

F O U N D A T I O N

®

OPC Unified Architecture

Specification

Part 9: Alarms & Conditions

Release 1.04

November 22, 2017

OPC Unified Architecture, Part 9 ii Release 1.04

Specification
Type:

Industry Standard
Specification

Comments:

Title: OPC Unified

Architecture

Part 9 :Alarms &
Conditions

Date: November 22, 2017

Version: Release 1.04 Software: MS-Word

 Source: OPC UA Part 9 - Alarms and
Conditions Release 1.04
Specification.docx

Author: OPC FOUNDATION Status: Release

Release 1.04 iii OPC Unified Architecture, Part 9

CONTENTS

Figures ... vi

TABLES ... vii

1 Scope .. 1

2 Normative references ... 1

3 Terms, definitions, and abbreviations .. 2

3.1 Terms and definitions ... 2

3.2 Abbreviations and symbols ... 4

3.3 Used data types ... 4

4 Concepts ... 4

4.1 General ... 4

4.2 Conditions ... 4

4.3 Acknowledgeable Conditions .. 6

4.4 Previous states of Conditions ... 7

4.5 Condition state synchronization .. 7

4.6 Severity, quality, and comment ... 8

4.7 Dialogs .. 8

4.8 Alarms ... 9

4.9 Multiple active states ... 10

4.10 Condition instances in the AddressSpace ... 11

4.11 Alarm and Condition auditing .. 12

5 Model... 12

5.1 General ... 12

5.2 Two-state state machines ... 13

5.3 ConditionVariable .. 14

5.4 ReferenceTypes... 14

5.4.1 General .. 14

5.4.2 HasTrueSubState ReferenceType ... 15

5.4.3 HasFalseSubState ReferenceType .. 15

5.4.4 HasAlarmSuppressionGroup ReferenceType ... 16

5.4.5 AlarmGroupMember ReferenceType .. 16

5.5 Condition Model ... 16

5.5.1 General .. 16

5.5.2 ConditionType .. 17

5.5.3 Condition and branch instances ... 20

5.5.4 Disable Method ... 21

5.5.5 Enable Method ... 21

5.5.6 AddComment Method .. 22

5.5.7 ConditionRefresh Method .. 22

5.5.8 ConditionRefresh2 Method .. 24

5.6 Dialog Model ... 26

5.6.1 General .. 26

5.6.2 DialogConditionType ... 26

5.6.3 Respond Method... 27

5.7 Acknowledgeable Condition Model ... 28

5.7.1 General .. 28

5.7.2 AcknowledgeableConditionType .. 28

OPC Unified Architecture, Part 9 iv Release 1.04

5.7.3 Acknowledge Method .. 29

5.7.4 Confirm Method .. 30

5.8 Alarm model .. 31

5.8.1 General .. 31

5.8.2 AlarmConditionType.. 31

5.8.3 AlarmGroupType... 35

5.8.4 Reset Method ... 36

5.8.5 Silence Method ... 36

5.8.6 Suppress Method .. 37

5.8.7 Unsuppress Method .. 38

5.8.8 RemoveFromService Method .. 38

5.8.9 PlaceInService Method ... 39

5.8.10 ShelvedStateMachineType .. 40

5.8.11 LimitAlarmType ... 44

5.8.12 Exclusive Limit Types ... 45

5.8.13 NonExclusiveLimitAlarmType .. 48

5.8.14 Level Alarm .. 49

5.8.15 Deviation Alarm .. 50

5.8.16 Rate of change Alarms .. 51

5.8.17 Discrete Alarms .. 52

5.8.18 DiscrepancyAlarmType ... 54

5.9 ConditionClasses ... 55

5.9.1 Overview .. 55

5.9.2 BaseConditionClassType .. 56

5.9.3 ProcessConditionClassType .. 56

5.9.4 MaintenanceConditionClassType ... 56

5.9.5 SystemConditionClassType ... 56

5.9.6 SafetyConditionClassType .. 57

5.9.7 HighlyManagedAlarmConditionClassType .. 57

5.9.8 TrainingConditionClassType .. 57

5.9.9 StatisticalConditionClassType ... 58

5.9.10 TestingConditionSubClassType ... 58

5.10 Audit Events .. 58

5.10.1 Overview .. 58

5.10.2 AuditConditionEventType .. 59

5.10.3 AuditConditionEnableEventType ... 60

5.10.4 AuditConditionCommentEventType.. 60

5.10.5 AuditConditionRespondEventType ... 60

5.10.6 AuditConditionAcknowledgeEventType .. 60

5.10.7 AuditConditionConfirmEventType .. 61

5.10.8 AuditConditionShelvingEventType ... 61

5.10.9 AuditConditionSuppressionEventType ... 61

5.10.10 AuditConditionSilenceEventType ... 61

5.10.11 AuditConditionResetEventType ... 62

5.10.12 AuditConditionOutOfServiceEventType .. 62

5.11 Condition Refresh related Events ... 62

5.11.1 Overview .. 62

5.11.2 RefreshStartEventType ... 63

5.11.3 RefreshEndEventType .. 63

Release 1.04 v OPC Unified Architecture, Part 9

5.11.4 RefreshRequiredEventType... 63

5.12 HasCondition Reference type ... 64

5.13 Alarm & Condition status codes .. 64

5.14 Expected A&C server behaviours ... 64

5.14.1 General .. 64

5.14.2 Communication problems .. 65

5.14.3 Redundant A&C servers .. 65

6 AddressSpace organisation .. 65

6.1 General ... 65

6.2 EventNotifier and source hierarchy ... 65

6.3 Adding Conditions to the hierarchy ... 66

6.4 Conditions in InstanceDeclarations ... 67

6.5 Conditions in a VariableType .. 67

7 System State & Alarms ... 69

7.1 Overview ... 69

7.2 HasEffectDisable ... 69

7.3 HasEffectEnable .. 69

7.4 HasEffectSuppress .. 70

7.5 HasEffectUnsuppressed ... 70

8 Alarm Metrics ... 71

8.1 Overview ... 71

8.2 AlarmMetricsType .. 71

8.3 AlarmRateVariableType ... 72

8.4 Reset Method .. 72

Annex A (informative) Recommended localized names .. 74

A.1 Recommended state names for TwoState variables .. 74

A.1.1 LocaleId “en” .. 74

A.1.2 LocaleId “de” .. 74

A.1.3 LocaleId “fr” .. 75

A.2 Recommended dialog response options .. 75

Annex B (informative) Examples ... 77

B.1 Examples for Event sequences from Condition instances 77

B.1.1 Overview .. 77

B.1.2 Server maintains current state only ... 77

B.1.3 Server maintains previous states ... 77

B.2 AddressSpace examples .. 79

Annex C (informative) Mapping to EEMUA .. 81

Annex D (informative) Mapping from OPC A&E to OPC UA A&C .. 82

D.1 Overview ... 82

D.2 Alarms and Events COM UA wrapper ... 82

D.2.1 Event areas .. 82

D.2.2 Event sources ... 82

D.2.3 Event categories ... 83

D.2.4 Event attributes .. 84

D.2.5 Event subscriptions ... 84

D.2.6 Condition instances .. 86

D.2.7 Condition Refresh ... 87

D.3 Alarms and Events COM UA proxy ... 87

OPC Unified Architecture, Part 9 vi Release 1.04

D.3.1 General .. 87

D.3.2 Server status mapping .. 87

D.3.3 Event Type mapping ... 87

D.3.4 Event category mapping .. 88

D.3.5 Event Category attribute mapping.. 89

D.3.6 Event Condition mapping .. 92

D.3.7 Browse mapping ... 92

D.3.8 Qualified names .. 93

D.3.9 Subscription filters .. 94

Annex E – IEC62682 Mapping ... 96

E.1 Overview ... 96

E.2 Terms .. 96

E.3 Alarm records & State Indications ..104

Annex F System State (Informative) ..106

F.1 Overview ..106

F.2 SystemStateStateMachineType ...107

FIGURES

Figure 1 – Base Condition state model ... 5

Figure 2 – AcknowledgeableConditions state model ... 6

Figure 3 – Acknowledge state model .. 7

Figure 4 - Confirmed Acknowledge state model .. 7

Figure 5 – Alarm state machine model ... 9

Figure 7 – Multiple active states example ... 11

Figure 8 – ConditionType hierarchy .. 13

Figure 9 – Condition model .. 17

Figure 11 – AcknowledgeableConditionType overview .. 28

Figure 13 – Alarm Model .. 32

Figure 14 – Shelve state transitions ... 41

Figure 15 – ShelvedStateMachineType model .. 41

Figure 16 – LimitAlarmType ... 44

Figure 17 – ExclusiveLimitStateMachineType ... 46

Figure 18 – ExclusiveLimitAlarmType ... 47

Figure 19 – NonExclusiveLimitAlarmType ... 48

Figure 20 – DiscreteAlarmType Hierarchy .. 52

Figure 21 – ConditionClass type hierarchy ... 55

Figure 22 – AuditEvent hierarchy ... 59

Figure 23 – Refresh Related Event Hierarchy ... 63

Figure 24 – Typical HasNotifier Hierarchy .. 66

Figure 25 – Use of HasCondition in a HasNotifier hierarchy .. 67

Figure 26 – Use of HasCondition in an InstanceDeclaration .. 67

Figure 27 – Use of HasCondition in a VariableType .. 68

Figure B.1 – Single state example .. 77

Figure B.2 – Previous state example .. 78

https://d.docs.live.net/ec949e9b07d2406a/MyWork/OPC/Specs/Release%201.04/OPC%20UA%20Part%209%20-%20Alarms%20and%20Conditions%20Release%201.04%20Specification.docx#_Toc499114824

Release 1.04 vii OPC Unified Architecture, Part 9

Figure B.3 – HasCondition used with Condition instances ... 79

Figure B.4 – HasCondition reference to a Condition type .. 80

Figure B.5 – HasCondition used with an instance declaration .. 80

Figure D.1 – The type model of a wrapped COM AE server ... 84

Figure D.2 – Mapping UA Event Types to COM A&E Event Types 88

Figure D.3 – Example mapping of UA Event Types to COM A&E categories 89

Figure D.4 – Example mapping of UA Event Types to A&E categories with attributes 92

