding
its use for VariableTypes. Standard ReferenceTypes are described in Clause 7.

All Nodes referenced with forward hierarchical References shall have unique BrowseNames in
the context of the VariableType (see 4.5).

5.6.6 Client-side creation of Variables of an VariableType

Variables are always based on a VariableType, i.e. they have a HasTypeDefinition Reference
pointing to its VariableType.

Clients can create Variables using the AddNodes Service defined in Part 4. The Service
requires specifying the TypeDefinitionNode of the Variable. A Variable created by the AddNodes
Service contains all components defined by its VariableType dependent on the ModellingRules
specified for the components. However, the Server may add additional components and
References to the Variable and its components that are not defined by the VariableType. This
behaviour is Server dependent. The VariableType only specifies the minimum set of
components that shall exist for each Variable of a VariableType.

5.7 Method NodeClass

Methods define callable functions. Methods are invoked using the Call Service defined in Part
4. Method invocations are not represented in the AddressSpace. Method invocations always
run to completion and always return responses when complete. Methods are defined using the
Method NodeClass, specified in Table 15.

Release 1.04 34 OPC Unified Architecture, Part 3

Table 15 – Method NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass Attributes M -- Inherited from the Base NodeClass. See 5.2.

 Executable M Boolean The Executable Attribute indicates if the Method is currently
executable (“False” means not executable, “True” means executable).

The Executable Attribute does not take any user access rights into
account, i.e. although the Method is executable this may be restricted
to a certain user / user group.

 UserExecutable M Boolean The UserExecutable Attribute indicates if the Method is currently
executable taking user access rights into account (“False” means not
executable, “True” means executable).

References

 HasProperty 0..* HasProperty References identify the Properties for the Method.

 HasModellingRule 0..1 Methods can point to at most one ModellingRule Object using a
HasModellingRule Reference (see 6.4.4 for details on
ModellingRules).

 GeneratesEvent 0..* GeneratesEvent References identify the type of Events that will be

generated whenever the Method is called.

 AlwaysGeneratesEvent 0..* AlwaysGeneratesEvent References identify the type of Events that
shall be generated whenever the Method is called.

 <other References> 0..* Methods may contain other References.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is
added or deleted to the Node the Property belongs to. Attribute value
changes do not cause the NodeVersion to change. Clients may read
the NodeVersion Property or subscribe to it to determine when the
structure of a Node has changed.

 InputArguments O Argument[] The InputArguments Property is used to specify the arguments that
shall be used by a client when calling the Method.

 OutputArguments O Argument[] The OutputArguments Property specifies the result returned from the

Method call.

The Method NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2.
The Method NodeClass defines no additional Attributes.

The Executable Attribute indicates whether the Method is executable, not taking user access
rights into account. If the OPC UA Server cannot get the Executable information from the
underlying system, it should state that it is executable. If a Method is called then the Server
should transfer this request and return the corresponding StatusCode even if such a request is
rejected. StatusCodes are defined in Part 4.

The UserExecutable Attribute indicates whether the Method is executable, taking user access
rights into account. If the OPC UA Server cannot get any user rights related information from
the underlying system, it should use the same value as used in the Executable Attribute. The
UserExecutable Attribute can be set to “False”, even if the Executable Attribute is set to “True”,
but it shall be set to “False” if the Executable Attribute is set to “False”. Clients cannot assume
a Method can be executed based on the UserExecutable Attribute. It is possible that the Server
may return an access denied error due to some Server specific change which was not reflected
in the state of this Attribute at the time the Client accessed it.

Properties may be defined for Methods using HasProperty References. The Properties
InputArguments and OutputArguments specify the input arguments and output arguments of the
Method. Both contain an array of the DataType Argument as specified in 8.6. An empty array
or a Property that is not provided indicates that there are no input arguments or output
arguments for the Method.

The Property NodeVersion indicates the version of the Method. There are no additional
Properties defined for Methods in this document. Additional parts of this series of standards
may define additional Properties for Methods.

To specify its ModellingRule, a Method can use at most one HasModellingRule Reference
pointing to a ModellingRule Object. ModellingRules are defined in 6.4.4.

OPC Unified Architecture, Part 3 35 Release 1.04

GeneratesEvent References identify that Methods may generate an Event of the specified
EventType or one of its subtypes for every call of the Method. A Server may generate one Event
for each referenced EventType when a Method is successfully called.

AlwaysGeneratesEvent References identify that Methods will generate an Event of the specified
EventType or one of its subtypes for every call of the Method. A Server shall always generate
one Event for each referenced EventType when a Method is successfully called.

Servers should make GeneratesEvent References bidirectional References. However, it is
allowed to be unidirectional when the Server is not able to expose the inverse direction pointing
from the EventType to each Method generating the EventType.

GeneratesEvent References are optional, i.e. the call of a Method may produce Events of an
EventType that is not referenced with a GeneratesEvent Reference by the Method.

Methods may use additional References to define relationships to other Nodes. No restrictions
are placed on the types of References used or on the NodeClasses of the Nodes that may be
referenced. However, restrictions may be defined by the ReferenceType excluding its use for
Methods. Standard ReferenceTypes are described in Clause 7.

A Method shall always be the TargetNode of at least one HasComponent Reference. The
SourceNode of these HasComponent References shall be an Object or an ObjectType. If a
Method is called then the NodeId of one of those Nodes shall be put into the Call Service defined
in Part 4 as parameter to detect the context of the Method operation.

If the Method is used as InstanceDeclaration (see 4.5) all Nodes referenced with forward
hierarchical References shall have unique BrowseNames in the context of this Method.

5.8 DataTypes

5.8.1 DataType Model

The DataType Model is used to define simple and structured data types. Data types are used
to describe the structure of the Value Attribute of Variables and their VariableTypes. Therefore
each Variable and VariableType is pointing with its DataType Attribute to a Node of the
DataType NodeClass as shown in Figure 10.

VariableTypes define the DataType
for their Value Attribute

Variables defined by a VariableType
point to the same DataType as its
VariableType or a subtype of it

VariableType

Variable
DataType

Figure 10 – Variables, VariableTypes and their DataTypes

In many cases, the NodeId of the DataType Node – the DataTypeId – will be well-known to
Clients and Servers. Clause 8 defines DataTypes and Part 6 defines their DataTypeIds. In
addition, other organizations may define DataTypes that are well-known in the industry. Well-
known DataTypeIds provide for commonality across OPC UA Servers and allow Clients to
interpret values without having to read the type description from the Server. Therefore, Servers
may use well-known DataTypeIds without representing the corresponding DataType Nodes in
their AddressSpaces.

In other cases, DataTypes and their corresponding DataTypeIds may be vendor-defined.
Servers should attempt to expose the DataType Nodes and the information about the structure
of those DataTypes for Clients to read, although this information might not always be available
to the Server.

Release 1.04 36 OPC Unified Architecture, Part 3

Figure 11 illustrates the Nodes used in the AddressSpace to describe the structure of a
DataType. The DataType points to an Object of type DataTypeEncodingType. Each DataType
can have several DataTypeEncoding, for example “Default”, “UA Binary” and “XML” encoding.
Services in Part 4 allow Clients to request an encoding or choosing the “Default” encoding.
Each DataTypeEncoding is used by exactly one DataType, that is, it is not permitted for two
DataTypes to point to the same DataTypeEncoding.

DataType

Object

of ObjectType
DataTypeEncodingType

Object
of ObjectType

DataTypeEncodingType

Each DataType can have
several DataTypeEncoding,

e.g. “Default Binary” and

“Default XML”

Figure 11 – DataType Model

Since the NodeId of the DataTypeEncoding will be used in some Mappings to identify the
DataType and it’s encoding as defined in Part 6, those NodeIds may also be well-known for
well-known DataTypeIds.

5.8.2 Encoding Rules for different kinds of DataTypes

Different kinds of DataTypes are handled differently regarding their encoding and according to
whether this encoding is represented in the AddressSpace.

Built-in DataTypes are a fixed set of DataTypes (see Part 6 for a complete list of Built-in
DataTypes). They have no encodings visible in the AddressSpace since the encoding should
be known to all OPC UA products. Examples of Built-in DataTypes are Int32 (see 8.26) and
Double (see 8.12).

Simple DataTypes are subtypes of the Built-in DataTypes. They are handled on the wire like
the Built-in DataType, i.e. they cannot be distinguished on the wire from their Built-in
supertypes. Since they are handled like Built-in DataTypes regarding the encoding they cannot
have encodings defined in the AddressSpace. Clients can read the DataType Attribute of a
Variable or VariableType to identify the Simple DataType of the Value Attribute. An example of
a Simple DataType is Duration. It is handled on the wire as a Double but the Client can read
the DataType Attribute and thus interpret the value as defined by Duration (see 8.13).

Structured DataTypes are DataTypes that represent structured data and are not defined as
Built-in DataTypes. Structured DataTypes inherit directly or indirectly from the DataType
Structure defined in 8.33. Structured DataTypes may have several encodings and the encodings
are exposed in the AddressSpace. How the encoding of Structured DataTypes is handled on
the wire is defined in Part 6. The encoding of the Structured DataType is transmitted with each
value, thus Clients are aware of the DataType without reading the DataType Attribute. The
encoding has to be transmitted so the Client is able to interpret the data. An example of a
Structured DataType is Argument (see 8.6).

Enumeration DataTypes are DataTypes that represent discrete sets of named values.
Enumerations are always encoded as Int32 on the wire as defined in Part 6. Enumeration
DataTypes inherit directly or indirectly from the DataType Enumeration defined in 8.14.
Enumerations have no encodings exposed in the AddressSpace. To expose the human-
readable representation of an enumerated value the DataType Node may have the EnumStrings
Property that contains an array of LocalizedText. The Integer representation of the enumeration
value points to a position within that array. EnumValues Property can be used instead of the
EnumStrings to support integer representation of enumerations that are not zero-based or have
gaps. It contains an array of a Structured DataType containing the integer representation as

OPC Unified Architecture, Part 3 37 Release 1.04

well as the human-readable representation. An example of an enumeration DataType containing
a sparse list of Integers is NodeClass which is defined in 8.30.

In addition to the DataTypes described above, abstract DataTypes are also supported, which
do not have any encodings and cannot be exchanged on the wire. Variables and VariableTypes
use abstract DataTypes to indicate that their Value may be any one of the subtypes of the
abstract DataType. An example of an abstract DataType is Integer which is defined in 8.24.

5.8.3 DataType NodeClass

The DataType NodeClass describes the syntax of a Variable Value. DataTypes are defined
using the DataType NodeClass, as specified in Table 16.

Release 1.04 38 OPC Unified Architecture, Part 3

Table 16 – DataType NodeClass

Name Use Data Type Description

Attributes

 Base NodeClass

Attributes
M -- Inherited from the Base NodeClass. See 5.2.

 IsAbstract M Boolean A boolean Attribute with the following values:
 TRUE it is an abstract DataType.

 FALSE it is not an abstract DataType.

 DataTypeDefinition O DataTypeDefinition The DataTypeDefinition Attribute is used to provide the meta data

and encoding information for custom DataTypes. The abstract
DataTypeDefinition DataType is defined in 8.48.

Structure and Union DataTypes

The Attribute is mandatory for DataTypes derived from Structure and
Union. For such DataTypes, the Attribute contains a structure of the
DataType StructureDefinition. The StructureDefinition DataType is
defined in 8.49. It is a subtype of DataTypeDefinition.

Enumeration and OptionSet DataTypes

The Attribute is mandatory for DataTypes derived from Enumeration,
OptionSet and subtypes of UInteger representing an OptionSet. For
such DataTypes, the Attribute contains a structure of the DataType
EnumDefinition. The EnumDefinition DataType is defined in 8.50. It
is a subtype of DataTypeDefinition.

References

 HasProperty 0..* HasProperty References identify the Properties for the DataType.

 HasSubtype 0..* HasSubtype References may be used to span a data type hierarchy.

 HasEncoding 0..* HasEncoding References identify the encodings of the DataType
represented as Objects of type DataTypeEncodingType.

Only concrete Structured DataTypes may use HasEncoding
References. Abstract, Built-in, Enumeration, and Simple DataTypes
are not allowed to be the SourceNode of a HasEncoding Reference.

Each concrete Structured DataType shall point to at least one
DataTypeEncoding Object with the BrowseName “Default Binary” or
“Default XML” having the NamespaceIndex 0. The BrowseName of
the DataTypeEncoding Objects shall be unique in the context of a
DataType, i.e. a DataType shall not point to two DataTypeEncodings
having the same BrowseName.

Standard Properties

 NodeVersion O String The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is
added or deleted to the Node the Property belongs to. Attribute value
changes do not cause the NodeVersion to change. Clients may read
the NodeVersion Property or subscribe to it to determine when the
structure of a Node has changed. Clients shall not use the content
for programmatic purposes except for equality comparisions.

 EnumStrings O LocalizedText[] The EnumStrings Property only applies for Enumeration DataTypes.

It shall not be applied for other DataTypes. If the EnumValues
Property is provided, the EnumStrings Property shall not be
provided.

Each entry of the array of LocalizedText in this Property represents
the human-readable representation of an enumerated value. The
Integer representation of the enumeration value points to a position
of the array.

 EnumValues O EnumValueType[] The EnumValues Property only applies for Enumeration DataTypes.

It shall not be applied for other DataTypes. If the EnumStrings
Property is provided, the EnumValues Property shall not be
provided.

Using the EnumValues Property it is possible to represent
Enumerations with integers that are not zero-based or have gaps
(e.g. 1, 2, 4, 8, and 16).

Each entry of the array of EnumValueType in this Property
represents one enumeration value with its integer notation, human-
readable representation and help information.

 OptionSetValues O LocalizedText[] The OptionSetValues Property only applies for OptionSet DataTypes

and UInteger DataTypes.

An OptionSet DataType is used to represent a bit mask and the
OptionSetValues Property contains the human-readable
representation for each bit of the bit mask.

The OptionSetValues Property provides an array of LocalizedText
containing the human-readable representation for each bit.

OPC Unified Architecture, Part 3 39 Release 1.04

The DataType NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2.

The IsAbstract Attribute specifies if the DataType is abstract or not. Abstract DataTypes can be
used in the AddressSpace, i.e. Variables and VariableTypes can point with their DataType
Attribute to an abstract DataType. However, concrete values can never be of an abstract
DataType and shall always be of a concrete subtype of the abstract DataType.

HasProperty References are used to identify the Properties of a DataType. The Property
NodeVersion is used to indicate the version of the DataType. The Property EnumStrings
contains human-readable representations of enumeration values and is only applied to
Enumeration DataTypes. Instead of the EnumStrings Property an Enumeration DataType can
also use the EnumValues Property to represent Enumerations with integer values that are not
zero-based or containing gaps. There are no additional Properties defined for DataTypes in this
standard. Additional parts of this series of standards may define additional Properties for
DataTypes.

HasSubtype References may be used to expose a data type hierarchy in the AddressSpace.
The semantic of subtyping is only defined to the point, that a Server may provide instances of
the subtype instead of the DataType. Clients should not make any assumptions about any other
semantic with that information. For example, it might not be possible to cast a value of one data
type to its base data type. Servers need not provide HasSubtype References, even if their
DataTypes span a type hierarchy. Some restrictions apply for subtyping enumeration
DataTypes as defined in 8.14.

HasEncoding References point from the DataType to its DataTypeEncodings. Each concrete
Structured DataType can point to many DataTypeEncodings, but each DataTypeEncoding shall
belong to one DataType, that is, it is not permitted for two DataType Nodes to point to the same
DataTypeEncoding Object using HasEncoding References.

An abstract DataType is not the SourceNode of a HasEncoding Reference. The
DataTypeEncoding of an abstract DataType is provided by its concrete subtypes.

DataType Nodes shall not be the SourceNode of other types of References. However, they may
be the TargetNode of other References.

5.8.4 DataTypeEncoding and Encoding Information

If a DataType Node is exposed in the AddressSpace, it shall provide its DataTypeEncodings
using HasEncoding References. These References shall be bi-directional. Figure 12 provides
an example how DataTypes are modelled in the AddressSpace.

Object
Default Binary

of ObjectType

DataTypeEncodingType

DataType

Object
Default XML

of ObjectType

DataTypeEncodingType

HasEncoding HasEncoding

Figure 12 – Example of DataType Modelling

The information on how to encode the DataType is provided in the Attribute DataTypeDefinition
of the DataType Node. The content of this Attribute shall not be changed once it had been
provided to Clients since Clients might persistently cache this information. If the encoding of a
DataType needs to be changed conceptually a new DataType needs to be provided, meaning
that a new NodeId shall be used for the DataType. Since Clients identify the DataType via the
DataTypeEncodings, also the NodeIds for the DataTypeEncodings of the DataType shall be
changed, when the encoding changes.

Release 1.04 40 OPC Unified Architecture, Part 3

5.9 Summary of Attributes of the NodeClasses

Table 17 summarises all Attributes defined in this document and points out which NodeClasses
use them either in an optional (O) or mandatory (M) way.

Table 17 – Overview of Attributes

Attribute

V
a
ri

a
b

le

V
a
ri

a
b

le

T
y
p

e

O
b

je
c
t

O
b

je
c
t

T
y
p

e

R
e
fe

re
n

c
e

T
y
p

e

D
a
ta

T
y

p
e

M
e
th

o
d

V
ie

w

AccessLevel M

AccessLevelEx O

ArrayDimensions O O

AccessRestrictions O O O O O O O O

BrowseName M M M M M M M M

ContainsNoLoops M

DataType M M

DataTypeDefinition O

Description O O O O O O O O

DisplayName M M M M M M M M

EventNotifier M M

Executable M

Historizing M

InverseName O

IsAbstract M M M M

MinimumSamplingInterval O

NodeClass M M M M M M M M

NodeId M M M M M M M M

RolePermissions O O O O O O O O

Symmetric M

UserAccessLevel M

UserExecutable M

UserRolePermissions O O O O O O O O

UserWriteMask O O O O O O O O

Value M O

ValueRank M M

WriteMask O O O O O O O O

6 Type Model for ObjectTypes and VariableTypes

6.1 Overview

In the remainder of 6 the type model of ObjectTypes and VariableTypes is defined regarding
subtyping and instantiation.