TABLES

Table 1 – Parameter types defined in Part 3 ... 4

Table 2 – Parameter types defined in Part 4 ... 4

Table 3 – TwoStateVariableType definition ... 13

Table 4 – ConditionVariableType definition ... 14

Table 5 – HasTrueSubState ReferenceType ... 15

Table 6 – HasFalseSubState ReferenceType.. 15

Table 7 – HasAlarmSuppressionGroup ReferenceType ... 16

Table 8 – AlarmGroupMember ReferenceType ... 16

Table 9 – ConditionType definition ... 18

Table 10 – SimpleAttributeOperand .. 20

Table 11 – Disable result codes ... 21

Table 12 – Disable Method AddressSpace definition ... 21

Table 13 – Enable result codes .. 21

Table 14 – Enable Method AddressSpace definition.. 21

Table 15 – AddComment arguments .. 22

Table 16 – AddComment result codes .. 22

Table 17 – AddComment Method AddressSpace definition .. 22

Table 18 – ConditionRefresh parameters.. 23

Table 19 – ConditionRefresh result codes .. 23

Table 20 – ConditionRefresh Method AddressSpace definition .. 24

Table 21 – ConditionRefresh2 parameters .. 24

Table 22 – ConditionRefresh2 result codes .. 25

Table 23 – ConditionRefresh2 Method AddressSpace definition .. 25

Table 24 – DialogConditionType Definition ... 26

Table 25 – Respond parameters .. 27

Table 26 – Respond Result Codes ... 27

Table 27 – Respond Method AddressSpace definition ... 27

Table 28 – AcknowledgeableConditionType defini tion ... 28

Table 29 – Acknowledge parameters .. 29

Table 30 – Acknowledge result codes .. 29

Table 31 – Acknowledge Method AddressSpace definition .. 30

Table 32 – Confirm Method parameters .. 30

Table 33 – Confirm result codes... 30

OPC Unified Architecture, Part 9 viii Release 1.04

Table 34 – Confirm Method AddressSpace definition .. 31

Table 35 – AlarmConditionType definition .. 32

Table 36 – AlarmGroupType Definition ... 35

Table 37 – Reset arguments .. 36

Table 38 – Silence result codes ... 36

Table 39 – Reset Method AddressSpace definition ... 36

Table 40 – Silence arguments .. 37

Table 41 – Silence result codes ... 37

Table 42 – Silence Method AddressSpace definition ... 37

Table 43 – Suppress result codes .. 37

Table 44 – Suppress Method AddressSpace definition .. 38

Table 45 – Unsuppress result codes .. 38

Table 46 – Unsuppress Method AddressSpace definition .. 38

Table 47 – RemoveFromService result codes ... 39

Table 48 – RemoveFromService Method AddressSpace definition 39

Table 49 – PlaceInService result codes .. 39

Table 50 – PlaceInService Method AddressSpace definition ... 40

Table 51 –ShelvedStateMachineType definition .. 41

Table 52 – ShelvedStateMachineType transitions ... 42

Table 53 – Unshelve result codes .. 42

Table 54 – Unshelve Method AddressSpace definition .. 42

Table 55 – TimedShelve parameters .. 43

Table 56 – TimedShelve result codes ... 43

Table 57 – TimedShelve Method AddressSpace definition .. 43

Table 58 – OneShotShelve result codes ... 44

Table 59 – OneShotShelve Method AddressSpace definition .. 44

Table 60 – LimitAlarmType definition.. 45

Table 61 – ExclusiveLimitStateMachineType definition ... 46

Table 62 – ExclusiveLimitStateMachineType transitions.. 46

Table 63 – ExclusiveLimitAlarmType definition ... 48

Table 64 – NonExclusiveLimitAlarmType definition ... 49

Table 65 – NonExclusiveLevelAlarmType definition .. 49

Table 66 – ExclusiveLevelAlarmType definition .. 50

Table 67 – NonExclusiveDeviationAlarmType definition .. 50

Table 68 – ExclusiveDeviationAlarmType definition .. 51

Table 69 – NonExclusiveRateOfChangeAlarmType definition .. 51

Table 70 – ExclusiveRateOfChangeAlarmType definition .. 52

Table 71 – DiscreteAlarmType definition .. 52

Table 72 – OffNormalAlarmType Definition ... 53

Table 73 – SystemOffNormalAlarmType definition .. 53

Table 74 – TripAlarmType definition ... 53

Table 75 – InstrumentDiagnosticAlarmType definition ... 54

Table 76 – SystemDiagnosticAlarmType definition .. 54

Release 1.04 ix OPC Unified Architecture, Part 9

Table 77 – CertificateExpirationAlarmType definition .. 54

Table 78 – DiscrepancyAlarmType definition .. 55

Table 79 – BaseConditionClassType definition ... 56

Table 80 – ProcessConditionClassType definition ... 56

Table 81 – MaintenanceConditionClassType definition ... 56

Table 82 – SystemConditionClassType definition.. 57

Table 83 – SafetyConditionClassType definition ... 57

Table 84 – HighlyManagedAlarmConditionClassType definition ... 57

Table 85 – TrainingConditionClassType definition .. 57

Table 86 – StatisticalConditionClassType definition .. 58

Table 87 – TestingConditionSubClassType definition .. 58

Table 88 – AuditConditionEventType definition ... 59

Table 89 – AuditConditionEnableEventType definition .. 60

Table 90 – AuditConditionCommentEventType definition .. 60

Table 91 – AuditConditionRespondEventType definition ... 60

Table 92 – AuditConditionAcknowledgeEventType definition ... 60

Table 93 – AuditConditionConfirmEventType definition ... 61

Table 94 – AuditConditionShelvingEventType definition .. 61

Table 95 – AuditConditionSuppressionEventType definition .. 61

Table 96 – AuditConditionSilenceEventType definition .. 62

Table 97 – AuditConditionResetEventType definition .. 62

Table 98 – AuditConditionOutOfServiceEventType defini tion... 62

Table 99 – RefreshStartEventType definition .. 63

Table 100 – RefreshEndEventType definition ... 63

Table 101 – RefreshRequiredEventType definition.. 63

Table 102 – HasCondition ReferenceType .. 64

Table 103 – Alarm & Condition result codes ... 64

Table 104 – HasEffectDisable ReferenceType .. 69

Table 105 – HasEffectEnable ReferenceType ... 70

Table 106 – HasEffectSuppress ReferenceType ... 70

Table 107 – HasEffectUnsuppress ReferenceType ... 71

Table 108 – AlarmMetricsType Definition ... 71

Table 109 – AlarmRateVariableType Definition ... 72

Table 110 – Suppress result codes .. 72

Table 111 – Reset Method AddressSpace definition ... 73

Table A.1 – Recommended state names for LocaleId “en”... 74

Table A.2 – Recommended display names for LocaleId “en” ... 74

Table A.3 – Recommended state names for LocaleId “de”... 75

Table A.4 – Recommended display names for LocaleId “de” ... 75

Table A.5 – Recommended state names for LocaleId “fr” .. 75

Table A.6 – Recommended display names for LocaleId “fr” ... 75

Table A.7 – Recommended dialog response options ... 76

Table B.1 – Example of a Condition that only keeps the latest state 77

OPC Unified Architecture, Part 9 x Release 1.04

Table B.2 – Example of a Condition that maintains previous states via branches 78

Table C.1 – EEMUA Terms .. 81

Table D.1 – Mapping from standard Event categories to OPC UA Event types 83

Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables 85

Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables 85

Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables 86

Table D.5 – Event category attribute mapping table .. 89

Table E.1 - IEC62682 Mapping .. 96

Table F.1 – SystemStateStateMachineType definition ..108

Table F.2 - SystemStateStateMachineType transitions ..109

Release 1.04 xi OPC Unified Architecture, Part 9

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis and
design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall
inter-operate seamlessly together.

Copyright © 2006-2018, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must
be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.org UTH.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require
use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be
required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that a re
brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR
MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to
restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in
Technical Data and Computer Software clause at DFARs 252.227 -7013; or (c) the Commercial Computer Software Restricted
Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,.
16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware
and software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
Products developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these
requirements may claim only that the product was based on this specification and must not claim compliance or conformance
with this specification.

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not
been listed here.

http://www.opcfoundation.org/

OPC Unified Architecture, Part 9 xii Release 1.04

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the vali dity and
enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law
rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specificatio ns, hence they undergo
constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

http://www.opcfoundation.org/errata

Release 1.04 xiii OPC Unified Architecture, Part 9

Revision 1.04 Highlights

The following table includes the Mantis issues resolved with this revision.

Mantis

ID
Summary Resolution

3237 IEC 62682 / ISA 18.2 support Added annex at end of document describing mapping between
two standards

3238 IEC 62682 terms and definitions Added additional terms as needed

3239 Silence from IEC62682 Added silence to AlarmConditionType

3240 IEC 62682 properties Added alarm properties including Ondelay, offdelay,
firstInGroup, realarmtime, realarmrepeatcount, conditionclass
modifier, and more

3241 Alarm System Diagnostics Added diagnostic information to allow server collect
standardized alarm diagnostic information

3269 1.03 / Page 11 / 5.1 / The
formatting of the third paragraph is
broken

Fixed formatting (also fixed other format and link issues)

3380 IEC 62682 - Additional Alarm types Added Discrepancy Alarms, Deviation Alarm uses

3444 Missing references in
Opc.Ua.NodeSet2.xml

Removed Modelling rules as indicated. Added text to
StateMachines that might have instances where some states
and/or transition are not exposed, to expose ValidateStates
and ValidTransitions optional properties allowing clients to
determine what states are valid for the given instance

3452 AuditConditionCommentEventType
EventId field should be
AffectedEventId

Updated the name of the field to ConditionEventId

3453 Safety Alarms are common; A
Safety ConditionClass would be
useful.

Added section on Safety

3540 For IEC 62682 add OutOfService Added new optional StateMachine to the Alarm Model

3542 Highly Managed Alarms The model needs to be able to indicate a highly managed
alarm

3680 Table error on duplicate names Fix all table to have correct consistent names

3666 System State Added ReferenceType so that system state machines can
easily effect alarm states. Also include a sample system state
machine.

3716 Definition of SourceNode SourceNode updated to include “Property” when referencing
the property not the term.

3733 COM AE Mapping fActive to
TransitionTime is not accurate.

Added text to limit scope of assignment in wrapper code
example.

3749 Limit alarms and Arrays The specification should describe the behaviour of limit alarms
with respect to source variable that are arrays.

3795 Enable/Disable methods and how
they interact with
ConditionBranches

The specification already described Enable with regard to
branches, but the disable was updated to indicate all branches
are disabled..

4021 Alarms in AddressSpace - Clarify
behaviour when properties change

Updated text to indicate what is required and what is server
specific behaviour

https://opcfoundation-onlineapplications.org/mantis/view.php?id=3240
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3240
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3239
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3240
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3241
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3269
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3380
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3444
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3240
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3240
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3240
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3242
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3680
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3666
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3716
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3733
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3749
https://opcfoundation-onlineapplications.org/mantis/view.php?id=3749
https://opcfoundation-onlineapplications.org/mantis/view.php?id=4021

OPC Unified Architecture, Part 9 1 Release 1.04

OPC Unified Architecture Specification

Part 9: Alarms & Conditions

1 Scope

This document specifies the representation of Alarms and Conditions in the OPC Unified
Architecture. Included is the Information Model representation of Alarms and Conditions in the
OPC UA address space. Other aspects of alarm systems like alarm philosophy, life cycle, alarm
response times, alarm types and many other details are captured in standards such as IEC
62682 and ISA 18.2. The Alarms and Conditions Information Model in this specification, is
designed in accordance with IEC 62682and ISA 18.2.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application.