6.2 Definitions

6.2.1 InstanceDeclaration

An InstanceDeclaration is an Object, Variable or Method that references a ModellingRule with
a HasModellingRule Reference and is the TargetNode of a hierarchical Reference from a
TypeDefinitionNode or another InstanceDeclaration. The type of an InstanceDeclaration may
be abstract, however the instance must be of a concrete type.

6.2.2 Instances without ModellingRules

If no ModellingRule exists then the Node is neither considered for instantiation of a type nor for
subtyping.

If a Node referenced by a TypeDefinitionNode does not reference a ModellingRule it indicates
that this Node only belongs to the TypeDefinitionNode and not to the instances. For example,
an ObjectType Node may contain a Property that describes scenarios where the type could be
used. This Property would not be considered when creating instances of the type. This is also
true for subtyping, that is, subtypes of the type definition would not inherit the referenced Node.

OPC Unified Architecture, Part 3 41 Release 1.04

6.2.3 InstanceDeclarationHierarchy

The InstanceDeclarationHierarchy of a TypeDefinitionNode contains the TypeDefinitionNode
and all InstanceDeclarations that are directly or indirectly referenced from the
TypeDefinitionNode using forward hierarchical References.

6.2.4 Similar Node of InstanceDeclaration

A similar Node of an InstanceDeclaration is a Node that has the same BrowseName and
NodeClass as the InstanceDeclaration and in cases of Variables and Objects the same
TypeDefinitionNode or a subtype of it.

6.2.5 BrowsePath

All targets of forward hierarchical References from a TypeDefinitionNode shall have a
BrowseName that is unique within the TypeDefinitionNode. The same restriction applies to the
targets of forward hierarchical References from any InstanceDeclaration. This means that any
InstanceDeclaration within the InstanceDeclarationHierarchy can be uniquely identified by a
sequence of BrowseNames. This sequence of BrowseNames is called a BrowsePath.

6.2.6 Attribute Handling of InstanceDeclarations

Some restrictions exist regarding the Attributes of InstanceDeclarations when the
InstanceDeclaration is overridden or instantiated. The BrowseName and the NodeClass shall
never change and always be the same as the original InstanceDeclaration.

In addition, the rules defined in 6.2.7 apply for InstanceDeclarations of the NodeClass Variable.

6.2.7 Attribute Handling of Variable and VariableTypes

Some restrictions exist regarding the Attributes of a VariableType or a Variable used as an
InstanceDeclaration with regard to the data type of the Value Attribute.

When a Variable used as InstanceDeclaration or a VariableType is overridden or instantiated
the following rules apply:

a) The DataType Attribute can only be changed to a new DataType if the new DataType is a
subtype of the DataType originally used.

b) The ValueRank Attribute may only be further restricted

1) ‘Any’ may be set to any other value;

2) ‘ScalarOrOneDimension’ may be set to ‘Scalar’ or ‘OneDimension’;

3) ‘OneOrMoreDimensions’ may be set to a concrete number of dimensions (value > 0).

4) All other values of this Attribute shall not be changed.

c) The ArrayDimensions Attribute may be added if it was not provided or when modifying the
value of an entry in the array from 0 to a different value. All other values in the array shall
remain the same.

6.2.8 NodeIds of InstanceDeclarations

InstanceDeclarations are identified by their BrowsePath. Different Servers might use different
NodeIds for the InstanceDeclarations of common TypeDefinitionNodes, unless the definition of
the TypeDefinitionNode already defines a NodeId for the InstanceDeclaration. All
TypeDefinitionNodes defined in Part 5 already define the NodeIds for their InstanceDeclarations
and therefore shall be used in all Servers.

6.3 Subtyping of ObjectTypes and VariableTypes

6.3.1 Overview

The HasSubtype ReferenceType defines subtypes of types. Subtyping can only occur between
Nodes of the same NodeClass. Rules for subtyping ReferenceTypes are described in 5.3.3.3.
There is no common definition for subtyping DataTypes, as described in 5.8.3. The remainder
of 6.3 specify subtyping rules for single inheritance on ObjectTypes and VariableTypes.

Release 1.04 42 OPC Unified Architecture, Part 3

6.3.2 Attributes

Subtypes inherit the parent type’s Attribute values, except for the NodeId. Inherited Attribute
values may be overridden by the subtype, the BrowseName and DisplayName values should
be overridden. Special rules apply for some Attributes of VariableTypes as defined in 6.2.7.
Optional Attributes, not provided by the parent type, may be added to the subtype.

6.3.3 InstanceDeclarations

6.3.3.1 Overview

Subtypes inherit the fully-inherited parent type’s InstanceDeclarations.

As long as those InstanceDeclarations are not overridden they are not referenced by the
subtype. InstanceDeclarations can be overridden by adding References, changing References
to reference different Nodes, changing References to be subtypes of the original
ReferenceType, changing values of the Attributes or adding optional Attributes. In order to get
the full information about a subtype, the inherited InstanceDeclarations have to be collected
from all types that can be found by recursively following the inverse HasSubtype References
from the subtype. This collection of InstanceDeclarations is called the fully-inherited
InstanceDeclarationHierarchy of a subtype.

The remainder of 6.3.3 define how to construct the fully-inherited InstanceDeclarationHierarchy
and how InstanceDeclarations can be overridden.

6.3.3.2 Fully-inherited InstanceDeclarationHierarchy

An instance of a TypeDefinitionNode is described by the fully-inherited InstanceDeclaration-
Hierarchy of the TypeDefinitionNode. The fully-inherited InstanceDeclarationHierarchy can be
created by starting with the InstanceDeclarationHierarchy of the TypeDefinitionNode and
merging the fully-inherited InstanceDeclarationHierarchy of its parent type.

The process of merging InstanceDeclarationHierarchies is straightforward and can be illustrated
with the example shown in Figure 13 which specifies a TypeDefinitionNode “BetaType” which
is a subtype of “AlphaType”. The name in each box is the BrowseName and the number is the
NodeId.

AlphaType (1)

B (2)

E (5)

C (3)

D (4)

X

Y

BetaType (6)

F (7)

H (9) J (10)

Z

B (8)

Figure 13 – Subtyping TypeDefinitionNodes

An InstanceDeclarationHierarchy can be fully described as a table of Nodes identified by their
BrowsePaths with a corresponding table of References. The InstanceDeclarationHierarchy for
“BetaType” is described in Table 18 where the top half of the table is the table of Nodes and
the bottom half is the table of References (the HasModellingRule references have been omitted
from the table for the sake of clarity; all Nodes except for 1, 6, and 5 have ModellingRules). All
InstanceDeclarations of the InstanceDeclarationHierarchy and all Nodes referenced with a non-
hierarchical Reference from such an InstanceDeclaration are added to the table. Hierarchical
References to Nodes without a ModellingRule are not considered.

OPC Unified Architecture, Part 3 43 Release 1.04

Table 18 – The InstanceDeclarationHierarchy for BetaType

BrowsePath NodeId

/ 6

/F 7

/B 8

/F/H 9

/B/J 10

/B/H 9

Source Path ReferenceType Target Path TargetNodeId

/ HasComponent /F -

/ HasComponent /B -

/ Z /B -

/ HasTypeDefinition - BetaType

/F HasComponent /F/H -

/F HasTypeDefinition - BaseObjectType

/B HasProperty /B/J -

/B HasTypeDefinition - BaseObjectType

/F/H HasTypeDefinition - PropertyType

/B/J HasTypeDefinition - PropertyType

/B HasComponent /B/H -

/B/H HasTypeDefinition - BaseDataVariableType

Multiple BrowsePaths to the same Node shall be treated as separate Nodes. An Instance may
provide different Nodes for each BrowsePath.

The fully-inherited InstanceDeclarationHierarchy for “BetaType” can now be constructed by
merging the InstanceDeclarationHierarchy for “AlphaType”. The result is shown in Table 19
where the entries added from “AlphaType” are shaded with grey.

Table 19 – The Fully-Inherited InstanceDeclarationHierarchy for BetaType

BrowsePath NodeId

/ 6

/F 7

/B 8

/F/H 9

/B/J 10

/B/H 9

/B/D 4

/C 3

Source Path ReferenceType Target Path TargetNodeId

/ HasComponent /F -

/ HasComponent /B -

/ Z /B -

/ HasTypeDefinition - BetaType

/F HasComponent /F/H -

/F HasTypeDefinition - BaseObjectType

/B HasProperty /B/J -

/B HasTypeDefinition - BaseObjectType

/F/H HasTypeDefinition - PropertyType

/B/J HasTypeDefinition - PropertyType

/B HasComponent /B/H -

/B/H HasTypeDefinition - BaseDataVariableType

/ HasNotifier /B -

/B HasProperty /B/D -

/ HasComponent /C -

/ Y /C -

/C HasTypeDefinition - BaseDataVariableType

/B/D HasTypeDefinition - PropertyType

/B/D X /C -

The BrowsePath “/B” already exists in the table so it does not need to be added. However, the
HasNotifier reference from “/” to “/B” does not exist and was added.

Release 1.04 44 OPC Unified Architecture, Part 3

The Nodes and References defined in Table 19 can be used to create the fully-inherited
InstanceDeclarationHierarchy shown in Figure 14. The fully-inherited
InstanceDeclarationHierarchy contains all necessary information about a TypeDefinitionNode
regarding its complex structure without needing any additional information from its supertypes.

B (8)

D (4)
X

F (7)C (3)

H (9)

BetaType

(Fully Inherited)

Y

Z

J (10)

Figure 14 – The Fully-Inherited InstanceDeclarationHierarchy for BetaType

6.3.3.3 Overriding InstanceDeclarations

A subtype overrides an InstanceDeclaration by specifying an InstanceDeclaration with the same
BrowsePath. An overridden InstanceDeclaration shall have the same NodeClass and
BrowseName. The TypeDefinitionNode of the overridden InstanceDeclaration shall be the same
or a subtype of the TypeDefinitionNode specified in the supertype.

When overriding an InstanceDeclaration it is necessary to provide hierarchical References that
link the new Node back to the subtype (the References are used to determine the BrowsePath
of the Node).

It is only possible to override InstanceDeclarations that are directly referenced from the
TypeDefinitionNode. If an indirect referenced InstanceDeclaration, such as “J” in Figure 14, has
to be overridden, then the directly referenced InstanceDeclarations that includes “J”, in that
case “B”, have to be overridden first and then “J” can be overridden in a second step.

A Reference is replaced if it goes between two overridden Nodes and has the same
ReferenceType as a Reference defined in the supertype. The Reference specified in the
subtype may be a subtype of the ReferenceType used in the parent type.

Any non-hierarchical References specified for the overridden InstanceDeclaration are treated
as new References unless the ReferenceType only allows a single Reference per SourceNode.
If this situation exists the subtype can change the target of the Reference but the new target
shall have the same NodeClass and for Objects and Variables also the same type or a subtype
of the type specified in the parent.

The overriding Node may specify new values for the Node Attributes other than the NodeClass
or BrowseName, however, the restrictions on Attributes specified in 6.2.6 apply. Any Attribute
provided by the overridden InstanceDeclaration has to be provided by the overriding
InstanceDeclaration, additional optional Attributes may be added.

The ModellingRule of the overriding InstanceDeclaration may be changed as defined in 6.4.4.3.

Each overriding InstanceDeclaration needs its own HasModellingRule and HasTypeDefinition
References, even if they have not been changed.

A subtype should not override a Node unless it needs to change it.

The semantics of certain TypeDefinitionNodes and ReferenceTypes may impose additional
restrictions with regard to overriding Nodes.

OPC Unified Architecture, Part 3 45 Release 1.04

6.4 Instances of ObjectTypes and VariableTypes

6.4.1 Overview

Any Instance of a TypeDefinitionNode will be the root of a hierarchy which mirrors the
InstanceDeclarationHierarchy for the TypeDefinitionNode. Each Node in the hierarchy of the
Instance will have a BrowsePath which may be the same as the BrowsePath for one of the
InstanceDeclarations in the hierarchy of the TypeDefinitionNode. The InstanceDeclaration with
the same BrowsePath is called the InstanceDeclaration for the Node. If a Node has an
InstanceDeclaration then it shall have the same BrowseName and NodeClass as the
InstanceDeclaration and, in cases of Variables and Objects, the same TypeDefinitionNode or a
subtype of it.

Instances may reference several Nodes with the same BrowsePath. Clients that need to
distinguish between the Nodes based on the InstanceDeclarationHierarchy and the Nodes that
are not based on the InstanceDeclarationHierarchy can accomplish this using the
TranslateBrowsePathsToNodeIds service defined in Part 4.

6.4.2 Creating an Instance

Instances inherit the initial values for the Attributes that they have in common with the
TypeDefinitionNode from which they are instantiated, with the exceptions of the NodeClass and
NodeId.

When a Server creates an instance of a TypeDefinitionNode it shall create the same hierarchy
of Nodes beneath the new Object or Variable depending on the ModellingRule of each
InstanceDeclaration. Standard ModellingRules are defined in 6.4.4.5. The Nodes within the
newly created hierarchy may be copies of the InstanceDeclarations, the InstanceDeclaration
itself or another Node in the AddressSpace that has the same TypeDefinitionNode and
BrowseName. If new copies are created, then the Attribute values of the InstanceDeclarations
are used as the initial values.

Figure 15 provides a simple example of a TypeDefinitionNode and an Instance. Nodes
referenced by the TypeDefinitionNode without a ModellingRule do not appear in the instance.
Instances may have children with duplicate BrowseNames; however, only one of those children
will correspond to the InstanceDeclaration.

AlphaType

B

[Mandatory]

E

C

[Mandatory]

Alpha1

D

[Mandatory]

B C

D
F

Figure 15 – An Instance and its TypeDefinitionNode

It is up to the Server to decide which InstanceDeclarations appear in any single instance. In
some cases, the Server will not define the entire instance and will provide remote references
to Nodes in another Server. The ModellingRules described in 6.4.4.5 allow Servers to indicate
that some Nodes are always present; however, the Client shall be prepared for the case where
the Node exists in a different Server.

A Client can use the information of TypeDefinitionNodes to access Nodes which are in the
hierarchy of the instance. It shall pass the NodeId of the instance and the BrowsePath of the
child Nodes based on the TypeDefinitionNode to the TranslateBrowsePathsToNodeIds service
(see Part 4). This Service returns the NodeId for each of the child Nodes. If a child Node exists
then the BrowseName and NodeClass shall match the InstanceDeclaration. In the case of

Release 1.04 46 OPC Unified Architecture, Part 3

Objects or Variables, also the TypeDefinitionNode shall either match or be a subtype of the
original TypeDefinitionNode.

6.4.3 Constraints on an Instance

Objects and Variables may change their Attribute values after being created. Special rules apply
for some Attributes as defined in 6.2.6.

Additional References may be added to the Nodes, and References may be deleted as long as
the ModellingRules defined on the InstanceDeclarations of the TypeDefinitionNode are still
fulfilled.

For Variables and Objects the HasTypeDefinition Reference shall always point to the same
TypeDefinitionNode as the InstanceDeclaration or a subtype of it.

If two InstanceDeclarations of the fully-inherited InstanceDeclarationHierarchy have been
connected directly with several References, all those References shall connect the same
Nodes. An example is given in Figure 16. The instances A1 and A2 are allowed since B1
references the same Node with both References, whereas A3 is not allowed since two different
Nodes are referenced. Note that this restriction only applies for directly connected Nodes. For
example, A2 references a C1 directly and a different C1 via B1.

B1::Type_B

[Mandatory]
Type_A

A1::Type:_A

C1:Ty_C

[Mandatory]

B1::Type_B

C1:Ty_C

A2::Type:_A

B1::Type_B

C1:Ty_C

C1:Ty_C

A3::Type:_A

B1::Type_B

C1:Ty_C

C1:Ty_C

Not directly

referenced from A2

Figure 16 – Example for several References between InstanceDeclarations

6.4.4 ModellingRules

6.4.4.1 General

For a definition of ModellingRules, see 6.4.4.5. Other parts of this series of standards may
define additional ModellingRules. ModellingRules are an extendable concept in OPC UA;
therefore vendors may define their own ModellingRules.

Note that the ModellingRules defined in this standard do not define how to deal with non-
hierarchical References between InstanceDeclarations, i.e. it is Server-specific if those

OPC Unified Architecture, Part 3 47 Release 1.04

References exist in an instance hierarchy or not. Other ModellingRules may define behaviour
for non-hierarchical References between InstanceDeclaration as well.

ModellingRules are represented in the AddressSpace as Objects of the ObjectType
ModellingRuleType. There are some Properties defining common semantic of ModellingRules.
This edition of this standard only specifies one Property for ModellingRules. Future editions
may define additional Properties for ModellingRules. Part 5 specifies the representation of the
ModellingRule Objects, their Properties and their type in the AddressSpace. The semantic of
the Properties for ModellingRules is defined in 6.4.4.2.

Subclause 6.4.4.4 defines how the ModellingRule may be changed when instantiating
InstanceDeclarations with respect to the Properties. Subclause 6.4.4.3 defines how the
ModellingRule may be changed when overriding InstanceDeclarations in subtypes with respect
to the Properties.

6.4.4.2 Properties describing ModellingRules

6.4.4.2.1 NamingRule

NamingRule is a mandatory Property of a ModellingRule. It specifies the purpose of an
InstanceDeclaration. Each InstanceDeclaration references a ModellingRule and thus the
NamingRule is defined per InstanceDeclaration.

Three values are allowed for the NamingRule of a ModellingRule: Optional, Mandatory, and
Constraint.

The following semantic is valid for the entire life-time of an instance that is based on a
TypeDefinitionNode having an InstanceDeclaration.

For an instance A1 of a TypeDefinitionNode AlphaType with an InstanceDeclaration B1 having
a ModellingRule using the NamingRule Optional the following rule applies: For each
BrowsePath from AlphaType to B1 the instance A1 may or may not have a similar Node (see
6.2.4) for B1 with the same BrowsePath. If such a Node exists then the
TranslateBrowsePathsToNodeIds Service (see Part 4) returns this Node as the first entry in the
list.

For an instance A1 of a TypeDefinitionNode AlphaType with an InstanceDeclaration B1 having
a ModellingRule using the NamingRule Mandatory the following rule applies: For each
BrowsePath from AlphaType to B1 the instance A1 shall have a similar Node (see 6.2.4) for B1
using the same BrowsePath if all Nodes of the BrowsePath exist. For example, if a Node in the
BrowsePath has a NamingRule Optional and is omitted in the instance, then all children of this
Node would also be omitted, independent of their ModellingRules.