Part 1: OPC UA Specification: Part 1 – Concepts

http://www.opcfoundation.org/UA/Part1/

Part 3: OPC UA Specification: Part 3 – Address Space Model

http://www.opcfoundation.org/UA/Part3/

Part 4: OPC UA Specification: Part 4 – Services

http://www.opcfoundation.org/UA/Part4/

Part 5: OPC UA Specification: Part 5 – Information Model

http://www.opcfoundation.org/UA/Part5/

Part 6: OPC UA Specification: Part 6 – Mappings

http://www.opcfoundation.org/UA/Part6/

Part 7: OPC UA Specification: Part 7 – Profiles

http://www.opcfoundation.org/UA/Part7/

Part 8: OPC UA Specification: Part 8 – Data Access

http://www.opcfoundation.org/UA/Part8/

Part 11: OPC UA Specification: Part 11 – Historical Access

http://www.opcfoundation.org/UA/Part11/

EEMUA: 2nd Edition EEMUA 191 – Alarm System – A guide to design, management and
procurement (Appendixes 6, 7, 8, 9)

https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-191.aspx

IEC 62682: Management of alarms systems for the process industries (Edition 1.0 2014-10)

https://webstore.iec.ch/publication/7363

ISA 18.2: Management of Alarm Systems for the Process Industries

https://www.isa.org/store/ansi/isa-182-2016,-management-of-alarm-systems-for-the-
process-industries/46962105

https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-191.aspx
https://webstore.iec.ch/publication/7363

Release 1.04 2 OPC Unified Architecture, Part 9

IETF RFC2045: Multipurpose Internet Mail Extensions (MIME) Part One

https://www.ietf.org/rfc/rfc2045.txt

IETF RFC2046: Multipurpose Internet Mail Extensions (MIME) Part Two

https://www.ietf.org/rfc/rfc2046.txt

IETF RFC2047: Multipurpose Internet Mail Extensions (MIME) Part Three

https://www.ietf.org/rfc/rfc2047.txt

3 Terms, definitions, and abbreviations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in Part 1, Part 3, Part 4, and
Part 5 as well as the following apply.

3.1.1
Acknowledge
Operator action that indicates recognition of an Alarm

Note 1 to entry: This definition is copied from EEMUA. The term “Accept” is another common term used to describe
Acknowledge. They can be used interchangeably. This document will use Acknowledge.

3.1.2
Active
state for an Alarm that indicates that the situation the Alarm is representing currently exists

Note 1 to entry: Other common terms defined by EEMUA are “Standing” for an Active Alarm and “Cleared” when
the Condition has returned to normal and is no longer Active.

3.1.3
AdaptiveAlarm
Alarm for which the set point or limits are changed by an algorithm.

Note 1 to entry: AdaptiveAlarms are alarms that are adjusted automatically by algorithms. These algorithms might
detect conditions in a plant and change setpoints or limits to keep alarms from occurring. These changes occur, in
many cases, without Operator interactions.

3.1.4
AlarmFlood
condition during which the alarm rate is greater than the Operator can effectively manage

Note 1 to entry: OPC UA does not define the conditions that would be considered alarm flooding, these conditions
are defined in other specification such as IEC 62682 or ISA 18.2

3.1.5
AlarmSuppressionGroup
group of Alarms that is used to suppress other Alarms.

Note 1 to entry: An AlarmSuppressionGroup is an instance of an AlarmGroupType that is used to suppress other
Alarms. If any Alarm in the group is active, then the AlarmSuppressionGroup is active. If all Alarms in the
AlarmSuppressionGroup are inactive then the AlarmSuppressionGroup is inactive

Note 2 to entry: The Alarm to be affected references AlarmSuppressionGroups with a HasAlarmSuppressionGroup
ReferenceType .

3.1.6
ConditionClass
Condition grouping that indicates in which domain or for what purpose a certain Condition is
used

Note 1 to entry: Some top-level ConditionClasses are defined in this specification. Vendors or organisations may
derive more concrete classes or define different top -level classes.

https://www.ietf.org/rfc/rfc2045.txt
https://www.ietf.org/rfc/rfc2046.txt
https://www.ietf.org/rfc/rfc2047.txt

OPC Unified Architecture, Part 9 3 Release 1.04

3.1.7
ConditionBranch
specific state of a Condition

Note 1 to entry: The Server can maintain ConditionBranches for the current state as well as for previous states.

3.1.8
ConditionSource
element which a specific Condition is based upon or related to

Note 1 to entry: Typically, it will be a Variable representing a process tag (e.g. FIC101) or an Object representing
a device or subsystem.

In Events generated for Conditions, the SourceNode Property (inherited from the BaseEventType) will contain the
NodeId of the ConditionSource.

3.1.9
Confirm
Operator action informing the Server that a corrective action has been taken to address the
cause of the Alarm

3.1.10
Disable
 system is configured such that the Alarm will not be generated even though the base Alarm
Condition is present

Note 1 to entry: This definition is copied from EEMUA and is further defined in EEMUA.

In IEC62682 disable is referenced as “Out of Service” .

3.1.11
LatchIngAlarm
alarm that remains in alarm state after the process condition has returned to normal and requires an
Operator reset before the alarm returns to normal

Note 1 to entry: Latching alarms are typically discrepancy alarms, where an action does not occur within a specific
time. Once the action occurs the alarm stays active until it is reset.

3.1.12
Operator
special user who is assigned to monitor and control a portion of a process

Note 1 to entry: “A Member of the operations team who is assigned to moni tor and control a portion of the process
and is working at the control system’s Console” as defined in EEMUA. In this standard an Operator is a special user.
All descriptions that apply to general users also apply to Operators.

3.1.13
Refresh
act of providing an update to an Event Subscription that provides all Alarms which are
considered to be Retained

Note 1 to entry: This concept is further defined in EEMUA.

3.1.14
Retain
Alarm in a state that is interesting for a Client wishing to synchronize its state of Conditions
with the Server’s state

3.1.15
Shelving
facility where the Operator is able to temporarily prevent an Alarm from being displayed to the
Operator when it is causing the Operator a nuisance

Note 1 to entry ”A Shelved Alarm will be removed from the list and will not re-annunciate until un-shelved.” as
defined in EEMUA.

3.1.16
Suppress
act of determining whether an Alarm should not occur

Release 1.04 4 OPC Unified Architecture, Part 9

Note 1 to entry: “An Alarm is suppressed when logical criteria are applied to determine that the Alarm should not
occur, even though the base Alarm Condition (e.g. Alarm setting exceeded) is present” as defined in EEMUA. In
IEC62682 Suppressed Alarms are also described as being “Suppressed by Design”, in that the system is designed
with logic to Suppress an Alarm when certain criteria exist. For example, if a process unit is taken off line then low
level alarms are Suppressed for all equipment in the off -line unit.

3.2 Abbreviations and symbols

A&E Alarm & Event (as used for OPC COM)

COM (Microsoft Windows) Component Object Model

DA Data Access

MIME Multipurpose Internet Mail Extensions

UA Unified Architecture

3.3 Used data types

The following tables describe the data types that are used throughout this document. These
types are separated into two tables. Base data types defined in Part 3 are given in Table 1. The
base types and data types defined in Part 4 are given in Table 2.

Table 1 – Parameter types defined in Part 3

Parameter Type

Argument

BaseDataType

NodeId

LocalizedText

Boolean

ByteString

Double

Duration

String

UInt16

Int32

UtcTime

Table 2 – Parameter types defined in Part 4

Parameter Type

IntegerId

StatusCode

4 Concepts

4.1 General

This standard defines an Information Model for Conditions, Dialog Conditions, and Alarms
including acknowledgement capabilities. It is built upon and extends base Event handling which
is defined in Part 3, Part 4 and Part 5. This Information Model can also be extended to support
the additional needs of specific domains. The details of what aspects of the Information Model
are supported are defined via Profiles (see Part 7 for Profile definitions). Some systems may
expose historical Events and Conditions via the standard Historical Access framework (see
Part 11 for Historical Event definitions).

4.2 Conditions

Conditions are used to represent the state of a system or one of its components. Some common
examples are:

• a temperature exceeding a configured limit

• a device needing maintenance

• a batch process that requires a user to confirm some step in the process before
proceeding

OPC Unified Architecture, Part 9 5 Release 1.04

Each Condition instance is of a specific ConditionType. The ConditionType and derived types
are sub-types of the BaseEventType (see Part 3 and Part 5). This part defines types that are
common across many industries. It is expected that vendors or other standardisation groups
will define additional ConditionTypes deriving from the common base types defined in this part.
The ConditionTypes supported by a Server are exposed in the AddressSpace of the Server.