If an InstanceDeclaration has a ModellingRule using the NamingRule Constraint it identifies
that the BrowseName of the InstanceDeclaration is of no significance but other semantic is
defined with the ModellingRule. The TranslateBrowsePathsToNodeIds Service (see Part 4) can
typically not be used to access instances based on those InstanceDeclarations.

6.4.4.3 Subtyping Rules for Properties of ModellingRules

It is allowed that subtypes override ModellingRules on their InstanceDeclarations. As a general
rule for subtyping, constraints shall only be tightened, not loosened. Therefore, it is not allowed
to specify on the supertype that an instance shall exist with the name (NamingRule Mandatory)
and on the subtype make this optional (NamingRule Optional).
Table 20 specifies the allowed changes on the Properties when exchanging the ModellingRules
in the subtype.

Table 20 – Rule for ModellingRules Properties when Subtyping

 Value on
supertype

Value on subtype

NamingRule Mandatory Mandatory

NamingRule Optional Mandatory or Optional

NamingRule Constraint Constraint

Release 1.04 48 OPC Unified Architecture, Part 3

6.4.4.4 Instantiation Rules for Properties of ModellingRules

There are two different use cases when creating an instance ‘A’ based on a TypeDefinitionNode
‘A_Type’. Either ‘A’ is used as normal instance or it is used as InstanceDeclaration of another
TypeDefinitionNode.

In the first case, it is not required that newly created or referenced instances based on
InstanceDeclarations have a ModellingRule, however, it is allowed that they have any
ModellingRule independent of the ModellingRule of their InstanceDeclaration.

In Figure 17 an example is given. The instances A1, A2, and A3 are all valid instances of
Type_A, although B of A1 has no ModellingRule and B of A3 has a different ModellingRule than
B of Type_A.

Type_A

B::Type_B

[Mandatory]

A1

B::Type_B

A2

B::Type_B

[Mandatory]

A3

B::Type_B

[Optional]

Figure 17 – Example on changing instances based on InstanceDeclarations

In the second case, all instances that are referenced directly or indirectly from ‘A’ based on
InstanceDeclarations of ‘A_Type’ initially maintain the same ModellingRule as their
InstanceDeclarations. The ModellingRules may be updated; the allowed changes to the
ModellingRules of these Nodes are the same as those defined for subtyping in 6.4.4.3.

In Figure 18 an example of such a scenario is given. Type_B uses an InstanceDeclaration based
on Type_A (upper part of the Figure). Later on the ModellingRule of the InstanceDeclaration A1
is changed (lower part of the Figure). A1 has become the NamingRule of Mandatory (changed
from Optional).

OPC Unified Architecture, Part 3 49 Release 1.04

Modified Type

Type_A

A1 [Optional]

A2 [Mandatory]

Type_B

A [Mandatory]

A2 [Mandatory]

Type_B

A [Mandatory]

A2 [Mandatory]

A1 [Mandatory]

A1 [Optional]

Figure 18 – Example on changing InstanceDeclarations based

on an InstanceDeclaration

6.4.4.5 Standard ModellingRules

6.4.4.5.1 Titles of Standard ModellingRules

The remainder of 6.4.4.5 defines ModellingRules. In Table 21 the Properties of those
ModellingRules are summarized.

Table 21 – Properties of ModellingRules

Title NamingRule

Mandatory Mandatory

Optional Optional

ExposesItsArray Constraint

OptionalPlaceholder Constraint

MandatoryPlaceholder Constraint

6.4.4.5.2 Mandatory

An InstanceDeclaration marked with the ModellingRule Mandatory fulfils exactly the semantic
defined for the NamingRule Mandatory. That means that for each existing BrowsePath on the
instance a similar Node shall exist, but it is not defined whether a new Node is created or an
existing Node is referenced.

For example, the TypeDefinitionNode of a functional block “AI_BLK_TYPE” will have a setpoint
“SP1”. An instance of this type “AI_BLK_1” will have a newly-created setpoint “SP1” as a similar
Node to the InstanceDeclaration SP1. Figure 19 illustrates the example.

Release 1.04 50 OPC Unified Architecture, Part 3

AI_BLK_1

AI_BLK_TYPE

SP1:SetPoint

SP1:SetPoint

Mandatory::ModellingRuleTypeHasModellingRule

Figure 19 – Use of the Standard ModellingRule Mandatory

In 6.4.4.5.3 a complex example combining the Mandatory and Optional ModellingRules is given.

6.4.4.5.3 Optional

An InstanceDeclaration marked with the ModellingRule Optional fulfils exactly the semantic
defined for the NamingRule Optional. That means that for each existing BrowsePath on the
instance a similar Node may exist, but it is not defined whether a new Node is created or an
existing Node is referenced.

In Figure 20 an example using the ModellingRules Optional and Mandatory is shown. The
example contains an ObjectType Type_A and all valid combinations of instances named A1 to
A13. Note that if the optional B is provided, the mandatory E has to be provided as well,
otherwise not. F is referenced by C and D. On the instance, this can be the same Node or two
different Nodes with the same BrowseName (similar Node to InstanceDeclaration F). Not
considered in the example is if the instances have ModellingRules or not. It is assumed that
each F is similar to the InstanceDeclaration F, etc.

If there would be a non-hierarchical Reference between E and F in the InstanceDeclaration-
Hierarchy, it is not specified if it occurs in the instance hierarchy or not. In the case of A1 0,
there could be a reference from E to one F but not to the other F, or to both or none of them.

OPC Unified Architecture, Part 3 51 Release 1.04

Type_A

D [Optional]

C [Mandatory]

B [Optional] E [Mandatory]

F [Optional]

A1

C

B

A2

C

E

B

A9

C

D

E

A4

C

D

A5

C

D

F

F

A6

C

D

F

A7

C

D F

A8

C

D

F

B

A3

C

E

F

B

A11

C

D

E

F

B

A10

C

D

E

F

F

B

A12

C

D

E

F

B

A13

C

D

E

F

A14

C F

Figure 20 – Example using the Standard ModellingRules Optional and Mandatory

6.4.4.5.4 ExposesItsArray

The ExposesItsArray ModellingRule exposes a special semantic on VariableTypes having a
single- or multidimensional array as the data type. It indicates that each value of the array will
also be exposed as a Variable in the AddressSpace.

The ExposesItsArray ModellingRule can only be applied on InstanceDeclarations of NodeClass
Variable that are part of a VariableType having a single- or multidimensional array as its data
type.

The Variable A having this ModellingRule shall be referenced by a forward hierarchical
Reference from a VariableType B. B shall have a ValueRank value that is equal to or larger
than zero. A should have a data type that reflects at least parts of the data that is managed in
the array of B. Each instance of B shall reference one instance of A for each of its array
elements. The used Reference shall be of the same type as the hierarchical Reference that
connects B with A or a subtype of it. If there are more than one forward hierarchical References
between A and B, then all instances based on B shall be referenced with all those References.

Figure 21 gives an example. A is an instance of Type_A having two entries in its value array.
Therefore it references two instances of the same type as the InstanceDeclaration ArrayExpose.
The BrowseNames of those instances are not defined by the ModellingRule. In general, it is not
possible to get a Variable representing a specific entry in the array (e.g. the second). Clients
will typically either get the array or access the Variables directly, so there is no need to provide
that information.

Release 1.04 52 OPC Unified Architecture, Part 3

Type_A

ArrayExpose::Type_X
ExposesItsArray

::ModellingRuleType
HasModellingRule

A

A1::Type_X

A2::Type_X

Figure 21 – Example on using ExposesItsArray

It is allowed to reference A by other InstanceDeclarations as well. Those References have to
be reflected on each instance based on A.

Figure 22 gives an example. The Property EUUnit is referenced by ArrayExpose and therefore
each instance based on ArrayExpose references the instance based on the InstanceDeclaration
EUUnit.

Type_A

ArrayExpose::Type_X
ExposesItsArray

::ModellingRuleType
HasModellingRule

A

A1::Type_X

A2::Type_X

EUUnit [Mandatory]EUUnit

Figure 22 – Complex example on using ExposesItsArray

6.4.4.5.5 OptionalPlaceholder

For Object and Variable the intention of the ModellingRule OptionalPlaceholder is to expose
the information that a complex TypeDefinition expects from instances of the TypeDefinition to
add instances with specific References without defining BrowseNames for the instances. For
example, a Device might have a Folder for DeviceParameters, and the DeviceParameters
should be connected with a HasComponent Reference. However, the names of the
DeviceParameters are specific to the instances. The example is shown in Figure 23, where an
instance Device A adds two DeviceParameters in the Folder.

OptionalPlaceholder

::ModellingRuleType

HasModellingRule

<DeviceParameter>

::BaseDataVarableType

DeviceParameters

::FolderType

Mandatory

::ModellingRuleType
HasModellingRule

Device A

DeviceParameters

::FolderType

Parameter A

::BaseDataVarableType

Parameter B

::BaseDataVarableType

DeviceType

Figure 23 – Example using OptionalPlaceholder with an Object and Variable

The ModellingRule OptionalPlaceholder adds no additional constraints on instances of the
TypeDefinition. It just provides useful information when exposing a TypeDefinition. When the
InstanceDeclaration is complex, i.e. it references other InstanceDeclarations with hierarchical
References, these InstanceDeclarations are not further considered for instantiating the
TypeDefinition.

It is recommended that the BrowseName and the DisplayName of InstanceDeclarations having
the OptionalPlaceholder ModellingRule should be enclosed within angle brackets.

OPC Unified Architecture, Part 3 53 Release 1.04

When overriding the InstanceDeclaration, the ModellingRule shall remain OptionalPlaceholder.

For Methods, the ModellingRule OptionalPlaceholder is used to define the BrowseName where
subtypes and instances provide more information. The Method definition with the
OptionalPlaceholder only defines the BrowseName. An instance or subtype defines the
InputArguments and OutputArguments. A subtype shall also change the ModellingRule to
Optional or Mandatory. The Method is optional for instances. For example, a Device might have
a Method to perform calibration however the specific arguments for the Method depend on the
instance of the Device. In this example Device A does not implement the Method, Device B
implements the Method with no arguments and Device C implements the Method accepting a
mode argument to select how the calibration is to be performed. The example is shown in Figure
24.

OptionalPlaceholder

::ModellingRuleType
HasModellingRule

DeviceMethods

::FolderType

Mandatory

::ModellingRuleType
HasModellingRule

Device A

DeviceMethods

::FolderType

DeviceType

CalibrateDevice B

DeviceMethods

::FolderType

Calibrate

Device C

DeviceMethods

::FolderType

Calibrate

InputArguments

OutputArguments

Signature:

Calibrate ([in] Int32 Mode);

Figure 24 – Example using OptionalPlaceholder with a Method

6.4.4.5.6 MandatoryPlaceholder

For Object and Variable the ModellingRule MandatoryPlaceholder has a similar intention as the
ModellingRule OptionalPlaceholder. It exposes the information that a TypeDefinition expects of
instances of the TypeDefinition to add instances defined by the InstanceDeclaration. However,
MandatoryPlaceholder requires that at least one of those instances shall exist.

For example, when the DeviceType requires that at least one DeviceParameter shall exist
without specifying the BrowseName for it, it uses MandatoryPlaceholder as shown in
Figure 25. Device A is a valid instance as it has the required DeviceParameter. Device B is not
valid as it uses the wrong ReferenceType to reference a DeviceParameter (Organizes instead
of HasComponent) and Device C is not valid because it does not provide a DeviceParameter at
all.

Release 1.04 54 OPC Unified Architecture, Part 3

MandatoryPlaceholder

::ModellingRuleType

HasModellingRule

<DeviceParameter>

::BaseDataVarableType

DeviceParameters

::FolderType

Mandatory

::ModellingRuleType
HasModellingRule

Device A

DeviceParameters

::FolderType

Parameter A

::BaseDataVarableType

Parameter B

::BaseDataVarableType

DeviceType

Device C

DeviceParameters

::FolderType

Device B

DeviceParameters

::FolderType

Parameter A

::BaseDataVarableType
Organizes

Figure 25 – Example on using MandatoryPlaceholder for Object and Variable

The ModellingRule MandatoryPlaceholder requires that each instance provides at least one
instance with the TypeDefinition of the InstanceDeclaration or a subtype, and is referenced with
the same ReferenceType or a subtype as the InstanceDeclaration. It does not require a specific
BrowseName and thus cannot be used for the TranslateBrowsePathsToNodeIds Service (see
Part 4).

When the InstanceDeclaration is complex, i.e. it references other InstanceDeclarations with
hierarchical References, these InstanceDeclarations are not further considered for instantiating
the TypeDefinition.

It is recommended that the BrowseName and the DisplayName of InstanceDeclarations having
the MandatoryPlaceholder ModellingRule should be enclosed within angle brackets.

When overriding the InstanceDeclaration, the ModellingRule shall remain
MandatoryPlaceholder.

For Methods, the ModellingRule MandatoryPlaceholder is used to define the BrowseName
where subtypes and instances provide more information. The Method definition with the
MandatoryPlaceholder only defines the BrowseName. An instance or subtype defines the
InputArguments and OutputArguments. A subtype shall also change the ModellingRule to
Mandatory. The Method is mandatory for instances.

6.5 Changing Type Definitions that are already used

There is no behaviour specified regarding subtypes and instances when changing ObjectTypes
and VariableTypes. It is Server-dependent, if those changes are reflected on the subtypes and
instances of the types. However, all constraints defined for subtypes and instances have to be
fulfilled. For example, it is not allowed to add a Property using the ModellingRule Mandatory on
a type if instances of this type exist without the Property. In that case, the Server either has to
add the Property to all instances of the type or adding the Property on the type has to be
rejected.

7 Standard ReferenceTypes

7.1 General

This standard defines ReferenceTypes as an inherent part of the OPC UA Address Space
Model. Figure 26 informally describes the hierarchy of these ReferenceTypes. Other parts of
this series of standards may specify additional ReferenceTypes. The remainder of 7 defines the
ReferenceTypes. Part 5 defines their representation in the AddressSpace.

OPC Unified Architecture, Part 3 55 Release 1.04

References

HierarchicalReferences NonHierarchicalReferences

HasEventSource

HasNotifier

HasChild Organizes

Aggregates HasSubtype

HasProperty HasComponent

HasOrderedComponent

HasModellingRule

HasTypeDefinition

HasEncoding

GeneratesEvent

AlwaysGeneratesEvent

Figure 26 – Standard ReferenceType Hierarchy

7.2 References ReferenceType

The References ReferenceType is an abstract ReferenceType; only subtypes of it can be used.

There is no semantic associated with this ReferenceType. This is the base type of all
ReferenceTypes. All ReferenceTypes shall be a subtype of this base ReferenceType – either
direct or indirect. The main purpose of this ReferenceType is allowing simple filter and queries
in the corresponding Services of Part 5.

There are no constraints defined for this abstract ReferenceType.

7.3 HierarchicalReferences ReferenceType

The HierarchicalReferences ReferenceType is an abstract ReferenceType; only subtypes of it
can be used.

The semantic of HierarchicalReferences is to denote that References of HierarchicalReferences
span a hierarchy. It means that it may be useful to present Nodes related with References of
this type in a hierarchical-like way. HierarchicalReferences does not forbid loops. For example,
starting from Node “A” and following HierarchicalReferences it may be possible to browse to
Node “A”, again.

It is not permitted to have a Property as SourceNode of a Reference of any subtype of this
abstract ReferenceType.

It is not allowed that the SourceNode and the TargetNode of a Reference of the ReferenceType
HierarchicalReferences are the same, that is, it is not allowed to have self -references using
HierarchicalReferences.

Release 1.04 56 OPC Unified Architecture, Part 3

7.4 NonHierarchicalReferences ReferenceType

The NonHierarchicalReferences ReferenceType is an abstract ReferenceType; only subtypes
of it can be used.

The semantic of NonHierarchicalReferences is to denote that its subtypes do not span a
hierarchy and should not be followed when trying to present a hierarchy. To distinguish
hierarchical and non-hierarchical References, all concrete ReferenceTypes shall inherit from
either hierarchical References or non-hierarchical References, either direct or indirect.

There are no constraints defined for this abstract ReferenceType.

7.5 HasChild ReferenceType

The HasChild ReferenceType is an abstract ReferenceType; only subtypes of it can be used. It
is a subtype of HierarchicalReferences.

The semantic is to indicate that References of this type span a non-looping hierarchy.

Starting from Node “A” and only following References of the subtypes of the HasChild
ReferenceType it shall never be possible to return to “A”. But it is allowed that following the
References there may be more than one path leading to another Node “B”.

7.6 Aggregates ReferenceType

The Aggregates ReferenceType is an abstract ReferenceType; only subtypes of it can be used.
It is a subtype of HasChild.

The semantic is to indicate a part (the TargetNode) belongs to the SourceNode. It does not
specify the ownership of the TargetNode.

There are no constraints defined for this abstract ReferenceType.

7.7 HasComponent ReferenceType

The HasComponent ReferenceType is a concrete ReferenceType that can be used directly. It
is a subtype of the Aggregates ReferenceType.

The semantic is a part-of relationship. The TargetNode of a Reference of the HasComponent
ReferenceType is a part of the SourceNode. This ReferenceType is used to relate Objects or
ObjectTypes with their containing Objects, DataVariables, and Methods. This ReferenceType
is also used to relate complex Variables or VariableTypes with their DataVariables.

Like all other ReferenceTypes, this ReferenceType does not specify anything about the
ownership of the parts, although it represents a part-of relationship semantic. That is, it is not
specified if the TargetNode of a Reference of the HasComponent ReferenceType is deleted
when the SourceNode is deleted.

The TargetNode of this ReferenceType shall be a Variable, an Object or a Method.

If the TargetNode is a Variable, the SourceNode shall be an Object, an ObjectType, a
DataVariable or a VariableType. By using the HasComponent Reference, the Variable is defined
as DataVariable.

If the TargetNode is an Object or a Method, the SourceNode shall be an Object or ObjectType.

7.8 HasProperty ReferenceType

The HasProperty ReferenceType is a concrete ReferenceType that can be used directly. It is a
subtype of the Aggregates ReferenceType.