Condition instances are specific implementations of a ConditionType. It is up to the Server
whether such instances are also exposed in the Server’s AddressSpace. Clause 4.10 provides
additional background about Condition instances. Condition instances shall have a unique
identifier to differentiate them from other instances. This is independent of whether they are
exposed in the AddressSpace.

As mentioned above, Conditions represent the state of a system or one of its components. In
certain cases, however, previous states that still need attention also have to be maintained.
ConditionBranches are introduced to deal with this requirement and distinguish current state
and previous states. Each ConditionBranch has a BranchId that differentiates it from other
branches of the same Condition instance. The ConditionBranch which represents the current
state of the Condition (the trunk) has a NULL BranchId. Servers can generate separate Event
Notifications for each branch. When the state represented by a ConditionBranch does not need
further attention, a final Event Notification for this branch will have the Retain Property set to
False. Clause 4.4 provides more information and use cases. Maintaining previous states and
therefore the support of multiple branches is optional for Servers.

Conceptually, the lifetime of the Condition instance is independent of its state. However,
Servers may provide access to Condition instances only while ConditionBranches exist.

The base Condition state model is illustrated in Figure 1. It is extended by the various Condition
subtypes defined in this standard and may be further extended by vendors or other
standardisation groups. The primary states of a Condition are disabled and enabled. The
Disabled state is intended to allow Conditions to be turned off at the Server or below the Server
(in a device or some underlying system). The Enabled state is normally extended with the
addition of sub-states.

Figure 1 – Base Condition state model

A transition into the Disabled state results in a Condition Event however no subsequent Event
Notifications are generated until the Condition returns to the Enabled state.

When a Condition enters the Enabled state, that transition and all subsequent transitions result
in Condition Events being generated by the Server.

If Auditing is supported by a Server, the following Auditing related action shall be performed.
The Server will generate AuditEvents for Enable and Disable operations (either through a
Method call or some Server / vendor – specific means), rather than generating an AuditEvent
Notification for each Condition instance being enabled or disabled. For more information, see

Disabled

Enabled

Release 1.04 6 OPC Unified Architecture, Part 9

the definition of AuditConditionEnableEventType in 5.10.2. AuditEvents are also generated for
any other Operator action that results in changes to the Conditions.

4.3 Acknowledgeable Conditions

AcknowledgeableConditions are sub-types of the base ConditionType.
AcknowledgeableConditions expose states to indicate whether a Condition has to be
acknowledged or confirmed.

An AckedState and a ConfirmedState extend the EnabledState defined by the Condition. The
state model is illustrated in Figure 2. The enabled state is extended by adding the AckedState
and (optionally) the ConfirmedState.

Figure 2 – AcknowledgeableConditions state model

Acknowledgment of the transition may come from the Client or may be due to some logic internal
to the Server. For example, acknowledgment of a related Condition may result in this Condition
becoming acknowledged, or the Condition may be set up to automatically Acknowledge itself
when the acknowledgeable situation disappears.

Two Acknowledge state models are supported by this standard. Either of these state models
can be extended to support more complex acknowledgement situations.

The basic Acknowledge state model is illustrated in Figure 3. This model defines an AckedState.
The specific state changes that result in a change to the state depend on a Server’s
implementation. For example, in typical Alarm models the change is limited to a transition to
the Active state or transitions within the Active state. More complex models however can also
allow for changes to the AckedState when the Condition transitions to an inactive state.

AckedState = TRUE

AckedState = False

Ack
By
Server

Acknowledge
 Method

Disabled

Enabled

ConfirmedState
= TRUE

AckedState = TRUE

ConfirmedState
= False

AckedState = False

OPC Unified Architecture, Part 9 7 Release 1.04

Figure 3 – Acknowledge state model

A more complex state model which adds a confirmation to the basic Acknowledge is illustrated
in Figure 4. The Confirmed Acknowledge model is typically used to differentiate between
acknowledging the presence of a Condition and having done something to address the
Condition. For example, an Operator receiving a motor high temperature Notification calls the
Acknowledge Method to inform the Server that the high temperature has been observed. The
Operator then takes some action such as lowering the load on the motor in order to reduce the
temperature. The Operator then calls the Confirm Method to inform the Server that a corrective
action has been taken.

4.4 Previous states of Conditions

Some systems require that previous states of a Condition are preserved for some time. A
common use case is the acknowledgement process. In certain environments, it is required to
acknowledge both the transition into Active state and the transition into an inactive state.
Systems with strict safety rules sometimes require that every transition into Active state has to
be acknowledged. In situations where state changes occur in short succession there can be
multiple unacknowledged states and the Server has to maintain ConditionBranches for all
previous unacknowledged states. These branches will be deleted after they have been
acknowledged or if they reached their final state.

Multiple ConditionBranches can also be used for other use cases where snapshots of previous
states of a Condition require additional actions.

4.5 Condition state synchronization

When a Client subscribes for Events, the Notification of transitions will begin at the time of the
Subscription. The currently existing state will not be reported. This means for example that
Clients are not informed of currently Active Alarms until a new state change occurs.

Clients can obtain the current state of all Condition instances that are in an interesting state,
by requesting a Refresh for a Subscription. It should be noted that Refresh is not a general
replay capability since the Server is not required to maintain an Event history.

Clients request a Refresh by calling the ConditionRefresh Method. The Server will respond with
a RefreshStartEventType Event. This Event is followed by the Retained Conditions. The Server
may also send new Event Notifications interspersed with the Refresh related Event
Notifications. After the Server is done with the Refresh, a RefreshEndEvent is issued marking

Confirmed by Server

Confirm Method

Acknowledged Unacknowledged

Acknowledge By Server

Acknowledge Method

Unconfirmed Confirmed

Server restricts to
Unconfirmed until
Acknowledged

Figure 4 - Confirmed Acknowledge state model

Release 1.04 8 OPC Unified Architecture, Part 9

the completion of the Refresh. Clients shall check for multiple Event Notifications for a
ConditionBranch to avoid overwriting a new state delivered together with an older state from
the Refresh process. If a ConditionBranch exists, then the current Condition shall be reported.
This is True even if the only interesting item regarding the Condition is that ConditionBranches
exist. This allows a Client to accurately represent the current Condition state.

A Client that wishes to display the current status of Alarms and Conditions (known as a “current
Alarm display”) would use the following logic to process Refresh Event Notifications. The Client
flags all Retained Conditions as suspect on reception of the Event of the
RefreshStartEventType. The Client adds any new Events that are received during the Refresh
without flagging them as suspect. The Client also removes the suspect flag from any Retained
Conditions that are returned as part of the Refresh. When the Client receives a
RefreshEndEvent, the Client removes any remaining suspect Events, since they no longer
apply.

The following items should be noted with regard to ConditionRefresh:

• As described in 4.4 some systems require that previous states of a Condition are
preserved for some time. Some Servers – in particular if they require acknowledgement
of previous states – will maintain separate ConditionBranches for prior states that still
need attention.

ConditionRefresh shall issue Event Notifications for all interesting states (current and
previous) of a Condition instance and Clients can therefore receive more than one Event
for a Condition instance with different BranchIds.

• Under some circumstances a Server may not be capable of ensuring the Client is fully
in sync with the current state of Condition instances. For example, if the underlying
system represented by the Server is reset or communications are lost for some period
of time the Server may need to resynchronize itself with the underlying system. In these
cases, the Server shall send an Event of the RefreshRequiredEventType to advise the
Client that a Refresh may be necessary. A Client receiving this special Event should
initiate a ConditionRefresh as noted in this clause.