The semantic is to identify the Properties of a Node. Properties are described in 4.4.2.

The SourceNode of this ReferenceType can be of any NodeClass. The TargetNode shall be a
Variable. By using the HasProperty Reference, the Variable is defined as Property. Since

OPC Unified Architecture, Part 3 57 Release 1.04

Properties shall not have Properties, a Property shall never be the SourceNode of a
HasProperty Reference.

7.9 HasOrderedComponent ReferenceType

The HasOrderedComponent ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the HasComponent ReferenceType.

The semantic of the HasOrderedComponent ReferenceType – besides the semantic of the
HasComponent ReferenceType – is that when browsing from a Node and following References
of this type or its subtype all References are returned in the Browse Service defined in Part 4
in a well-defined order. The order is Server-specific, but the Client can assume that the Server
always returns them in the same order.

There are no additional constraints defined for this ReferenceType.

7.10 HasSubtype ReferenceType

The HasSubtype ReferenceType is a concrete ReferenceType that can be used directly. It is a
subtype of the HasChild ReferenceType.

The semantic of this ReferenceType is to express a subtype relationship of types. It is used to
span the ReferenceType hierarchy, whose semantic is specified in 5.3.3.3; a DataType
hierarchy is specified in 5.8.3, and other subtype hierarchies are specified in Clause 6.

The SourceNode of References of this type shall be an ObjectType, a VariableType, a DataType
or a ReferenceType and the TargetNode shall be of the same NodeClass as the SourceNode.
Each ReferenceType shall be the TargetNode of at most one Reference of type HasSubtype.

7.11 Organizes ReferenceType

The Organizes ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of HierarchicalReferences.

The semantic of this ReferenceType is to organise Nodes in the AddressSpace. It can be used
to span multiple hierarchies independent of any hierarchy created with the non -looping
Aggregates References.

The SourceNode of References of this type shall be an Object or a View. If it is an Object then
it should be an Object of the ObjectType FolderType or one of its subtypes (see 5.5.3).

The TargetNode of this ReferenceType can be of any NodeClass.

7.12 HasModellingRule ReferenceType

The HasModellingRule ReferenceType is a concrete ReferenceType and can be used directly.
It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind the ModellingRule to an Object, Variable or
Method. The ModellingRule mechanisms are described in 6.4.4.

The SourceNode of this ReferenceType shall be an Object, Variable or Method. The TargetNode
shall be an Object of the ObjectType “ModellingRule” or one of its subtypes.

Each Node shall be the SourceNode of at most one HasModellingRule Reference.

7.13 HasTypeDefinition ReferenceType

The HasTypeDefinition ReferenceType is a concrete ReferenceType and can be used directly.
It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind an Object or Variable to its ObjectType or
VariableType, respectively. The relationships between types and instances are described in
4.5.

Release 1.04 58 OPC Unified Architecture, Part 3

The SourceNode of this ReferenceType shall be an Object or Variable. If the SourceNode is an
Object, then the TargetNode shall be an ObjectType; if the SourceNode is a Variable, then the
TargetNode shall be a VariableType.

Each Variable and each Object shall be the SourceNode of exactly one HasTypeDefinition
Reference.

7.14 HasEncoding ReferenceType

The HasEncoding ReferenceType is a concrete ReferenceType and can be used directly. It is
a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to reference DataTypeEncodings of a subtype of the
Structure DataType.

The SourceNode of References of this type shall be a subtype of the Structure DataType.

The TargetNode of this ReferenceType shall be an Object of the ObjectType
DataTypeEncodingType or one of its subtypes (see 5.8.4).

7.15 GeneratesEvent

The GeneratesEvent ReferenceType is a concrete ReferenceType and can be used directly. It
is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to identify the types of Events instances of ObjectTypes
or VariableTypes may generate and Methods may generate on each Method call.

The SourceNode of References of this type shall be an ObjectType, a VariableType or a
Method.

The TargetNode of this ReferenceType shall be an ObjectType representing EventTypes, that
is, the BaseEventType or one of its subtypes.

7.16 AlwaysGeneratesEvent

The AlwaysGeneratesEvent ReferenceType is a concrete ReferenceType and can be used
directly. It is a subtype of GeneratesEvent.

The semantic of this ReferenceType is to identify the types of Events Methods have to generate
on each Method call.

The SourceNode of References of this type shall be a Method.

The TargetNode of this ReferenceType shall be an ObjectType representing EventTypes, that
is, the BaseEventType or one of its subtypes.

7.17 HasEventSource

The HasEventSource ReferenceType is a concrete ReferenceType and can be used directly. It
is a subtype of HierarchicalReferences.

The semantic of this ReferenceType is to relate event sources in a hierarchical, non-looping
organization. This ReferenceType and any subtypes are intended to be used for discovery of
Event generation in a Server. They are not required to be present for a Server to generate an
Event from its source (causing the Event) to its notifying Nodes. In particular, the root notifier
of a Server, the Server Object defined in Part 5, is always capable of supplying all Events from
a Server and as such has implied HasEventSource References to every event source in a
Server.

The SourceNode of this ReferenceType shall be an Object that is a source of event
subscriptions. A source of event subscriptions is an Object that has its “SubscribeToEvents” bit
set within the EventNotifier Attribute.

The TargetNode of this ReferenceType can be a Node of any NodeClass that can generate
event notifications via a subscription to the reference source.

OPC Unified Architecture, Part 3 59 Release 1.04

Starting from Node “A” and only following References of the HasEventSource ReferenceType
or of its subtypes it shall never be possible to return to “A”. But it is permitted that, following the
References, there may be more than one path leading to another Node “B”.

7.18 HasNotifier

The HasNotifier ReferenceType is a concrete ReferenceType and can be used directly. It is a
subtype of HasEventSource.

The semantic of this ReferenceType is to relate Object Nodes that are notifiers with other
notifier Object Nodes. The ReferenceType is used to establish a hierarchical organization of
event notifying Objects. It is a subtype of the HasEventSource ReferenceType defined in 7.16.

The SourceNode of this ReferenceType shall be Objects or Views that are a source of event
subscriptions. The TargetNode of this ReferenceType shall be Objects that are a source of
event subscriptions. A source of event subscriptions is an Object that has its
“SubscribeToEvents” bit set within the EventNotifier Attribute.

If the TargetNode of a Reference of this type generates an Event, then this Event shall also be
provided in the SourceNode of the Reference.

An example of a possible organization of Event References is represented in Figure 27. In this
example an unfiltered Event subscription directed to the “Pump” Object will provide the Event
sources “Start” and “Stop” to the subscriber. An unfiltered Event subscription directed to the
“Area 1” Object will provide Event sources from “Machine B”, “Tank A” and all notif ier sources
below “Tank A”.

Area 1

Pump

Machine

B
Tank A

Temp

Sensor

CalibrationStopStart

HasNotifier

ReferenceType

Legend

Event Source Node

Event Notifier Object

HasEventSource

ReferenceType

Phase

Start

Figure 27 – Event Reference Example

A second example of a more complex organization of Event References is represented in Figure
28. In this example, explicit References are included from the Server’s Server Object, which is
a source of all Server Events. A second Event organization has been introduced to collect the
Events related to “Tank Farm 1”. An unfiltered Event subscription directed to the “Tank Farm 1”
Object will provide Event sources from “Tank B”, “Tank A” and all notifier sources below “Tank
B” and “Tank A”.

Release 1.04 60 OPC Unified Architecture, Part 3

Area 1

Pump

Machine

B
Tank A

Temp

Sensor

CalibrationStopStart

HasNotifier

ReferenceType

Legend

Event Source Node

Event Notifier Object

HasEventSource

ReferenceType

Phase

Start

Server

Object

Tank

Farm 1

Tank B Phase

Start

Pump
Temp

Sensor

CalibrationStart

Figure 28 – Complex Event Reference Example

8 Standard DataTypes

8.1 General

The remainder of 8 defines DataTypes. Their representation in the AddressSpace and the
DataType hierarchy is specified in Part 5. Other parts of this series of standards may specify
additional DataTypes.

8.2 NodeId

8.2.1 General

This Built-in DataType is composed of three elements that identify a Node within a Server. They
are defined in Table 22.

Table 22 – NodeId Definition

Name Type Description

NodeId structure

 namespaceIndex UInt16 The index for a namespace URI (see 8.2.2).

 identifierType Enum The format and data type of the identifier (see 8.2.3).

 identifier * The identifier for a Node in the AddressSpace of an OPC UA Server (see 8.2.4).

See Part 6 for a description of the encoding of the identifier into OPC UA Messages.

8.2.2 NamespaceIndex

The namespace is a URI that identifies the naming authority responsible for assigning the
identifier element of the NodeId. Naming authorities include the local Server, the underlying
system, standards bodies and consortia. It is expected that most Nodes will use the URI of the
Server or of the underlying system.

Using a namespace URI allows multiple OPC UA Servers attached to the same underlying
system to use the same identifier to identify the same Object. This enables Clients that connect
to those Servers to recognise Objects that they have in common.

Namespace URIs, like Server names, are identified by numeric values in OPC UA Services to
permit more efficient transfer and processing (e.g. table lookups). The numeric values used to

OPC Unified Architecture, Part 3 61 Release 1.04

identify namespaces correspond to the index into the NamespaceArray. The NamespaceArray
is a Variable that is part of the Server Object in the AddressSpace (see Part 5 for its definition).

The URI for the OPC UA namespace is:

“http://opcfoundation.org/UA/”

Its corresponding index in the namespace table is 0.

The namespace URI is case sensitive.

8.2.3 IdentifierType

The IdentifierType element identifies the type of the NodeId, its format and its scope. Its values
are defined in Table 23.

Table 23 – IdentifierType Values

Value Description

NUMERIC_0 Numeric value

STRING_1 String value

GUID_2 Globally Unique Identifier

OPAQUE_3 Namespace specific format

Normally the scope of NodeIds is the Server in which they are defined. For certain types of
NodeIds, NodeIds can uniquely identify a Node within a system, or across systems (e.g.
GUIDs). System-wide and globally-unique identifiers allow Clients to track Nodes, such as work
orders, as they move between OPC UA Servers as they progress through the system.

Opaque identifiers are identifiers that are free-format byte strings that might or might not be
human interpretable.

String identifiers are case sensitive. That is, Clients shall consider them case sensitive. Servers
are allowed to provide alternative NodeIds (see 5.2.2) and using this mechanism severs can
handle NodeIds as case insensitive.

8.2.4 Identifier value

The identifier value element is used within the context of the first three elements to identify the
Node. Its data type and format is defined by the IdType.

Identifier values of IdType STRING_1 are restricted to 4 096 characters. Identifier values of
IdType OPAQUE_3 are restricted to 4 096 bytes.

A null NodeId has special meaning. For example, many services defined in Part 4 define special
behaviour if a null NodeId is passed as a parameter. Each IdType has a set of identifier values
that represent a null NodeId. These values are summarised in Table 24.

Table 24 – NodeId Null Values

IdType Identifier

NUMERIC_0 0

STRING_1 A null or Empty String (“”)

GUID_2 A Guid initialised with zeros (e.g. 00000000-0000-0000-0000-000000)

OPAQUE_3 A ByteString with Length=0

A null NodeId always has a NamespaceIndex equal to 0.

A Node in the AddressSpace shall not have a null as its NodeId.

8.3 QualifiedName

This Built-in DataType contains a qualified name. It is, for example, used as BrowseName. Its
elements are defined in Table 25. The name part of the QualifiedName is restricted to 512
characters.

Release 1.04 62 OPC Unified Architecture, Part 3

Table 25 – QualifiedName Definition

Name Type Description

QualifiedName structure

 namespaceIndex UInt16 Index that identifies the namespace that defines the name.

This index is the index of that namespace in the local Server’s
NamespaceArray.

The Client may read the NamespaceArray Variable to access the
string value of the namespace.

 name String The text portion of the QualifiedName.

8.4 LocaleId

This Simple DataType is specified as a string that is composed of a language component
and a country/region component as specified by https://www.iso.org/standard/57469.html

IETF RFC 5646. The <country/region> component is always preceded by a hyphen. The format
of the LocaleId string is shown below:

 <language>[-<country/region>], where
 <language> is the two letter ISO 639 code for a language,
 <country/region> is the two letter ISO 3166 code for the country/region.

The rules for constructing LocaleIds defined by https://www.iso.org/standard/57469.html

IETF RFC 5646 are restricted as follows:

a) this specification permits only zero or one <country/region> component to follow the
<language> component;

b) this specification also permits the “-CHS” and “-CHT” three-letter <country/region> codes
for “Simplified” and “Traditional” Chinese locales;

c) this specification also allows the use of other <country/region> codes as deemed necessary
by the Client or the Server.

Table 26 shows examples of OPC UA LocaleIds. Clients and Servers always provide
LocaleIds that explicitly identify the language and the country/region.

Table 26 – LocaleId Examples

Locale OPC UA LocaleId

English en

English (US) en-US

German de

German (Germany) de-DE

German (Austrian) de-AT

An empty or null string indicates that the LocaleId is unknown.

8.5 LocalizedText

This Built-in DataType defines a structure containing a String in a locale-specific translation
specified in the identifier for the locale. Its elements are defined in Table 27.

Table 27 – LocalizedText Definition

Name Type Description

LocalizedText structure

 locale LocaleId The identifier for the locale (e.g. “en-US”).

 text String The localized text.

8.6 Argument

This Structured DataType defines a Method input or output argument specification. It is for
example used in the input and output argument Properties for Methods. Its elements are
described in Table 28.

OPC Unified Architecture, Part 3 63 Release 1.04

Table 28 – Argument Definition

Name Type Description

Argument structure

 name String The name of the argument.

 dataType NodeId The NodeId of the DataType of this argument.

 valueRank Int32 Indicates whether the dataType is an array and how many dimensions the array
has.

It may have the following values:

n > 1: the dataType is an array with the specified number of dimensions.

OneDimension (1): The dataType is an array with one dimension.

OneOrMoreDimensions (0): The dataType is an array with one or more
dimensions.

Scalar (−1): The dataType is not an array.

Any (−2): The dataType can be a scalar or an array with any number of
dimensions.

ScalarOrOneDimension (−3): The dataType can be a scalar or a one dimensional
array.

NOTE All DataTypes are considered to be scalar, even if they have array-like
semantics like ByteString and String.

 arrayDimensions UInt32[] This field specifies the maximum supported length of each dimension. If the

maximum is unknown the value shall be 0.

The number of elements shall be equal to the value of the valueRank field. This
field shall be null if valueRank ≤ 0.

The maximum number of elements of an array transferred on the wire is
2147483647 (max Int32).

 description LocalizedText A localised description of the argument.

8.7 BaseDataType

This abstract DataType defines a value that can have any valid DataType.

It defines a special value null indicating that a value is not present.

8.8 Boolean

This Built-in DataType defines a value that is either TRUE or FALSE.

8.9 Byte

This Built-in DataType defines a value in the range of 0 to 255.

8.10 ByteString

This Built-in DataType defines a value that is a sequence of Byte values.

8.11 DateTime

This Built-in DataType defines a Gregorian calendar date. Details about this DataType are
defined in Part 6.

8.12 Double

This Built-in DataType defines a value that adheres to the ISO/IEC/IEEE 60559:2011 double
precision data type definition.

8.13 Duration

This Simple DataType is a Double that defines an interval of time in milliseconds (fractions can
be used to define sub-millisecond values). Negative values are generally invalid but may have
special meanings where the Duration is used.

8.14 Enumeration

This abstract DataType is the base DataType for all enumeration DataTypes like NodeClass
defined in 8.30. All DataTypes inheriting from this DataType have special handling for the
encoding as defined in Part 6. All enumeration DataTypes shall inherit from this DataType.

Some special rules apply when subtyping enumerations. Any enumeration DataType not directly
inheriting from the Enumeration DataType can only restrict the enumeration values of its

Release 1.04 64 OPC Unified Architecture, Part 3

supertype. That is, it shall neither add enumeration values nor change the text associated to
the enumeration value. As an example, the enumeration Days having {‘Mo’, ‘Tu’, ‘We’, ‘Th’, ‘Fr’,
‘Sa’, ‘Su’} as values can be subtyped to the enumeration Workdays having {‘Mo’, ‘Tu’, ‘We’,
‘Th’, ‘Fr’}. The other direction, subtyping Workdays to Days would not be allowed as Days has
values not allowed by Workdays (‘Sa’ and ‘Su’).

8.15 Float

This Built-in DataType defines a value that adheres to the ISO/IEC/IEEE 60559:2011 single
precision data type definition.

8.16 Guid

This Built-in DataType defines a value that is a 128-bit Globally Unique Identifier. Details about
this DataType are defined in Part 6.

8.17 SByte

This Built-in DataType defines a value that is a signed integer between −128 and 127 inclusive.

8.18 IdType

This DataType is an enumeration that identifies the IdType of a NodeId. Its values are defined
in Table 23. See 8.2.3 for a description of the use of this DataType in NodeIds.

8.19 Image

This abstract DataType defines a ByteString representing an image.

8.20 ImageBMP

This Simple DataType defines a ByteString representing an image in BMP format.

8.21 ImageGIF

This Simple DataType defines a ByteString representing an image in GIF format.

8.22 ImageJPG

This Simple DataType defines a ByteString representing an image in JPG format.

8.23 ImagePNG

This Simple DataType defines a ByteString representing an image in PNG format.

8.24 Integer

This abstract DataType defines an integer whose length is defined by its subtypes.

8.25 Int16

This Built-in DataType defines a value that is a signed integer between −32 768 and 32 767
inclusive.

8.26 Int32

This Built-in DataType defines a value that is a signed integer between −2 147 483 648 and
2 147 483 647 inclusive.

8.27 Int64

This Built-in DataType defines a value that is a signed integer between
−9 223 372 036 854 775 808 and 9 223 372 036 854 775 807 inclusive.

8.28 TimeZoneDataType

This Structured DataType defines the local time that may or may not take daylight saving time
into account. Its elements are described in Table 29.

OPC Unified Architecture, Part 3 65 Release 1.04

Table 29 – TimeZoneDataType Definition

Name Type Description

TimeZoneDataType structure

 offset Int16 The offset in minutes from UtcTime

 daylightSavingInOffset Boolean If TRUE, then daylight saving time (DST) is in effect and offset

includes the DST correction. If FALSE then the offset does not
include the DST correction and DST may or may not have
been in effect.