• To ensure a Client is always informed, the three special EventTypes
(RefreshEndEventType, RefreshStartEventType and RefreshRequiredEventType)
ignore the Event content filtering associated with a Subscription and will always be
delivered to the Client.

• ConditionRefresh applies to a Subscription. If multiple Event Notifiers are included in
the same Subscription, all Event Notifiers are refreshed.

4.6 Severity, quality, and comment

Comment, severity and quality are important elements of Conditions and any change to them
will cause Event Notifications.

The Severity of a Condition is inherited from the base Event model defined in Part 5. It indicates
the urgency of the Condition and is also commonly called ‘priority’, especially in relation to
Alarms in the ProcessConditionClassType.

A Comment is a user generated string that is to be associated with a certain state of a Condition.

Quality refers to the quality of the data value(s) upon which thi s Condition is based. Since a
Condition is usually based on one or more Variables, the Condition inherits the quality of these
Variables. E.g., if the process value is “Uncertain”, the “Level Alarm” Condition is also
questionable. If more than one variable is represented by a given condition or if the condition
is from an underlining system and no direct mapping to a variable is available, it is up to the
application to determine what quality is displayed as part of the condition.

4.7 Dialogs

Dialogs are ConditionTypes used by a Server to request user input. They are typically used
when a Server has entered some state that requires intervention by a Client. For example a
Server monitoring a paper machine indicates that a roll of paper has been wound and is ready
for inspection. The Server would activate a Dialog Condition indicating to the user that an

OPC Unified Architecture, Part 9 9 Release 1.04

inspection is required. Once the inspection has taken place the user responds by informing the
Server of an accepted or unaccepted inspection allowing the process to continue.

4.8 Alarms

Alarms are specializations of AcknowledgeableConditions that add the concepts of an Active
state and other states like Shelving state and Suppressed state to a Condition. The state model
is illustrated in Figure 5. The complete model with all states is defined in 5.8.

Figure 5 – Alarm state machine model

An Alarm in the Active state indicates that the situation the Condition is representing currently
exists. When an Alarm is an inactive state it is representing a situation that has returned to a
normal state.

Some Alarm subtypes introduce sub-states of the Active state. For example, an Alarm
representing a temperature may provide a high level state as well as a critically high state (see
following Clause).

The shelving state can be set by an Operator via OPC UA Methods. The suppressed state is
set internally by the Server due to system specific reasons. Alarm systems typically implement

Disabled

Active = TRUE

Enabled

Active = False

Suppressed = TRUE Suppressed = False

Shelved Unshelved

ConfirmedState
= TRUE

AckedState = TRUE

ConfirmedState
= False

AckedState = False

SilenceState
= TRUE

SilenceState
= False

OutOfService= False OutOfService=TRUE

Release 1.04 10 OPC Unified Architecture, Part 9

the suppress, out of service and shelve features to help keep Operators from being
overwhelmed during Alarm “storms” by limiting the number of Alarms an Operator sees on a
current Alarm display. This is accomplished by setting the SuppressedOrShelved flag on second
order dependent Alarms and/or Alarms of less severity, leading the Operator to concentrate on
the most critical issues.

The shelved, out of service and suppressed states differ from the Disabled state in that Alarms
are still fully functional and can be included in Subscription Notifications to a Client.

Alarms follow a typical timeline that is illustrated in Figure 6. They have a number of delay times
associated with them and a number of states that they might occupy. The goal of an alarmin g
system is to inform Operators about conditions in a timely manner and allow the Operator to
take some action before some consequences occur. The consequences may be economic
(product is not usable and must be discard), may be physical (tank overflows), may safety (fire
or explosion could occur) or any of a number of other possibilities. Typically, if no action is
taken related to an alarm for some period of time the process will cross some threshold at which
point consequences will start to occur. The OPC UA Alarm model describes these states, delays
and actions.

P
ro

c
e

s
s
 V

a
lu

e

Time

Normal
In Alarm

Unacknowledged

Allowable Response time No Action, Process has

consequences

Consequences

start occurring

Alarm Limit
Alarm DeadbandAck

Delay

Operator

Response

Delay

Process

Delay

Acknowledged Alarm

Process

Responds to

action

Normal

OffDelay

Figure 6 - Typical Alarm Timeline example

4.9 Multiple active states

In some cases, it is desirable to further define the Active state of an Alarm by providing a sub-
state machine for the Active State. For example, a multi-state level Alarm when in the Active
state may be in one of the following sub-states: LowLow, Low, High or HighHigh. The state
model is illustrated in Figure 7.

OPC Unified Architecture, Part 9 11 Release 1.04

Figure 7 – Multiple active states example

With the multi-state Alarm model, state transitions among the sub-states of Active are allowed
without causing a transition out of the Active state.

To accommodate different use cases both a (mutually) exclusive and a non-exclusive model
are supported.

Exclusive means that the Alarm can only be in one sub-state at a time. If for example a
temperature exceeds the HighHigh limit the associated exclusive level Alarm will be in the
HighHigh sub-state and not in the High sub-state.

Some Alarm systems, however, allow multiple sub-states to exist in parallel. This is called non-
exclusive. In the previous example where the temperature exceeds the HighHigh limit a non-
exclusive level Alarm will be both in the High and the HighHigh sub-state.

4.10 Condition instances in the AddressSpace

Because Conditions always have a state (Enabled or Disabled) and possibly many sub-states
it makes sense to have instances of Conditions present in the AddressSpace. If the Server
exposes Condition instances they usually will appear in the AddressSpace as components of
the Objects that “own” them. For example, a temperature transmitter that has a built-in high
temperature Alarm would appear in the AddressSpace as an instance of some temperature
transmitter Object with a HasComponent Reference to an instance of a LimitAlarmType.

The availability of instances allows Data Access Clients to monitor the current Condition state
by subscribing to the Attribute values of Variable Nodes. The values of the nodes may not
always correspond with the value that appear in Events, they may be more recent then what
was in the Event.

While exposing Condition instances in the AddressSpace is not always possible, doing so allows
for direct interaction (read, write and Method invocation) with a specific Condition instance. For
example, if a Condition instance is not exposed, there is no way to invoke the Enable or Disable
Method for the specific Condition instance.

Active = False

Active = TRUE

HighHigh LowLow

High Low

Release 1.04 12 OPC Unified Architecture, Part 9

4.11 Alarm and Condition auditing

The OPC UA Standards include provisions for auditing. Auditing is an important security and
tracking concept. Audit records provide the “Who”, “When” and “What” information regarding
user interactions with a system. These audit records are especiall y important when Alarm
management is considered. Alarms are the typical instrument for providing information to a user
that something needs the user’s attention. A record of how the user reacts to this information
is required in many cases. Audit records are generated for all Method calls that affect the state
of the system, for example, an Acknowledge Method call would generate an
AuditConditionAcknowledgeEventType Event.

The standard AuditEventTypes defined in Part 5 already include the fields required for Condition
related audit records. To allow for filtering and grouping, this standard defines a number of sub-
types of the AuditEventTypes but without adding new fields to them.

This standard describes the AuditEventType that each Method is required to generate. For
example, the Disable Method has an AlwaysGeneratesEvent Reference to an
AuditConditionEnableEventType. An Event of this type shall be generated for every invocation
of the Method. The audit Event describes the user interaction with the system, in some cases
this interaction may affect more than one Condition or be related to more than one state.

5 Model

5.1 General

The Alarm and Condition model extends the OPC UA base Event model by defining various
Event Types based on the BaseEventType. All of the Event Types defined in this standard can
be further extended to form domain or Server specific Alarm and Condition Types.

Instances of Alarm and Condition Types may be optionally exposed in the AddressSpace in
order to allow direct access to the state of an Alarm or Condition.