8.29 NamingRuleType

This DataType is an enumeration that identifies the NamingRule (see 6.4.4.2.1). Its values are
defined in Table 30.

Table 30 – NamingRuleType Values

Name

MANDATORY_1

OPTIONAL_2

CONSTRAINT_3

8.30 NodeClass

This DataType is an enumeration that identifies a NodeClass. Its values are defined in Table 31.

Table 31 – NodeClass Values

Name

OBJECT_1

VARIABLE_2

METHOD_4

OBJECT_TYPE_8

VARIABLE_TYPE_16

REFERENCE_TYPE_32

DATA_TYPE_64

VIEW_128

8.31 Number

This abstract DataType defines a number. Details are defined by its subtypes.

8.32 String

This Built-in DataType defines a Unicode character string that should exclude control characters
that are not whitespaces.

8.33 Structure

This abstract DataType is the base DataType for all Structured DataTypes like Argument
defined in 8.6. All DataTypes inheriting from this DataType have special handling for the
encoding as defined in Part 6.

8.34 UInteger

This abstract DataType defines an unsigned integer whose length is defined by its subtypes.

8.35 UInt16

This Built-in DataType defines a value that is an unsigned integer between 0 and 65 535
inclusive.

8.36 UInt32

This Built-in DataType defines a value that is an unsigned integer between 0 and 4 294 967 295
inclusive.

Release 1.04 66 OPC Unified Architecture, Part 3

8.37 UInt64

This Built-in DataType defines a value that is an unsigned integer between 0 and
18 446 744 073 709 551 615 inclusive.

8.38 UtcTime

This simple DataType is a DateTime used to define Coordinated Universal Time (UTC) values.
All time values conveyed between OPC UA Servers and Clients are UTC values. Clients shall
provide any conversions between UTC and local time.

UTC has the concept of leap seconds. Leap seconds can lead to repeating seconds. Therefore
applications are allowed to use TAI (International Atomic Time) instead of UTC in any place
where UtcTime is used. Details on time synchronization are discussed in Part 6.

It should be noted that the Source and Server Timestamps may originate from different clocks
that have no synchronization. It is also possible that one may use UTC while the othe r uses
TAI.

8.39 XmlElement

This Built-in DataType is used to define XML elements. Part 6 defines details about this
DataType.

XML data can always be modelled as a subtype of the Structure DataType with a single
DataTypeEncoding that represents the XML complexType that defines the XML element (it is
not necessary to have access to the XML Schema to define a DataTypeEncoding). For this
reason a Server should never define Variables that use the XmlElement DataType unless the
Server has no information about the XML elements that might be in the Variable Value.

8.40 EnumValueType

This Structured DataType is used to represent a human-readable representation of an
Enumeration. Its elements are described in Table 32. When this type is used in an array
representing human-readable representations of an enumeration, each Value shall be unique
in that array.

Table 32 – EnumValueType Definition

Name Type Description

EnumValueType structure

 value Int64 The Integer representation of an Enumeration.

 displayName LocalizedText A human-readable representation of the Value of the Enumeration.

 description LocalizedText A localized description of the enumeration value. This field can contain an
empty string if no description is available.

Note that the EnumValueType has been defined with an Int64 Value to meet a variety of usages.
When it is used to define the string representation of an Enumeration DataType, the value range
is limited to Int32, because the Enumeration DataType is a subtype of Int32. Part 8 specifies
other usages where the actual value might be between 8 and 64 Bit.

OPC Unified Architecture, Part 3 67 Release 1.04

8.41 OptionSet

This abstract DataType is the base DataType for all DataTypes representing a bit mask. All
OptionSet DataTypes representing bit masks shall inherit from this DataType. Its elements are
described in Table 33.

Table 33 – OptionSet Definition

Name Type Description

OptionSet structure

 value ByteString Array of bytes representing the bits in the option set. The length of the

ByteString depends on the number of bits. The number of bytes may be larger
than needed for the valid bits in the case of a spare allocation.

 validBits ByteString Array of bytes with same size as value representing the valid bits in the value
parameter.

When the Server returns the value to the Client, the validBits provides
information of which bits in the bit mask have a meaning. If a bit is 1 then the
corresponding bit in the value is used by the Server. If it is set to a 0 it should
be ignored as it has no meaning. When the Client passes the value to the
Server, the validBits defines which bits should be written. Only those bits
defined in validBits are changed in the bit mask, all others are not written.

The DataType Nodes representing concrete subtypes of the OptionSet shall have an

OptionSetValues Property defined in Table 16.

8.42 Union

This abstract DataType is the base DataType for all union DataTypes. The DataType is a
subtype of Structure DataType. All DataTypes inheriting from this DataType have special
handling for the encoding as defined in Part 6. All union DataTypes shall inherit directly from
this DataType.

8.43 DateString

This Simple DataType defines a value which is a day in the Gregorian calendar in string. Lexical
representation of the string shall conform to calendar date defined in ISO 8601-2000.

NOTE: According to ISO 8601-2000, ‘calendar date representations are in the form [YYYY-MM-DD]. [YYYY] indicates
a four-digit year, 0000 through 9999. [MM] indicates a two-digit month of the year, 01 through 12. [DD] indicates a
two-digit day of that month, 01 through 31. For example, "the 5th of April 1981" may be represented as either "1981 -
04-05" in the extended format or "19810405" in the basic format.’

NOTE: ISO 8601-2000 also allows for calendar dates to be written with reduced precision. For example, one may
write "1981-04" to mean "1981 April", and one may simply write "1981" to refer to t hat year or "19" to refer to the
century from 1900 to 1999 inclusive.

NOTE: Although ISO 8601-2000 allows both the YYYY-MM-DD and YYYYMMDD formats for complete calendar date
representations, if the day [DD] is omitted then only the YYYY-MM format is allowed. By disallowing dates of the
form YYYYMM, ISO 8601-2000 avoids confusion with the truncated representation YYMMDD (still often used).

8.44 DecimalString

This Simple DataType defines a value that represents a decimal number as a string. Lexical
representation of the string shall conform to decimal type defined in W3C XML Schema
Definition Language (XSD) 1.1 Part 2: DataTypes.

The DecimalString is a numeric string with an optional sign and decimal point.

8.45 DurationString

This Simple DataType defines a value that represents a duration of time as a string. It shall
conform to duration as defined in ISO 8601-2000.

NOTE: According to ISO 8601-2000 ‘Durations are represented by the format P[n]Y[n]M[n]DT[n]H[n]M[n]S or P[n]W
as shown to the right. In these representations, the [n] is replaced by the value for each of the date and time elements
that follow the [n]. Leading zeros are not required, but the maximum number of digits for each element should be
agreed to by the communicating parties. The capital letters P, Y, M, W, D, T, H, M, and S are designators for each
of the date and time elements and are not replaced.

• P is the duration designator (historically called "period") placed at the start of the duration representation.

Release 1.04 68 OPC Unified Architecture, Part 3

• Y is the year designator that follows the value for the number of years.

• M is the month designator that follows the value for the number of months.

• W is the week designator that follows the value for the number of weeks.

• D is the day designator that follows the value for the number of days.

• T is the time designator that precedes the time components of the representation.

• H is the hour designator that follows the value for the number of hours.

• M is the minute designator that follows the value for the number of minutes.

• S is the second designator that follows the value for the number of seconds.

For example, "P3Y6M4DT12H30M5S" represents a duration of "three years, six months, four days, twelve hours,
thirty minutes, and five seconds". Date and time elements including their designator may be omi tted if their value is
zero, and lower order elements may also be omitted for reduced precision. For example, "P23DT23H" and "P4Y" are
both acceptable duration representations.’

8.46 NormalizedString

This Simple DataType defines a string value that shall be normalized according to Unicode
Annex 15, Version 7.0.0, Normalization Form C.

NOTE: Some Unicode characters have multiple equivalent binary representations consisting of sets of combining
and/or composite Unicode characters. Unicode defines a process called normalization that returns one binary
representation when given any of the equivalent binary representations of a character. The Win32 and the .NET
Framework currently support normalization forms C, D, KC, and KD, as defined in Annex 15 of Unicode.
NormalizedString uses Normalization Form C for all content, because this form avoids potential interoperability
problems caused by the use of canonically equivalent, yet different, character sequences in document formats .

8.47 TimeString

This Simple DataType defines a value that represents a time as a string. It shall conform to time
of day as defined in ISO 8601-2000.

NOTE: ISO 8601-2000 uses the 24-hour clock system. The basic format is [hh][mm][ss] and the extended format is
[hh]:[mm]:[ss].

• [hh] refers to a zero-padded hour between 00 and 24 (where 24 is only used to notate midnight at the end
of a calendar day).

• [mm] refers to a zero-padded minute between 00 and 59.

• [ss] refers to a zero-padded second between 00 and 60 (where 60 is only used to notate an added leap
second).

So a time might appear as either "134730" in the basic format or "13:47:30" in the extended format.

It is also acceptable to omit lower order time elements for reduced accuracy: [hh]:[mm], [hh][mm] and [hh] are all
used.

Midnight is a special case and can be referred to as both "00:00" and "24:00". The notation "00:00" is used at the
beginning of a calendar day and is the more frequently used. At the end of a day use "24:00"

8.48 DataTypeDefinition

This abstract DataType is the base type for all DataTypes used to provide the meta data for
custom DataTypes like Structures and Enumerations.

8.49 StructureDefinition

This Structured DataType is used to provide the meta data for a custom Structure DataType. It
is derived from the DataType DataTypeDefinition. The StructureDefinition is formally defined in
Table 34.

OPC Unified Architecture, Part 3 69 Release 1.04

Table 34 – StructureDefinition Structure

Name Type Description

StructureDefinition Structure

 defaultEncodingId NodeId The NodeId of the default DataTypeEncoding for the DataType. The default

depends on the message encoding, Default Binary for UA Binary encoding,
Default JSON for JSON encoding and Default XML for XML encoding.

If the DataType is only used inside nested Structures and is not directly
contained in an ExtensionObject, the encoding NodeId is null.

 baseDataType NodeId The NodeId of the direct supertype of the DataType. This might be the

abstract Structure or the Union DataType.

 structureType Enum
StructureType

An enumeration that specifies the type of Structure defined by the DataType.
It has the following values
Structure_0 A Structure without optional fields.
StructureWithOptionalFields_1 A Structure with optional fields.
Union_2 A Union DataType
Only one of the fields defined for the data type is encoded into a value if the
data type is a Union.

 fields StructureField [] The list of fields that make up the data type.
This definition assumes the structure has a sequential layout.
The StructureField DataType is defined in 8.51.
For Structures derived from another Structure DataType this list shall begin
with the fields of the baseDataType followed by the fields of this
StructureDefinition.

8.50 EnumDefinition

This Structured DataType is used to provide the metadata for a custom Enumeration or
OptionSet DataType. It is derived from the DataType DataTypeDefinition. The EnumDefinition
is formally defined in Table 35.

Table 35 – EnumDefinition Structure

Name Type Description

EnumDefinition Structure

 fields EnumField [] The list of fields that make up the data type.
The EnumField DataType is defined in 8.52.

8.51 StructureField

This Structured DataType is used to provide the metadata for a field of a custom Structure
DataType. The StructureField is formally defined in Table 36.

Table 36 – StructureField Structure

Name Type Description

StructureField Structure

 name String A name for the field that is unique within the StructureDefinition.

 description LocalizedText A localized description of the field

 dataType NodeId The NodeId of the DataType for the field.

 valueRank Int32 The value rank for the field.

It shall be Scalar (-1) or a fixed rank Array (>=1).

 arrayDimensions UInt32[] This field specifies the maximum supported length of each dimension. If the

maximum is unknown the value shall be 0.

The number of elements shall be equal to the value of the valueRank field.
This field shall be null if valueRank ≤ 0.

The maximum number of elements of an array transferred on the wire is
2147483647 (max Int32).

 maxStringLength UInt32 If the dataType field is a String or ByteString then this field specifies the
maximum supported length. If the maximum is unknown the value shall be
0.

If the dataType field is not a String or ByteString the value shall be 0.

If the valueRank is greater than 0 this field applies to each element of the
array.

 isOptional Boolean The field indicates if a data type field in a Structure is optional. If the
structureType is Union_2 this field shall be ignored. If the structureType is
Structure_0 this field shall be false.

StructureFields can be exposed as DataVariables that are children of the Variable that contains
the Structure Value. In this case the BrowseName of the DataVariable shall be the same as the

Release 1.04 70 OPC Unified Architecture, Part 3

StructureField name and the NamespaceIndex of the BrowseName shall be the same as the
Structure DataType Node NamespaceIndex.

8.52 EnumField

This Structured DataType is used to provide the metadata for a field of a custom Enumeration
or OptionSet DataType. It is derived from the DataType EnumValueType. If used for an
OptionSet, the corresponding Value in the base type contains the number of the bit associated
with the field. The EnumField is formally defined in Table 37.

Table 37 – EnumField Structure

Name Type Description

EnumField Structure

 name String A name for the field that is unique within the EnumDefinition.

8.53 AudioDataType

This abstract DataType defines a ByteString representing audio data. The audio stored in the
ByteString could be formats like WAV or MP3 or any number of other audio formats. These
formats are self-describing as part of the ByteString and are not specified in this specification.

8.54 Decimal

This Simple DataType defines a high-precision signed number. It consists of an arbitrary
precision integer unscaled value and an integer scale. The scale is the inverse power of ten
that is applied to the unscaled value.

8.55 PermissionType

This is a subtype of the UInt32 DataType with the OptionSetValues Property defined. It is used
to define the permissions of a Node. The PermissionType is formally defined in Table 38.

Table 38 – PermissionType Definition

Name Bit Description

Browse 0 The Client is allowed to see the references to and from the Node.

This implies that the Client is able to Read to Attributes other than the Value
or the RolePermissions Attribute.

This Permission is valid for all NodeClasses.

ReadRolePermissions 1 The Client is allowed to read the RolePermissions Attribute.

This Permission is valid for all NodeClasses.

WriteAttribute 2 The Client is allowed to write to Attributes other than the Value, Historizing or
RolePermissions Attribute if the WriteMask indicates that the Attribute is
writeable.

This bit affects the value of a UserWriteMask Attribute.

This Permission is valid for all NodeClasses.

WriteRolePermissions 3 The Client is allowed to write to the RolePermissions Attribute if the
WriteMask indicates that the Attribute is writeable.

This bit affects the value of the UserWriteMask Attribute.

This Permission is valid for all NodeClasses.

WriteHistorizing 4 The Client is allowed to write to the Historizing Attributes if the WriteMask
indicates that the Attribute is writeable.

This bit affects the value of the UserWriteMask Attribute.

This Permission is only valid for Variables.

Read 5 The Client is allowed to read the Value Attribute.

This bit affects the CurrentRead bit of the UserAccessLevel Attribute.

This Permission is only valid for Variables.

Write 6 The Client is allowed to write the Value Attribute.

This bit affects the CurrentWrite bit of the UserAccessLevel Attribute.

This Permission is only valid for Variables.

OPC Unified Architecture, Part 3 71 Release 1.04

ReadHistory 7 The Client is allowed to read the history associated with a Node.

This bit affects the HistoryRead bit of the UserAccessLevel Attribute.

This Permission is only valid for Variables, Objects or Views.

InsertHistory 8 The Client is allowed to insert the history associated with a Node.

This bit affects the HistoryWrite bit of the UserAccessLevel Attribute.

This Permission is only valid for Variables, Objects or Views.

ModifyHistory 9 The Client is allowed to modify the history associated with a Node.

This bit affects the HistoryWrite bit of the UserAccessLevel Attribute.

This Permission is only valid for Variables, Objects or Views.

DeleteHistory 10 The Client is allowed to delete the history associated with a Node.

This bit affects the HistoryWrite bit of the UserAccessLevel Attribute.

This Permission is only valid for Variables, Objects or Views.

ReceiveEvents 11 A Client only receives an Event if this bit is set on the Node identified by the
EventTypeId field and on the Node identified by the SourceNode field.

This Permission is only valid for EventType Nodes or SourceNodes.

Call 12 The Client is allowed to call the Method if this bit is set on the Object or
ObjectType Node passed in the Call request and the Method Instance
associated with that Object or ObjectType.

This bit affects the UserExecutable Attribute when set on Method Node.

This Permission is only valid for Objects, ObjectType or Methods .

AddReference 13 The Client is allowed to add references to the Node.

This Permission is valid for all NodeClasses.

RemoveReference 14 The Client is allowed to remove references from the Node.

This Permission is valid for all NodeClasses.

DeleteNode 15 The Client is allowed to delete the Node.

This Permission is valid for all NodeClasses.

AddNode 16 The Client is allowed to add Nodes to the Namespace.

This Permission is only used in the DefaultRolePermissions and
DefaultUserRolePermissions Properties of a NamespaceMetadata Object

Reserved 17-31 These bits are reserved for use by OPC UA.

8.56 AccessRestrictionsType

This is a subtype of the UInt16 DataType with the OptionSetValues Property defined. It is used
to define the access restrictions of a Node. The AccessRestrictionsType is formally defined in
Table 39.

Table 39 – AccessRestrictionsType Definition

Name Bit Description

SigningRequired 0 The Client can only access the Node when using a SecureChannel which
digitally signs all messages.

EncryptionRequired 1 The Client can only access the Node when using a SecureChannel which
encrypts all messages.

SessionRequired 2 The Client cannot access the Node when using SessionlessInvoke Service
invocation.

8.57 AccessLevelType

This is a subtype of the Byte DataType with the OptionSetValues Property defined. It is used to
indicate how the Value of a Variable can be accessed (read/write) and if it contains current
and/or historic data. The AccessLevelType is formally defined in Table 40.

Release 1.04 72 OPC Unified Architecture, Part 3

Table 40 – AccessLevelType Definition

Name Bit Description

CurrentRead 0 Indicates if the current value is readable. It also indicates if the current value
of the Variable is available.
(0 means not readable, 1 means readable).

CurrentWrite 1 Indicates if the current value is writable. It also indicates if the current value
of the Variable is available
(0 means not writable, 1 means writable).

HistoryRead 2 Indicates if the history of the value is readable. It also indicates if the history
of the Variable is available via the OPC UA Server.
(0 means not readable, 1 means readable).

HistoryWrite 3 Indicates if the history of the value is writable It also indicates if the history of
the Variable is available via the OPC UA Server.

(0 means not writable, 1 means writable).

SemanticChange 4 This flag is set for Properties that define semantic aspects of the parent Node
of the Property and where the Property Value, and thus the semantic, may
change during operation.

(0 means is not a semantic, 1 means is a semantic).

StatusWrite 5 Indicates if the current StatusCode of the value is writable

(0 means only StatusCode Good is writable, 1 means any StatusCode is

writable).

TimestampWrite 6 Indicates if the current SourceTimestamp is writable

(0 means only null timestamps are writable, 1 means any timestamp value is
writeable).

Reserved 7 Reserved for future use. Shall always be zero.

8.58 AccessLevelExType

This is a subtype of the UInt32 DataType with the OptionSetValues Property defined. It is used
to indicate how the Value of a Variable can be accessed (read/write), if it contains current and/or
historic data and its atomicity.

The AccessLevelExType DataType is an extended version of the AccessLevelType DataType
and as such contains the 8 bits of the AccessLevelType as the first 8 bits.

The NonatomicRead, and NonatomicWrite Fields represent the atomicity of a Variable. In
general Atomicity is expected of OPC UA read and write operations. These Fields are used by
systems, in particular hard-realtime controllers, which can not ensure atomicity.

The AccessLevelExType is formally defined in Table 41.

Table 41 – AccessLevelExType Definition

Name Bit Description

 0:7 Formally defined by the AccessLevelType in Table 40.

NonatomicRead 8 Indicates non-atomicity for Read access
(0 means that atomicity is assured).

NonatomicWrite 9 Indicates non-atomicity for Write access

(0 means that atomicity is assured).

WriteFullArrayOnly 10 Indicates if Write of IndexRange is supported.

(0 means Write of IndexRange is supported)

 11:31 Reserved for future use. Shall always be zero.

8.59 EventNotifierType

This is a subtype of the Byte DataType with the OptionSetValues Property defined. It is used to
indicate if a Node can be used to subscribe to Events or read / write historic Events.

The EventNotifierType is formally defined in Table 42.

OPC Unified Architecture, Part 3 73 Release 1.04

Table 42 – EventNotifierType Definition

Name Bit Description

SubscribeTo Events 0 Indicates if it can be used to subscribe to Events
(0 means cannot be used to subscribe to Events, 1 means can be used to
subscribe to Events).

 1 Reserved for future use. Shall always be zero.

HistoryRead 2 Indicates if the history of the Events is readable.
(0 means not readable, 1 means readable).

HistoryWrite 3 Indicates if the history of the Events is writable.
(0 means not writable, 1 means writable).

 4:7 Reserved for future use. Shall always be zero.

8.60 AttributeWriteMask

This is a subtype of the UInt32 DataType with the OptionSetValues Property defined. It is used
to define the Attribute access restrictions of a Node. The AttributeWriteMask is formally defined
in Table 43.

If a bit is set to 0, it means the Attribute is not writable. If a bit is set to 1, it means it is writable.
If a Node does not support a specific Attribute, the corresponding bit has to be set to 0.

Table 43 – Bit mask for WriteMask and UserWriteMask

Field Bit Description

AccessLevel 0 Indicates if the AccessLevel Attribute is writable.

ArrayDimensions 1 Indicates if the ArrayDimensions Attribute is writable.

BrowseName 2 Indicates if the BrowseName Attribute is writable.

ContainsNoLoops 3 Indicates if the ContainsNoLoops Attribute is writable.

DataType 4 Indicates if the DataType Attribute is writable.

Description 5 Indicates if the Description Attribute is writable.

DisplayName 6 Indicates if the DisplayName Attribute is writable.

EventNotifier 7 Indicates if the EventNotifier Attribute is writable.

Executable 8 Indicates if the Executable Attribute is writable.

Historizing 9 Indicates if the Historizing Attribute is writable.

InverseName 10 Indicates if the InverseName Attribute is writable.

IsAbstract 11 Indicates if the IsAbstract Attribute is writable.

MinimumSamplingInterval 12 Indicates if the MinimumSamplingInterval Attribute is writable.

NodeClass 13 Indicates if the NodeClass Attribute is writable.

NodeId 14 Indicates if the NodeId Attribute is writable.

Symmetric 15 Indicates if the Symmetric Attribute is writable.

UserAccessLevel 16 Indicates if the UserAccessLevel Attribute is writable.

UserExecutable 17 Indicates if the UserExecutable Attribute is writable.

UserWriteMask 18 Indicates if the UserWriteMask Attribute is writable.

ValueRank 19 Indicates if the ValueRank Attribute is writable.

WriteMask 20 Indicates if the WriteMask Attribute is writable.

ValueForVariableType 21 Indicates if the Value Attribute is writable for a VariableType. It does not apply for
Variables since this is handled by the AccessLevel and UserAccessLevel
Attributes for the Variable. For Variables this bit shall be set to 0.

DataTypeDefinition 22 Indicates if the DataTypeDefinition Attribute is writable.

RolePermissions 23 Indicates if the RolePermissions Attribute is writable.

AccessRestrictions 24 Indicates if the AccessRestrictions Attribute is writable.

AccessLevelEx 25 Indicates if the AccessLevelEx Attribute is writable.

Reserved 26:31 Reserved for future use. Shall always be zero.

9 Standard EventTypes

9.1 General

The remainder of 9 defines EventTypes. Their representation in the AddressSpace is specified
in Part 5. Other parts of this series of standards may specify additional EventTypes. Figure 29
informally describes the hierarchy of these EventTypes.

Release 1.04 74 OPC Unified Architecture, Part 3

AuditEventType

AuditNodeManagement

EventType

AuditUpdate

EventType

AuditAddNodes

EventType

AuditSecurity

EventType

AuditSession

EventType
AuditChannel

EventType

AuditAddReferences

EventType

AuditDeleteNodes

EventTypeAuditOpenSecure

ChannelEventType

AuditDelete

ReferencesEventType

AuditActivateSession

EventType

AuditCreateSession

EventType

BaseEventType

SystemEventType
SemanticChange

EventType

BaseModelChange

EventType

GeneralModel

ChangeEventType

DeviceFailure

EventType

AuditUpdateMethod

EventType

AuditHistory

UpdateEventType

AuditWrite

UpdateEventType

AuditCancel

EventType

AuditCertificateData

MismatchEventType

AuditCertificate

InvalidEventType

AuditCertificate

ExpiredEventType

AuditCertificate

MismatchEventType
AuditCertificate

UntrustedEventType

AuditCertificate

RevokedEventType

AuditCertificate

EventType

AuditUrlMismatch

EventType

SystemStatusChange

EventType

ProgressEventType

Figure 29 – Standard EventType Hierarchy

9.2 BaseEventType

The BaseEventType defines all general characteristics of an Event. All other EventTypes derive
from it. There is no other semantic associated with this type.

9.3 SystemEventType

SystemEvents are Events of SystemEventType that are generated as a result of some Event
that occurs within the Server or by a system that the Server is representing.

9.4 ProgressEventType

ProgressEvents are Events of ProgressEventType that are generated to identify the progress
of an operation. An operation can be a service call or something application specific like a
program execution.

9.5 AuditEventType

AuditEvents are Events of AuditEventType that are generated as a result of an action taken on
the Server by a Client of the Server. For example, in response to a Client issuing a write to a

OPC Unified Architecture, Part 3 75 Release 1.04

Variable, the Server would generate an AuditEvent describing the Variable as the source and
the user and Client session as the initiators of the Event.

Figure 30 illustrates the defined behaviour of an OPC UA Server in response to an auditable
action request. If the action is accepted, then an action AuditEvent is generated and processed
by the Server. If the action is not accepted due to security reasons, a security AuditEvent is
generated and processed by the Server. The Server may involve the underlying device or
system in the process but it is the Server’s responsibility to provide the Event to any interested
Clients. Clients are free to subscribe to Events from the Server and will receive the AuditEvents
in response to normal Publish requests.

All action requests include a human readable AuditEntryId. The AuditEntryId is included in the
AuditEvent to allow human readers to correlate an Event with the initiating action. The
AuditEntryId typically contains who initiated the action and from where it was initiated.

The Server may elect to optionally persist the AuditEvents in addition to the mandatory Event
Subscription delivery to Clients.

Accept

Request

?

Action Request

Generate

 Action

AuditEvent

Yes

Generate

Security

AuditEvent

No

Event

Notifications
Return Result

Return Error

Accept

Request

?

Publish Request

Return Event

Notifications

No

Generate

Security

AuditEvent

Yes

Return ResultReturn Error
Perform Action

Figure 30 – Audit Behaviour of a Server

Figure 31 illustrates the expected behaviour of an aggregating Server in response to an
auditable action request. This use case involves the aggregating Server passing on the action
to one of its aggregated Servers. The general behaviour described above is extended by this
behaviour and not replaced. That is, the request could fail and generate a security AuditEvent
within the aggregating Server. The normal process is to pass the action down to an aggregated
Server for processing. The aggregated Server will, in turn, follow this behaviour or the general
behaviour and generate the appropriate AuditEvents. The aggregating Server periodically
issues publish requests to the aggregated Servers. These collected Events are merged with
self-generated Events and made available to subscribing Clients. If the aggregating Server
supports the optional persisting of AuditEvent, then the collected Events are persisted along
with locally-generated Events.

The aggregating Server may map the authenticated user account making the request to one of
its own accounts when passing on the request to an aggregated Server. It shall, however,
preserve the AuditEntryId by passing it on as received. The aggregating Server may also
generate its own AuditEvent for the request prior to passing it on to the aggregated Server, in
particular, if the aggregating Server needs to break a request into multiple requests that are
each directed to separate aggregated Servers or if part of a request is denied due to security
on the aggregating Server.

Release 1.04 76 OPC Unified Architecture, Part 3

Accept

Request

?

Action Request

Yes
Generate

Security

AuditEvent

No

Event

Notifications

Return Result

Return Error

Accept

Request

?

Publish Request

Return Event

Notifications

No

Generate

Security

AuditEvent

Yes

Return SuccessReturn Error

No

Issue Request to

Aggregated

Server

Request

Timeout

?

Return Error

Yes
Request Publish

Get AuditEvent

Notifications from

Aggregated

servers

Generate Action

AuditEvent if

required

Figure 31 – Audit Behaviour of an Aggregating Server

9.6 AuditSecurityEventType

This is a subtype of AuditEventType and is used only for categorization of security-related
Events. This type follows all behaviour of its parent type.

9.7 AuditChannelEventType

This is a subtype of AuditSecurityEventType and is used for categorization of security-related
Events from the SecureChannel Service Set defined in Part 4.

9.8 AuditOpenSecureChannelEventType

This is a subtype of AuditChannelEventType and is used for Events generated from calling the
OpenSecureChannel Service defined in Part 4.

9.9 AuditSessionEventType

This is a subtype of AuditSecurityEventType and is used for categorization of security-related
Events from the Session Service Set defined in Part 4.

9.10 AuditCreateSessionEventType

This is a subtype of AuditSessionEventType and is used for Events generated from calling the
CreateSession Service defined in Part 4.

9.11 AuditUrlMismatchEventType

This is a subtype of AuditCreateSessionEventType and is used for Events generated from
calling the CreateSession Service defined in Part 4 if the EndpointUrl used in the service call
does not match the Server’s HostNames (see Part 4 for details).

OPC Unified Architecture, Part 3 77 Release 1.04

9.12 AuditActivateSessionEventType

This is a subtype of AuditSessionEventType and is used for Events generated from calling the
ActivateSession Service defined in Part 4.

9.13 AuditCancelEventType

This is a subtype of AuditSessionEventType and is used for Events generated from calling the
Cancel Service defined in Part 4.

9.14 AuditCertificateEventType

This is a subtype of AuditSecurityEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. These AuditEvents will be
generated for Certificate errors in addition to other AuditEvents related to service calls.

9.15 AuditCertificateDataMismatchEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. This AuditEvent is generated
if the HostName in the URL used to connect to the Server is not the same as one of the
HostNames specified in the Certificate or if the Application and Software Certificates contain
an application or product URI that does not match the URI specified in the
ApplicationDescription provided with the Certificate. For more details on Certificates see Part
4.

9.16 AuditCertificateExpiredEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. This AuditEvent is generated
if the current time is outside the validity period’s start date and end date.

9.17 AuditCertificateInvalidEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. This AuditEvent is generated
if the certificate structure is invalid or if the Certificate has an invalid signature.

9.18 AuditCertificateUntrustedEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. This AuditEvent is generated
if the Certificate is not trusted, that is, if the Issuer Certifi cate is unknown.

9.19 AuditCertificateRevokedEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. This AuditEvent is generated
if a Certificate has been revoked or if the revocation list is not available (i.e. a network
interruption prevents the Application from accessing the list).

9.20 AuditCertificateMismatchEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate
related Events. This type follows all behaviours of its parent type. This AuditEvent is generated
if a Certificate set of uses does not match the requested use for the Certificate (i.e. Application,
Software or Certificate Authority).

9.21 AuditNodeManagementEventType

This is a subtype of AuditEventType and is used for categorization of node management related
Events. This type follows all behaviours of its parent type.

9.22 AuditAddNodesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from
calling the AddNodes Service defined in Part 4.

Release 1.04 78 OPC Unified Architecture, Part 3

9.23 AuditDeleteNodesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from
calling the DeleteNodes Service defined in Part 4.

9.24 AuditAddReferencesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from
calling the AddReferences Service defined in Part 4.

9.25 AuditDeleteReferencesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from
calling the DeleteReferences Service defined in Part 4.

9.26 AuditUpdateEventType

This is a subtype of AuditEventType and is used for categorization of update related Events.
This type follows all behaviours of its parent type.

9.27 AuditWriteUpdateEventType

This is a subtype of AuditUpdateEventType and is used for categorization of write update
related Events. This type follows all behaviours of its parent type.

9.28 AuditHistoryUpdateEventType

This is a subtype of AuditUpdateEventType and is used for categorization of history update
related Events. This type follows all behaviours of its parent type.

9.29 AuditUpdateMethodEventType

This is a subtype of AuditEventType and is used for categorization of Method related Events.
This type follows all behaviours of its parent type.

9.30 DeviceFailureEventType

A DeviceFailureEvent is an Event of DeviceFailureEventType that indicates a failure in a device
of the underlying system.

9.31 SystemStatusChangeEventType

A SystemStatusChangeEvent is an Event of SystemStatusChangeEventType that indicates a
status change in a system. For example, if the status indicates an underlying system is not
running, then a Client cannot expect any Events from the underlying system. A Server can
identify its own status changes using this EventType.

9.32 ModelChangeEvents

9.32.1 General

ModelChangeEvents are generated to indicate a change of the AddressSpace structure. The
change may consist of adding or deleting a Node or Reference. Although the relationship of a
Variable or VariableType to its DataType is not modelled using References, changes to the
DataType Attribute of a Variable or VariableType are also considered as model changes and
therefore a ModelChangeEvent is generated if the DataType Attribute changes.

9.32.2 NodeVersion Property

There is a correlation between ModelChangeEvents and the NodeVersion Property of Nodes.
Every time a ModelChangeEvent is issued for a Node, its NodeVersion shall be changed, and
every time the NodeVersion is changed, a ModelChangeEvent shall be generated. A Server
shall support both the ModelChangeEvent and the NodeVersion Property or neither, but never
only one of the two mechanisms.

This relation also implies that only those Nodes of the AddressSpace having a NodeVersion
shall trigger a ModelChangeEvent. Other Nodes shall not trigger a ModelChangeEvent.

OPC Unified Architecture, Part 3 79 Release 1.04

9.32.3 Views

A ModelChangeEvent is always generated in the context of a View, including the default View
where the whole AddressSpace is considered. Therefore the only Notifiers which report the
ModelChangeEvents are View Nodes and the Server Object representing the default View. Each
action generating a ModelChangeEvent may lead to several Events since it may affect different
Views. If, for example, a Node was deleted from the AddressSpace, and this Node was also
contained in a View “A”, there would be one Event having the AddressSpace as context and
another having the View “A” as context. If a Node would only be removed from View “A”, but
still exists in the AddressSpace, it would generate only a ModelChangeEvent for View “A”.

If a Client does not want to receive duplicates of changes then it shall use the filter mechanisms
of the Event subscription to filter only for the default View and suppress the
ModelChangeEvents having other Views as the context.

When a ModelChangeEvent is issued on a View and the View supports the ViewVersion
Property, then the ViewVersion shall be updated.

9.32.4 Event Compression

An implementation is not required to issue an Event for every update as it occurs. An OPC UA
Server may be capable of grouping a series of transactions or simple updates into a larger unit.
This series may constitute a logical grouping or a temporal grouping of changes. A single
ModelChangeEvent may be issued after the last change of the series, to cover all of the
changes. This is referred to as Event compression. A change in the NodeVersion and the
ViewVersion may thus reflect a group of changes and not a single change.

9.32.5 BaseModelChangeEventType

BaseModelChangeEvents are Events of the BaseModelChangeEventType. The
BaseModelChangeEventType is the base type for ModelChangeEvents and does not contain
information about the changes but only indicates that changes occurred. Therefore the Client
shall assume that any or all of the Nodes may have changed.

9.32.6 GeneralModelChangeEventType

GeneralModelChangeEvents are Events of the GeneralModelChangeEventType. The
GeneralModelChangeEventType is a subtype of the BaseModelChangeEventType. It contains
information about the Node that was changed and the action that occurred to cause the
ModelChangeEvent (e.g. add a Node, delete a Node, etc.). If the affected Node is a Variable or
Object, then the TypeDefinitionNode is also present.

To allow Event compression, a GeneralModelChangeEvent contains an array of changes.

9.32.7 Guidelines for ModelChangeEvents

Two types of ModelChangeEvents are defined: the BaseModelChangeEvent that does not
contain any information about the changes and the GeneralModelChangeEvent that identifies
the changed Nodes via an array. The precision used depends on both the capability of the OPC
UA Server and the nature of the update. An OPC UA Server may use either ModelChangeEvent
type depending on circumstances. It may also define subtypes of these EventTypes adding
additional information.

To ensure interoperability, the following guidelines for Events should be observed.