The following sub clauses define the OPC UA Alarm and Condition Types. Figure 8 informally
describes the hierarchy of these Types. Subtypes of the LimitAlarmType and the
DiscreteAlarmType are not shown. The full AlarmConditionType hierarchy can be found in
Figure 8

.

OPC Unified Architecture, Part 9 13 Release 1.04

Defined in [UA Part 5]
BaseEvent

Type

Acknowledgeable

Condition Type

RefreshStart

EventType

SystemEvent

Type

RefreshRequired

EventType

RefreshEnd

EventType

AlarmCondition

Type

DialogCondition

Type

ConditionType

StateMachine

Type

ExclusiveLimit

StateMachineType

Shelved

StateMachineType

LimitAlarm

Type

DiscreteAlarm

Type

OffNormalAlarm

Type

SystemOffNormal

AlarmType

Figure 8 – ConditionType hierarchy

5.2 Two-state state machines

Most states defined in this standard are simple – i.e. they are either True or False. The
TwoStateVariableType is introduced specifically for this use case. More complex states are
modelled by using a StateMachineType defined in Part 5.

The TwoStateVariableType is derived from the StateVariableType defined in Part 5 and formally
defined in Table 3.

Table 3 – TwoStateVariableType definition

Attribute Value

BrowseName TwoStateVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the StateVariableType defined in Part 5.

Note that a Reference to this subtype is not shown in the definition of the StateVariableType

HasProperty Variable Id Boolean PropertyType Mandatory

HasProperty Variable TransitionTime UtcTime PropertyType Optional

HasProperty Variable EffectiveTransitionTime UtcTime PropertyType Optional

HasProperty Variable TrueState LocalizedText PropertyType Optional

HasProperty Variable FalseState LocalizedText PropertyType Optional

HasTrueSubState StateMachine or
TwoStateVariableType

<StateIdentifier> Defined in Clause 5.4.2 Optional

HasFalseSubState StateMachine or

TwoStateVariableType
<StateIdentifier> Defined in Clause 5.4.3 Optional

Release 1.04 14 OPC Unified Architecture, Part 9

The Value Attribute of an instance of TwoStateVariableType contains the current state as a

human readable name. The EnabledState for example, might contain the name “Enabled” when
True and “Disabled” when False.

Id is inherited from the StateVariableType and overridden to reflect the required DataType
(Boolean). The value shall be the current state, i.e. either True or False.

TransitionTime specifies the time when the current state was entered.

EffectiveTransitionTime specifies the time when the current state or one of its sub states was
entered. If, for example, a LevelAlarm is active and – while active – switches several times
between High and HighHigh, then the TransitionTime stays at the point in time where the Alarm
became active whereas the EffectiveTransitionTime changes with each shift of a sub state.

The optional Property EffectiveDisplayName from the StateVariableType is used if a state has
sub states. It contains a human readable name for the current state after taking the state of any
SubStateMachines in account. As an example, the EffectiveDisplayName of the EnabledState
could contain “Active/HighHigh” to specify that the Condition is active and has exceeded the
HighHigh limit.

Other optional Properties of the StateVariableType have no defined meaning for
TwoStateVariableType.

TrueState and FalseState contain the localized string for the TwoStateVariableType value when
its Id Property has the value True or False, respectively. Since the two Properties provide meta-
data for the Type, Servers may not allow these Properties to be selected in the Event filter for
a MonitoredItem. Clients can use the Read Service to get the information from the specific
ConditionType.

A HasTrueSubState Reference is used to indicate that the True state has sub states.

A HasFalseSubState Reference is used to indicate that the False state has sub states.

5.3 ConditionVariable

Various information elements of a Condition are not considered to be states. However, a change
in their value is considered important and supposed to trigger an Event Notification. These
information elements are called ConditionVariable.

ConditionVariables are represented by a ConditionVariableType, formally defined in Table 4.

Table 4 – ConditionVariableType definition

Attribute Value

BrowseName ConditionVariableType

DataType BaseDataType

ValueRank -2 (-2 = Any)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseDataVariableType defined in Part 5.

HasProperty Variable SourceTimestamp UtcTime PropertyType Mandatory

SourceTimestamp indicates the time of the last change of the Value of this ConditionVariable.
It shall be the same time that would be returned from the Read Service inside the DataValue
structure for the ConditionVariable Value Attribute.

5.4 ReferenceTypes

5.4.1 General

This Clause defines ReferenceTypes that are needed beyond those already specified as part
of Part 3 and Part 5. This includes extending TwoStateVariableType state machines with sub
states and the addition of Alarm grouping.

OPC Unified Architecture, Part 9 15 Release 1.04

The TwoStateVariableType References will only exist when sub states are available. For
example, if a TwoStateVariableType machine is in a False State, then any sub states referenced
from the True state will not be available. If an Event is generated while in the False state and
information from the True state sub state is part of the data that is to be reported than this data
would be reported as a NULL. With this approach, TwoStateVariableTypes can be extended
with subordinate state machines in a similar fashion to the StateMachineType defined in Part 5.

5.4.2 HasTrueSubState ReferenceType

The HasTrueSubState ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the NonHierarchicalReferences ReferenceType.

The semantics indicate that the sub state (the target Node) is a subordinate state of the True
super state. If more than one state within a Condition is a sub state of the same super state
(i.e. several HasTrueSubState References exist for the same super state) they are all treated
as independent sub states. The representation in the AddressSpace is specified in Table 5.

The SourceNode of the Reference shall be an instance of a TwoStateVariableType and the
TargetNode shall be either an instance of a TwoStateVariableType or an instance of a subtype
of a StateMachineType.

It is not required to provide the HasTrueSubState Reference from super state to sub state, but
it is required that the sub state provides the inverse Reference (IsTrueSubStateOf) to its super
state.

Table 5 – HasTrueSubState ReferenceType

Attributes Value

BrowseName HasTrueSubState

InverseName IsTrueSubStateOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.4.3 HasFalseSubState ReferenceType

The HasFalseSubState ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the NonHierarchicalReferences ReferenceType.

The semantics indicate that the sub state (the target Node) is a subordinate state of the False
super state. If more than one state within a Condition is a sub state of the same super state
(i.e. several HasFalseSubState References exist for the same super state) they are all treated
as independent sub states. The representation in the AddressSpace is specified in Table 6.

The SourceNode of the Reference shall be an instance of a TwoStateVariableType and the
TargetNode shall be either an instance of a TwoStateVariableType or an instance of a subtype
of a StateMachineType.

It is not required to provide the HasFalseSubState Reference from super state to sub state, but
it is required that the sub state provides the inverse Reference (IsFalseSubStateOf) to its super
state.

Table 6 – HasFalseSubState ReferenceType

Attributes Value

BrowseName HasFalseSubState

InverseName IsFalseSubStateOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Release 1.04 16 OPC Unified Architecture, Part 9

5.4.4 HasAlarmSuppressionGroup ReferenceType

The HasAlarmSuppressionGroup ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the HasComponent ReferenceType.

This ReferenceType binds an AlarmSuppressionGroup to an Alarm.

The SourceNode of the Reference shall be an instance of an AlarmConditionType or sub type
and the TargetNode shall be an instance of an AlarmGroupType.

Table 7 – HasAlarmSuppressionGroup ReferenceType

Attributes Value

BrowseName HasAlarmSuppressionGroup

InverseName IsAlarmSuppressionGroupOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.4.5 AlarmGroupMember ReferenceType

The AlarmGroupMember ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the Organizes Reference Type.

This ReferenceType is used to indicate the Alarm instances that are part of an Alarm Group.

The SourceNode of the Reference shall be an instance of an AlarmGroupType or sub type of it
and the TargetNode shall be an instance of an AlarmConditionType or a subtype of it.