• If the array of the GeneralModelChangeEvent is present, then it should identify every Node
that has changed since the preceding ModelChangeEvent.

• The OPC UA Server should emit exactly one ModelChangeEvent for an update or series of
updates. It should not issue multiple types of ModelChangeEvent for the same update.

• Any Client that responds to ModelChangeEvents should respond to any Event of the
BaseModelChangeEventType including its subtypes like the
GeneralModelChangeEventType.

Release 1.04 80 OPC Unified Architecture, Part 3

If a Client is not capable of interpreting additional information of the subtypes of the
BaseModelChangeEventType, it should treat Events of these types the same way as Events of
the BaseModelChangeEventType.

9.33 SemanticChangeEventType

9.33.1 General

SemanticChangeEvents are Events of SemanticChangeEventType that are generated to
indicate a change of the AddressSpace semantics. The change consists of a change to the
Value Attribute of a Property.

The SemanticChangeEvent contains information about the Node owning the Property that was
changed. If this is a Variable or Object, the TypeDefinitionNode is also present.

The SemanticChange bit of the AccessLevel Attribute of a Property indicates whether changes
of the Property value are considered for SemanticChangeEvents (see 5.6.2).

9.33.2 ViewVersion and NodeVersion Properties

The ViewVersion and NodeVersion Properties do not change due to the publication of a
SemanticChangeEvent.

9.33.3 Views

SemanticChangeEvents are handled in the context of a View the same way as
ModelChangeEvents. This is defined in 9.32.3.

9.33.4 Event Compression

SemanticChangeEvents can be compressed the same way as ModelChangeEvents. This is
defined in 9.32.4.

OPC Unified Architecture, Part 3 81 Release 1.04

Annex A
(informative)

How to use the Address Space Model

A.1 Overview

Annex A points out some general considerations on how the Address Space Model can be used.
Annex A is for information only, that is, each Server vendor can model its data in the appropriate
way that fits its needs. However, it gives some hints the Server vendor may consider.

Typically OPC UA Servers will offer data provided by an underlying system like a device, a
configuration database, an OPC COM Server, etc. Therefore the modelling of the data depends
on the model of the underlying system as well as the requirements of the Clients accessing the
OPC UA Server. It is also expected that companion specifications will be developed on top of
OPC UA with additional rules on how to model the data. However, the remainder of Annex A
will give some general considerations about the different concepts of OPC UA to model data
and when they should be used, and when not.

Part 5:–, Annex A, provides an overview of the design decisions made when modelling the
information about the Server defined in Part 5.

A.2 Type definitions

Type definitions should be used whenever it is expected that the type information may be used
more than once in the same system or for interoperability between different systems supporting
the same type definitions.

A.3 ObjectTypes

Subclause 5.5.1 states: “Objects are used to represent systems, system components, real -
world objects, and software objects.” Therefore ObjectTypes should be used if a type definition
of those ObjectTypes is useful (see A.2).

From a more abstract point of view Objects are used to group Variables and other Objects in
the AddressSpace. Therefore ObjectTypes should be used when some common
structures/groups of Objects and/or Variables should be described. Clients can use this
knowledge to program against the ObjectType structure and use the
TranslateBrowsePathsToNodeIds Service defined in Part 4 on the instances.

Simple objects only having one value (e.g. a simple heat sensor) can also be modelled as
VariableTypes. However, extensibility mechanisms should be considered (e.g. a complex heat
sensor subtype could have several values) and whether that object should be exposed as an
object in the Client's GUI or just as a value. Whenever a modeller is in doubt as to which solution
to use the ObjectType having one Variable should be preferred.

A.4 VariableTypes

A.4.1 General

VariableTypes are only used for DataVariables1 and should be used when there are several
Variables having the same semantic (e.g. set point). It is not necessary to define a VariableType
that only reflects the DataType of a Variable, e.g. an “Int32VariableType”.

A.4.2 Properties or DataVariables

Besides the semantic differences of Properties and DataVariables described in Clause 4 there
are also syntactical differences. A Property is identified by its BrowseName, that is, if Properties

1 VariableTypes other than the PropertyType which is used for all Properties.

Release 1.04 82 OPC Unified Architecture, Part 3

having the same semantic are used several times, they should always have the same
BrowseName. The same semantic of DataVariables is captured in the VariableType.

If it is not clear which concept to use based on the semantic described in Clause 4, then the
different syntax can help. The following points identify when it shall be a DataVariable.

• If it is a complex Variable or it should contain additional information in the form of Properties.

• If the type definition may be refined (subtyping).

• If the type definition should be made available so the Client can use the AddNodes Service
defined in Part 4 to create new instances of the type definition.

• If it is a component of a complex Variable exposing a part of the value of the complex
Variable.

A.4.3 Many Variables and / or structured DataTypes

When structured data structures should be made available to the Client there are basically three
different approaches:

a) Create several simple Variables using simple DataTypes always reflecting parts of the
simple structure. Objects are used to group the Variables according to the structure of the
data.

b) Create a structured DataType and a simple Variable using this DataType.

c) Create a structured DataType and a complex Variable using this DataType and also
exposing the structured data structure as Variables of the complex Variable using simple
DataTypes.

The advantages of the first approach are that the complex structure of the data is visible in the
AddressSpace. A generic Client can easily access the data without knowledge of user-defined
DataTypes and the Client can access individual parts of the structured data. The disadvantages
of the first approach are that accessing the individual data does not provide any tran sactional
context and for a specific Client the Server first has to convert the data and the Client has to
convert the data, again, to get the data structure the underlying system provides.

The advantages of the second approach are, that the data is accessed in a transactional context
and the structured DataType can be constructed in a way that the Server does not have to
convert the data and can pass directly to the specific Client that can directly use them. The
disadvantages are that the generic Client might not be able to access and interpret the data or
has at least the burden to read the DataTypeDefinition to interpret the data. The structure of
the data is not visible in the AddressSpace; additional Properties describing the data structure
cannot be added to the adequate places since they do not exist in the AddressSpace. Individual
parts of the data cannot be read without accessing the whole data structure.

The third approach combines the other two approaches. Therefore a specific Client can access
data in its native format in a transactional context, whereas a generic Client can access simple
DataTypes of the components of the complex Variable. The disadvantage is that the Server
must be able to provide the native format and also interpret it to be able to provide the
information in simple DataTypes.

It is recommended to use the first approach. When a transactional context is needed or the
Client should be able to get a large amount of data instead of subscribing to several individual
values, then the third approach is suitable. However, the Server might not always have the
knowledge to interpret the structured data of the underlying system and therefore has to use
the second approach just passing the data to the specific Client who is able to interpret the
data.

A.5 Views

Server-defined Views can be used to present an excerpt of the AddressSpace suitable for a
special class of Clients, for example maintenance Clients, engineering Clients, etc. The View
only provides the information needed for the purpose of the Client and hides unnecessary
information.

OPC Unified Architecture, Part 3 83 Release 1.04

A.6 Methods

Methods should be used whenever some input is expected and the Server delivers a result.
One should avoid using Variables to write the input values and other Variables to get the output
results as it was necessary to do in OPC COM since there was no concept of a Method available.
However, a simple OPC COM wrapper might not be able to do this.

Methods can also be used to trigger some execution in the Server that does not require input
and / or output parameters.

Global Methods, that is, Methods that cannot directly be assigned to a special Object, should
be assigned to the Server Object defined in Part 5.

A.7 Defining ReferenceTypes

Defining new ReferenceTypes should only be done if the predefined ReferenceTypes are not
suitable. Whenever a new ReferenceType is defined, the most appropriate ReferenceType
should be used as its supertype.

It is expected that Servers will have new defined hierarchical ReferenceTypes to expose
different hierarchies, and new non-hierarchical References to expose relationships between
Nodes in the AddressSpace.

A.8 Defining ModellingRules

New ModellingRules have to be defined if the predefined ModellingRules are not appropriate
for the model exposed by the Server.

Depending on the model used by the underlying system the Server may need to define new
ModellingRules, since the OPC UA Server may only pass the data to the underlying system and
this system may use its own internal rules for instantiation, subtyping, etc.

Beside this, the predefined ModellingRules might not be sufficient to specify the required
behaviour for instantiation and subtyping.

Release 1.04 84 OPC Unified Architecture, Part 3

Annex B
(informative)

OPC UA Meta Model in UML

B.1 Background

The OPC UA Meta Model (the OPC UA Address Space Model) is represented by UML classes
and UML objects marked with the stereotype <<TypeExtension>>. Those stereotyped UML
objects represent DataTypes or ReferenceTypes. The domain model can contain user-defined
ReferenceTypes and DataTypes, also marked as <<TypeExtension>>. In addition, the domain
model contains ObjectTypes, VariableTypes etc. represented as UML objects (see Figure B.1).

The OPC Foundation specifies not only the OPC UA Meta Model, but also defines some Nodes
to organise the AddressSpace and to provide information about the Server as specified in Part
5.

Objects

<<TypeExtension>> Objects

Classes

UML Representation

OPC UA Meta Model

Domain Model
(incl. user-defined
Data and Reference
Types)

0..N

Figure B.1 – Background of OPC UA Meta Model

B.2 Notation

An example of a UML class representing the OPC UA concept Base is given in the UML class
diagram in Figure B.2. OPC Attributes inherit from the abstract class Attribute and have a value
identifying their data type. They are composed of a Node which is either optional (0..1) or
required (1), such as BrowseName to Base in Figure B.2.

OPC Unified Architecture, Part 3 85 Release 1.04

Figure B.2 – Notation (I)

UML object diagrams are used to display <<TypeExtension>> objects (e.g. HasComponent in
Figure B.3). In object diagrams, OPC Attributes are represented as UML attributes without data
types and marked with the stereotype <<Attribute>>, like InverseName in the UML object
HasComponent. They have values, like InverseName =ComponentOf for HasComponent. To
keep the object diagrams simple, not all Attributes are shown (e.g. the NodeId of
HasComponent).

Figure B.3 – Notation (II)

OPC References are represented as UML associations marked with the stereotype
<<Reference>>. If a particular ReferenceType is used, its name is used as the role name,
identifying the direction of the Reference (e.g. Aggregates has the subtype HasComponent).
For simplicity, the inverse role name is not shown (in the example SubtypeOf). When no role
name is provided, it means that any ReferenceType can be used (only valid for class diagrams).

There are some special Attributes in OPC UA containing a NodeId and thereby referencing
another Node. Those Attributes are represented as associations marked with the stereotype
<<Attribute>>. The name of the Attribute is displayed as the role name of the TargetNode.

The value of the OPC Attribute BrowseName is represented by the UML object name, for
example the BrowseName of the UML object HasComponent in Figure B.3 is “HasComponent”.

To highlight the classes explained in a class diagram, they are marked in grey (e.g. Base in
Figure B.2). Only those classes have all of their relationships to other classes and attributes
shown in the diagram. For the other classes, we provide only those attributes and relationships
needed to understand the main classes of the diagram.

B.3 Meta Model

NOTE: Other parts of this series of standards can extend the OPC UA Meta Model by adding Attributes and defining
new ReferenceTypes.

B.3.1 Base

Base is shown in Figure B.4.

Base Attribute

BrowseName
1

«TypeExtension»

HasComponent :ReferenceType

«Attribute»

+ InverseName = ComponentOf

«TypeExtension»

Aggregates :ReferenceType

«Attribute»

+ InverseName = AggregatedBy

+HasSubtype

«Reference»

Release 1.04 86 OPC Unified Architecture, Part 3

Figure B.4 – Base

B.3.2 ReferenceType

ReferenceType is shown in Figure B.5 and predefined ReferenceTypes in Figure B.6.

Figure B.5 – Reference and ReferenceType

If Symmetric is “false” and IsAbstract is “false” an InverseName shall be provided.

Method

Base

Object

ObjectType

ReferenceType

VariableType

View DataType

Attribute

DisplayName

Attribute

BrowseName

Attribute

NodeId

Attribute

Description

Variable

Attribute

NodeClass

Attribute

WriteMask
Attribute

UserWriteMask
0..1

0..1

*

«Reference»

+HasProperty*

0..1

1

1

1

1

Base

ReferenceType Attribute

Inv erseName

Attribute

Symmetric

Attribute

IsAbstract

Variable

1

1

«Reference»

+HasSubtype *

0..1

1

* «Reference»

+HasProperty

*

OPC Unified Architecture, Part 3 87 Release 1.04

B.3.3 Predefined ReferenceTypes

Figure B.6 – Predefined ReferenceTypes

B.3.4 Attributes

Attributes are shown in Figure B.7.

«TypeExtension»

HierarchicalReferences :ReferenceType

«Attribute»

+ IsAbstract = true

«TypeExtension»

Aggregates :ReferenceType

«Attribute»

+ InverseName = AggregatedBy

«TypeExtension»

HasSubtype :ReferenceType

«Attribute»

+ InverseName = SubtypeOf

«TypeExtension»

HasProperty :ReferenceType

«Attribute»

+ InverseName = PropertyOf

«TypeExtension»

HasComponent :ReferenceType

«Attribute»

+ InverseName = ComponentOf

allow no loops

«TypeExtension»

NonHierarchicalReferences :ReferenceType

«Attribute»

+ IsAbstract = true

«TypeExtension»

HasModellingRule :ReferenceType

«Attribute»

+ InverseName = ModellingRuleOf

«TypeExtension»

HasOrderedComponent :ReferenceType

«Attribute»

+ InverseName = OrderedComponentOf

«TypeExtension»

References :ReferenceType

«Attribute»

+ IsAbstract = true

«TypeExtension»

Organizes :ReferenceType

«Attribute»

+ InverseName = OrganizedBy

«TypeExtension»

HasTypeDefinition :ReferenceType

«Attribute»

+ InverseName = Defines

«TypeExtension»

HasEv entSource :ReferenceType

«Attribute»

+ InverseName = EventSourceOf

«TypeExtension»

HasNotifier :ReferenceType

«Attribute»

+ InverseName = NotifierOf

«TypeExtension»

HasDescription :ReferenceType

«Attribute»

+ InverseName = DescriptionOf

«TypeExtension»

HasEncoding :ReferenceType

«Attribute»

+ InverseName = EncodingOf

«TypeExtension»

GeneratesEv ent :ReferenceType

«Attribute»

+ InverseName = GeneratedBy

«TypeExtension»

AlwaysGeneratesEv ent :ReferenceType

+HasSubtype

«Reference»

«Reference»

+HasSubtype

+HasSubtype«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«References»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype+HasSubtype

«Reference»

Release 1.04 88 OPC Unified Architecture, Part 3

Figure B.7 – Attributes

There may be more Attributes defined in other parts of this series of standards.

Attributes used for references, which have a NodeId as DataType, are not shown in this diagram
but are shown as stereotyped associations in the other diagrams.

B.3.5 Object and ObjectType

Objects and ObjectTypes are shown in Figure B.8.

OPC Unified Architecture, Part 3 89 Release 1.04

Figure B.8 – Object and ObjectType

B.3.6 EventNotifier

EventNotifier are shown in Figure B.9.

Figure B.9 – EventNotifier

B.3.7 Variable and VariableType

Variable and VariableType are shown in Figure B.10.

Base

Object ObjectType

Method

Attribute

IsAbstract

Variable

Attribute

Ev entNotifer

Should only be used for

Objects of the ObjectType

FolderType

Shall refer Object of

ObjectType

ModellingRuleType

Shall refer the

BaseEventType or

one of its subtypes

«Reference»

+Organizes

*
«Reference»

+HasTypeDefinition

1

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent
*

+HasSubtype *

«Reference»

*

*

«Reference» +HasProperty

*

*

«Reference»

+GeneratesEvent 0..**

«Reference» +HasComponent

*

*

«Reference»+HasComponent

*

«Reference»
«Reference»

1

1

«Reference»

+HasModellingRule 0..1

*

«Reference»

+HasComponent *

Base

Object

Objects used as

Notifier, i.e. having the

EventNotifier Attribute

set to provide Events

«Reference»

+HasEventSource

«Reference»

+HasNotifier

Release 1.04 90 OPC Unified Architecture, Part 3

Figure B.10 – Variable and VariableType

The DataType of a Variable shall be the same as or a subtype of the DataType of its
VariableType (referred with HasTypeDefinition).

If a HasProperty points to a Variable from a Base “A” then the following constraints apply:

• The Variable shall not be the SourceNode of a HasProperty or any other
HierarchicalReferences Reference.

• All Variables having “A” as the SourceNode of a HasProperty Reference shall have a unique
BrowseName in the context of “A”.

B.3.8 Method

Method is shown in Figure B.11

Base

VariableType

DataType

Attribute

Value

Attribute

ArrayDimensions

Attribute

AccessLev el

Variable

ObjectTypeObject

Attribute

MinimumSamplingInterv al

Shall refer Object of

ObjectType

ModellingRuleType

Attribute

IsAbstract

Shall refer the

BaseEventType or

one of its subtypes

Attribute

Historizing

Attribute

ValueRank

Attribute

UserAccessLev el

1

*

«Reference»

*

*

«Reference»*

*

«Reference»

+HasProperty

*

*

«Reference»

+HasComponent

*

1

+HasSubtype *

«Reference»

**

«Attribute»

+DataType

1

*

«Attribute»

+DataType

1

*

«Reference» +HasTypeDefinition

1

0..1

1

1

*

«Reference»

+HasComponent *
*

«Reference»+HasComponent

*

*

«Reference»

+HasComponent *

0..1

0..1

0..1

*

«Reference»

+HasModellingRule

0..1

*

«Reference»

+GeneratesEvent

0..*

1 0..1

1

OPC Unified Architecture, Part 3 91 Release 1.04

Figure B.11 – Method

B.3.9 DataType

DataType is shown in Figure B.12.

Base

Method

Object ObjectType

Variable

There are two standard

properties defined for

Methods:

InputArguments and

OutputArguments

Shall refer Object of

ObjectType

ModellingRuleType

Attribute

Executable

Attribute

UserExecutable

Shall reference the

BaseEventType or one

of its subtypes

* «Reference»

+HasTypeDefinition

1

*

«Reference»

+HasComponent *

*

«Reference»

+HasComponent
*

«Reference»

+HasModellingRule 0..1

*

«Reference»

*

* «Reference»

+HasProperty

*

1

1

«Reference»

+GeneratesEvent

Release 1.04 92 OPC Unified Architecture, Part 3

Figure B.12 – DataType

B.3.10 View

View is shown in Figure B.13.

Figure B.13 – View

Base

View

Variable

Attribute

Ev entNotifier

Attribute

ContainsNoLoops

1

1

*

«Reference»

+HierarchicalReferences *

* «Reference»

+HasProperty

*

DataType

VariableType

Base

Variable Object

Is only allowed to point to
Objects of ObjectType
DataTypeEncodingType

Attribute
IsAbstract

+HasSubtype

«Reference»

*

«Attribute»

+DataType 1

*

«Attribute»

+DataType 1

*
«Reference»

+HasProperty * 1

0..1 «Reference»

+HasEncoding

*

OPC Unified Architecture, Part 3 93 Release 1.04

Annex C
(normative)

Graphical Notation

C.1 General

Annex D defines a graphical notation for OPC UA data. Annex D is normative, that is, the
notation is used in this standard to expose examples of OPC UA data. However, it is not required
to use this notation to expose OPC UA data.

The graphical notation is able to expose all structural data of OPC UA. Nodes, their Attributes
including their current value and References between the Nodes including the ReferenceType
can be exposed. The graphical notation provides no mechanism to expose events or historical
data.

C.2 Notation

C.2.1 Overview

The notation is divided into two parts. The simple notation only provides a simplified view on
the data hiding some details like Attributes. The extended notation allows exposing all structure
information of OPC UA, including Attribute values. The simple and the extended notation can
be combined to expose OPC UA data in one figure.

Common to both notations is that neither any colour nor the thickness or style of lines is relevant
for the notation. Those effects can be used to highlight certain aspects of a figure.

C.2.2 Simple Notation

Depending on their NodeClass Nodes are represented by different graphical forms as defined
in Table C.1.

Table C.1 – Notation of Nodes depending on the NodeClass

NodeClass Graphical Representation Comment

Object

Object

Rectangle including text representing the string-part of

the DisplayName of the Object. The font shall not be set
to italic.

ObjectType

ObjectType

Shadowed rectangle including text representing the
string-part of the DisplayName of the ObjectType. The
font shall be set in italic.

Variable

Variable

Rectangle with rounded corners including text
representing the string-part of the DisplayName of the
Variable. The font shall not be set in italic.

VariableType

VariableType

Shadowed rectangle with rounded corners including text

representing the string-part of the DisplayName of the
VariableType. The font shall be set in italic.

DataType

DataType

Shadowed hexagon including text representing the

string-part of the DisplayName of the DataType.

ReferenceType

ReferenceType

Shadowed six-sided polygon including text representing

the string-part of the DisplayName of the
ReferenceType.

Method

Method

Oval including text representing the string-part of the

DisplayName of the Method.

View

View

Trapezium including text representing the string-part of
the DisplayName of the View.

Release 1.04 94 OPC Unified Architecture, Part 3

References are represented as lines between Nodes as exemplified in Figure C.1. Those lines

can vary in their form. They do not have to connect the Nodes with a straight line; they can
have angles, arches, etc.

Node1 ReferenceName Node2

Figure C.1 – Example of a Reference connecting two Nodes

Table C.2 defines how symmetric and asymmetric References are represented in general, and
also defines shortcuts for some ReferenceTypes. Although it is recommended to use those
shortcuts, it is not required. Thus, instead of using the shortcut, the generic solution can also
be used.

Table C.2 – Simple Notation of Nodes depending on the NodeClass

ReferenceType Graphical Representation Comment

Any symmetric
ReferenceType ReferenceType

Symmetric ReferenceTypes are represented as lines
between Nodes with closed and filled arrows on both
sides pointing to the connected Nodes. Near the line has
to be a text containing the string-part of the BrowseName
of the ReferenceType.

Any asymmetric

ReferenceType ReferenceType

Asymmetric ReferenceTypes are represented as lines

between Nodes with a closed and filled arrow on the side
pointing to the TargetNode. Near the line has to be a text
containing the string-part of the BrowseName of the
ReferenceType.

Any hierarchical
ReferenceType ReferenceType

Asymmetric ReferenceTypes that are subtypes of
HierarchicalReferences should be exposed the same
way as asymmetric ReferenceTypes except that an open
arrow is used.

HasComponent

The notation provides a shortcut for HasComponent

References shown on the left. The single hashed line
has to be near the TargetNode.

HasProperty

The notation provides a shortcut for HasProperty
References shown on the left. The double hashed lines
have to be near the TargetNode.

HasTypeDefinition

The notation provides a shortcut for HasTypeDefinition

References shown on the left. The double closed and
filled arrows have to point to the TargetNode.

HasSubtype

The notation provides a shortcut for HasSubtype
References shown on the left. The double closed arrows
have to point to the SourceNode.

HasEventSource

The notation provides a shortcut for HasEventSource

References shown on the left. The closed arrow has to
point to the TargetNode.

C.2.3 Extended Notation

In the extended notation some additional concepts are introduced. It is allowed only to use
some of those concepts on elements of a figure.

The following rules define some special handling of structures.

• In general, values of all DataTypes should be represented by an appropriate string
representation. Whenever a NamespaceIndex or LocaleId is used in those structures they
can be omitted.

• The DisplayName contains a LocaleId and a String. Such a structure can be exposed as
[<LocaleId>:]<String> where the LocaleId is optional. For example, a DisplayName can be
“en:MyName”. Instead of that, “MyName” can also be used. This rule applies whenever a
DisplayName is shown, including the text used in the graphical representation of a Node.

• The BrowseName contains the NamespaceIndex and a String. Such a structure can be
exposed as [<NamespaceIndex>:]<String> where the NamespaceIndex is optional. For
example, a BrowseName can be “1:MyName”. Instead of that, “MyName” can also be used.
This rule applies whenever a BrowseName is shown, including the text used in the graphical
representation of a Node.

OPC Unified Architecture, Part 3 95 Release 1.04

Instead of using the HasTypeDefinition reference to point from an Object or Variable to its
ObjectType or VariableType the name of the TypeDefinition can be added to the text used in
the Node. The TypeDefinition shall either be prefixed with “::” or it is put in italic as the top line.
Figure C.2 gives an example, where “Node1” uses a Reference and “Node2” the shortcut in
both notation variants. A figure can contain HasTypeDefinition References for some Nodes and
the shortcut for other Nodes. It is not allowed that a Node uses the shortcut and additionally is
the SourceNode of a HasTypeDefinition.

Node1

Node2::SampleType

SampleType

SampleType

Node2

Figure C.2 – Example of using a TypeDefinition inside a Node

To display Attributes of a Node additional text can be put inside the form representing the Node
under the text representing the DisplayName. The DisplayName and the text describing the
Attributes have to be separated using a horizontal line. Each Attribute has to be set into a new
text line. Each text line shall contain the Attribute name followed by an “=” and the value of the
Attribute. On top of the first text line containing an Attribute shall be a text line containing the
underlined text “Attribute”. It is not required to expose all Attributes of a Node. It is allowed to
show only a subset of Attributes. If an optional Attribute is not provided, the Attribute can be
marked by a strike-through line, for example “Description”. Examples of exposing Attributes are
shown in Figure C.3.

FT1001

Attribute

NodeId = “1000“

NodeClass = Object

DisplayName = “FT1001“

BrowseName = “FTX001“

Description

EventNotifier = 0

DataItem

Attribute

NodeClass = Variable

DisplayName = “DataItem“

BrowseName = “DataItem“

MinimumSamplingInterval = -1

Figure C.3 – Example of exposing Attributes

To avoid too many Nodes in a figure it is allowed to expose Properties inside a Node, similar to
Attributes. Therefore, the text field used for exposing Attributes is extended. Under the last text
line containing an Attribute a new text line containing the underlined text “Property” has to be
added. If no Attribute is provided, the text has to start with this text line. After this text line, each
new text line shall contain a Property, starting with the BrowseName of the Property followed
by “=” and the value of the Value Attribute of the Property. Figure C.4 shows some examples
exposing Properties inline. It is allowed to expose some Properties of a Node inline, and other
Properties as Nodes. It is not allowed to show a Property inline as well as an additional Node.

Release 1.04 96 OPC Unified Architecture, Part 3

FT1001

Attribute

NodeId = “1000“

DisplayName = “FT1001“

BrowseName = “FTX001“

Description

EventNotifier = 0

Property

Prop1 = 12

Prop2 = “PropValue“

DataItem

Attribute

NodeClass = Variable

DisplayName = “DataItem“

BrowseName = “DataItem“

MinimumSamplingInterval = -1

Property

Prop1 = 12

Prop2 = “PropValue“

FT1002

Property

Prop1 = 12

Prop2 = “PropValue“

DataItemX

Property

Prop1 = 12

Prop2 = “PropValue“

Figure C.4 – Example of exposing Properties inline

It is allowed to add additional information to a figure using the graphical representation, for
example callouts.

	FIGURES
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviations and conventions
	3.1 Terms and definitions
	3.2 Abbreviations
	3.3 Conventions
	3.3.1 Conventions for AddressSpace figures
	3.3.2 Conventions for defining NodeClasses

	4 AddressSpace concepts
	4.1 Overview
	4.2 Object Model
	4.3 Node Model
	4.3.1 General
	4.3.2 NodeClasses
	4.3.3 Attributes
	4.3.4 References

	4.4 Variables
	4.4.1 General
	4.4.2 Properties
	4.4.3 DataVariables

	4.5 TypeDefinitionNodes
	4.5.1 General
	4.5.2 Complex TypeDefinitionNodes and their InstanceDeclarations
	4.5.3 Subtyping
	4.5.4 Instantiation of complex TypeDefinitionNodes

	4.6 Event Model
	4.6.1 General
	4.6.2 EventTypes
	4.6.3 Event Categorization

	4.7 Methods
	4.8 Roles
	4.8.1 Overview
	4.8.2 Well Known Roles
	4.8.3 Evaluating Permissions with Roles

	5 Standard NodeClasses
	5.1 Overview
	5.2 Base NodeClass
	5.2.1 General
	5.2.2 NodeId
	5.2.3 NodeClass
	5.2.4 BrowseName
	5.2.5 DisplayName
	5.2.6 Description
	5.2.7 WriteMask
	5.2.8 UserWriteMask
	5.2.9 RolePermissions
	5.2.10 UserRolePermissions
	5.2.11 AccessRestrictions

	5.3 ReferenceType NodeClass
	5.3.1 General
	5.3.2 Attributes
	5.3.3 References
	5.3.3.1 General
	5.3.3.2 HasProperty References
	5.3.3.3 HasSubtype References

	5.4 View NodeClass
	5.5 Objects
	5.5.1 Object NodeClass
	5.5.2 ObjectType NodeClass
	5.5.3 Standard ObjectType FolderType
	5.5.4 Client-side creation of Objects of an ObjectType

	5.6 Variables
	5.6.1 General
	5.6.2 Variable NodeClass
	5.6.3 Properties
	5.6.4 DataVariable
	5.6.5 VariableType NodeClass
	5.6.6 Client-side creation of Variables of an VariableType

	5.7 Method NodeClass
	5.8 DataTypes
	5.8.1 DataType Model
	5.8.2 Encoding Rules for different kinds of DataTypes
	5.8.3 DataType NodeClass
	5.8.4 DataTypeEncoding and Encoding Information

	5.9 Summary of Attributes of the NodeClasses

	6 Type Model for ObjectTypes and VariableTypes
	6.1 Overview
	6.2 Definitions
	6.2.1 InstanceDeclaration
	6.2.2 Instances without ModellingRules
	6.2.3 InstanceDeclarationHierarchy
	6.2.4 Similar Node of InstanceDeclaration
	6.2.5 BrowsePath
	6.2.6 Attribute Handling of InstanceDeclarations
	6.2.7 Attribute Handling of Variable and VariableTypes
	6.2.8 NodeIds of InstanceDeclarations

	6.3 Subtyping of ObjectTypes and VariableTypes
	6.3.1 Overview
	6.3.2 Attributes
	6.3.3 InstanceDeclarations
	6.3.3.1 Overview
	6.3.3.2 Fully-inherited InstanceDeclarationHierarchy
	6.3.3.3 Overriding InstanceDeclarations

	6.4 Instances of ObjectTypes and VariableTypes
	6.4.1 Overview
	6.4.2 Creating an Instance
	6.4.3 Constraints on an Instance
	6.4.4 ModellingRules
	6.4.4.1 General
	6.4.4.2 Properties describing ModellingRules
	6.4.4.2.1 NamingRule

	6.4.4.3 Subtyping Rules for Properties of ModellingRules
	6.4.4.4 Instantiation Rules for Properties of ModellingRules
	6.4.4.5 Standard ModellingRules
	6.4.4.5.1 Titles of Standard ModellingRules
	6.4.4.5.2 Mandatory
	6.4.4.5.3 Optional
	6.4.4.5.4 ExposesItsArray
	6.4.4.5.5 OptionalPlaceholder
	6.4.4.5.6 MandatoryPlaceholder

	6.5 Changing Type Definitions that are already used

	7 Standard ReferenceTypes
	7.1 General
	7.2 References ReferenceType
	7.3 HierarchicalReferences ReferenceType
	7.4 NonHierarchicalReferences ReferenceType
	7.5 HasChild ReferenceType
	7.6 Aggregates ReferenceType
	7.7 HasComponent ReferenceType
	7.8 HasProperty ReferenceType
	7.9 HasOrderedComponent ReferenceType
	7.10 HasSubtype ReferenceType
	7.11 Organizes ReferenceType
	7.12 HasModellingRule ReferenceType
	7.13 HasTypeDefinition ReferenceType
	7.14 HasEncoding ReferenceType
	7.15 GeneratesEvent
	7.16 AlwaysGeneratesEvent
	7.17 HasEventSource
	7.18 HasNotifier

	8 Standard DataTypes
	8.1 General
	8.2 NodeId
	8.2.1 General
	8.2.2 NamespaceIndex
	8.2.3 IdentifierType
	8.2.4 Identifier value

	8.3 QualifiedName
	8.4 LocaleId
	8.5 LocalizedText
	8.6 Argument
	8.7 BaseDataType
	8.8 Boolean
	8.9 Byte
	8.10 ByteString
	8.11 DateTime
	8.12 Double
	8.13 Duration
	8.14 Enumeration
	8.15 Float
	8.16 Guid
	8.17 SByte
	8.18 IdType
	8.19 Image
	8.20 ImageBMP
	8.21 ImageGIF
	8.22 ImageJPG
	8.23 ImagePNG
	8.24 Integer
	8.25 Int16
	8.26 Int32
	8.27 Int64
	8.28 TimeZoneDataType
	8.29 NamingRuleType
	8.30 NodeClass
	8.31 Number
	8.32 String
	8.33 Structure
	8.34 UInteger
	8.35 UInt16
	8.36 UInt32
	8.37 UInt64
	8.38 UtcTime
	8.39 XmlElement
	8.40 EnumValueType
	8.41 OptionSet
	8.42 Union
	8.43 DateString
	8.44 DecimalString
	8.45 DurationString
	8.46 NormalizedString
	8.47 TimeString
	8.48 DataTypeDefinition
	8.49 StructureDefinition
	8.50 EnumDefinition
	8.51 StructureField
	8.52 EnumField
	8.53 AudioDataType
	8.54 Decimal
	8.55 PermissionType
	8.56 AccessRestrictionsType
	8.57 AccessLevelType
	8.58 AccessLevelExType
	8.59 EventNotifierType
	8.60 AttributeWriteMask

	9 Standard EventTypes
	9.1 General
	9.2 BaseEventType
	9.3 SystemEventType
	9.4 ProgressEventType
	9.5 AuditEventType
	9.6 AuditSecurityEventType
	9.7 AuditChannelEventType
	9.8 AuditOpenSecureChannelEventType
	9.9 AuditSessionEventType
	9.10 AuditCreateSessionEventType
	9.11 AuditUrlMismatchEventType
	9.12 AuditActivateSessionEventType
	9.13 AuditCancelEventType
	9.14 AuditCertificateEventType
	9.15 AuditCertificateDataMismatchEventType
	9.16 AuditCertificateExpiredEventType
	9.17 AuditCertificateInvalidEventType
	9.18 AuditCertificateUntrustedEventType
	9.19 AuditCertificateRevokedEventType
	9.20 AuditCertificateMismatchEventType
	9.21 AuditNodeManagementEventType
	9.22 AuditAddNodesEventType
	9.23 AuditDeleteNodesEventType
	9.24 AuditAddReferencesEventType
	9.25 AuditDeleteReferencesEventType
	9.26 AuditUpdateEventType
	9.27 AuditWriteUpdateEventType
	9.28 AuditHistoryUpdateEventType
	9.29 AuditUpdateMethodEventType
	9.30 DeviceFailureEventType
	9.31 SystemStatusChangeEventType
	9.32 ModelChangeEvents
	9.32.1 General
	9.32.2 NodeVersion Property
	9.32.3 Views
	9.32.4 Event Compression
	9.32.5 BaseModelChangeEventType
	9.32.6 GeneralModelChangeEventType
	9.32.7 Guidelines for ModelChangeEvents

	9.33 SemanticChangeEventType
	9.33.1 General
	9.33.2 ViewVersion and NodeVersion Properties
	9.33.3 Views
	9.33.4 Event Compression

	Annex A (informative) How to use the Address Space Model
	A.1 Overview
	A.2 Type definitions
	A.3 ObjectTypes
	A.4 VariableTypes
	A.4.1 General
	A.4.2 Properties or DataVariables
	A.4.3 Many Variables and / or structured DataTypes

	A.5 Views
	A.6 Methods
	A.7 Defining ReferenceTypes
	A.8 Defining ModellingRules

	Annex B (informative) OPC UA Meta Model in UML
	B.1 Background
	B.2 Notation
	B.3 Meta Model
	B.3.1 Base
	B.3.2 ReferenceType
	B.3.3 Predefined ReferenceTypes
	B.3.4 Attributes
	B.3.5 Object and ObjectType
	B.3.6 EventNotifier
	B.3.7 Variable and VariableType
	B.3.8 Method
	B.3.9 DataType
	B.3.10 View

	Annex C (normative) Graphical Notation
	C.1 General
	C.2 Notation
	C.2.1 Overview
	C.2.2 Simple Notation
	C.2.3 Extended Notation