Table 8 – AlarmGroupMember ReferenceType

Attributes Value

BrowseName AlarmGroupMember

InverseName MemberOfAlarmGroup

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.5 Condition Model

5.5.1 General

The Condition model extends the Event model by defining the ConditionType. The
ConditionType introduces the concept of states differentiating it from the base Event model.
Unlike the BaseEventType, Conditions are not transient. The ConditionType is further extended
into Dialog and AcknowledgeableConditionType, each of which has their own sub-types.

The Condition model is illustrated in Figure 9 and formally defined in the subsequent tables. It
is worth noting that this figure, like all figures in this document, is not intended to be complete.
Rather, the figures only illustrate information provided by the formal de finitions.

OPC Unified Architecture, Part 9 17 Release 1.04

ConditionType

PropertyType:

Retain

ConditionRefresh

TwoStateVariableType:

EnableState

ConditionVariableType:

Quality

Disable

ClientUserId

AddComment

ConditionVariableType:

Comment

BaseEventType

Enable

Acknowledgeable

ConditionType

Dialog

ConditionType

ConditionVariableType:

LastSeverity

PropertyType:

BranchId

PropertyType:

ConditionName

PropertyType:

ConditionClassId

PropertyType:

ConditionClassName

ConditionRefresh2

PropertyType:

ConditionSubClassId

PropertyType:

ConditionSubClassName

Figure 9 – Condition model

5.5.2 ConditionType

The ConditionType defines all general characteristics of a Condition. All other ConditionTypes
derive from it. It is formally defined in Table 9. The False state of the EnabledState shall not be
extended with a sub state machine.

Release 1.04 18 OPC Unified Architecture, Part 9

Table 9 – ConditionType definition

Attribute Value

BrowseName ConditionType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseEventType defined in Part 5

HasSubtype ObjectType DialogConditionType Defined in Clause 5.6.2

HasSubtype ObjectType AcknowledgeableConditio

nType
Defined in Clause 5.7.2

HasProperty Variable ConditionClassId NodeId PropertyType Mandatory

HasProperty Variable ConditionClassName LocalizedText PropertyType Mandatory

HasProperty Variable ConditionSubClassId NodeId[] PropertyType Optional

HasProperty Variable ConditionSubClassName LocalizedText[] PropertyType Optional

HasProperty Variable ConditionName String PropertyType Mandatory

HasProperty Variable BranchId NodeId PropertyType Mandatory

HasProperty Variable Retain Boolean PropertyType Mandatory

HasComponent Variable EnabledState LocalizedText TwoStateVariableType Mandatory

HasComponent Variable Quality StatusCode ConditionVariableType Mandatory

HasComponent Variable LastSeverity UInt16 ConditionVariableType Mandatory

HasComponent Variable Comment LocalizedText ConditionVariableType Mandatory

HasProperty Variable ClientUserId String PropertyType Mandatory

HasComponent Method Disable Defined in Clause 5.5.4 Mandatory

HasComponent Method Enable Defined in Clause 5.5.5 Mandatory

HasComponent Method AddComment Defined in Clause 5.5.6 Mandatory

HasComponent Method ConditionRefresh Defined in Clause 5.5.7 None

HasComponent Method ConditionRefresh2 Defined in Clause 5.5.8 None

The ConditionType inherits all Properties of the BaseEventType. Their semantic is defined in

Part 5. SourceNode Property identifies the ConditionSource. See 5.12 for more details. If the
ConditionSource is not a Node in the AddressSpace, the NodeId is set to NULL. The
SourceNode Property is the Node, which the Condition is associated with, it may be the same
as the InputNode for an Alarm, but it may be a separate node. For example, a motor, which is
a Variable with a Value that is an RPM, may be the ConditionSource for Conditions that are
related to the motor as well as a temperature sensor associated with the motor. In the former
the InputNode for the High RPM Alarm is the value of the Motor RPM, while in the later the
InputNode of the High Alarm would be the value of the temperature sensor that is associated
with the motor.

ConditionClassId specifies in which domain this Condition is used. It is the NodeId of the
corresponding subtype of BaseConditionClassType. See 5.9 for the definition of ConditionClass
and a set of ConditionClasses defined in this standard. When using this Property for filtering,
Clients have to specify all individual subtypes of BaseConditionClassType NodeIds. The OfType
operator cannot be applied. BaseConditionClassType is used as class whenever a Condition
cannot be assigned to a more concrete class.

ConditionClassName provides the display name of the subtype of BaseConditionClassType.

ConditionSubClassId specifies additional class[es] that apply to the Condition. It is the NodeId
of the corresponding subtype of BaseConditionClassType. See 5.9.6 for the definition of
ConditionClass and a set of ConditionClasses defined in this standard. When using this
Property for filtering, Clients have to specify all individual sub types of BaseConditionClassType
NodeIds. The OfType operator cannot be applied. The Client specifies a NULL in the filter, to
return Conditions where no sub class is applied. When returning Conditions, if this optional field
is not available in a Condition, a NULL shall be returned for the field.

ConditionSubClassName provides the display name[s] of the ConditionClassType[s] listed in
the ConditionSubClassId.

ConditionName identifies the Condition instance that the Event originated from. It can be used
together with the SourceName in a user display to distinguish between different Condition

OPC Unified Architecture, Part 9 19 Release 1.04

instances. If a ConditionSource has only one instance of a ConditionType, and the Server has
no instance name, the Server shall supply the ConditionType browse name.

BranchId is NULL for all Event Notifications that relate to the current state of the Condition
instance. If BranchId is not NULL, it identifies a previous state of this Condition instance that
still needs attention by an Operator. If the current ConditionBranch is transformed into a
previous ConditionBranch then the Server needs to assign a non-NULL BranchId. An initial
Event for the branch will generated with the values of the ConditionBranch and the new
BranchId. The ConditionBranch can be updated many times before it is no longer needed. When
the ConditionBranch no longer requires Operator input the final Event will have Retain set to
False. The retain bit on the current Event is True, as long as any ConditionBranches require
Operator input. See 4.4 for more information about the need for creating and maintaining
previous ConditionBranches and Clause B.1 for an example using branches. The BranchId
DataType is NodeId although the Server is not required to have ConditionBranches in the
Address Space. The use of a NodeId allows the Server to use simple numeric identifiers, strings
or arrays of bytes.

Retain when True describes a Condition (or ConditionBranch) as being in a state that is
interesting for a Client wishing to synchronize its state with the Server’s state. The logic to
determine how this flag is set is Server specific. Typically, all Active Alarms would have the
Retain flag set; however, it is also possible for inactive Alarms to have their Retain flag set to
TRUE.

In normal processing when a Client receives an Event with the Retain flag set to False, the
Client should consider this as a ConditionBranch that is no longer of interest, in the case of a
“current Alarm display” the ConditionBranch would be removed from the display.

EnabledState indicates whether the Condition is enabled. EnabledState/Id is True if enabled,
False otherwise. EnabledState/TransitionTime defines when the EnabledState last changed.
Recommended state names are described in Annex A.

A Condition’s EnabledState effects the generation of Event Notifications and as such results in
the following specific behaviour:

• When the Condition instance enters the Disabled state, the Retain Property of this
Condition shall be set to False by the Server to indicate to the Client that the Condition
instance is currently not of interest to Clients. This includes all ConditionBranches if any
branches exist.

• When the Condition instance enters the enabled state, the Condition shall be evaluated
and all of its Properties updated to reflect the current values. If this evaluation causes
the Retain Property to transition to True for any ConditionBranch, then an Event
Notification shall be generated for that ConditionBranch.

• The Server may choose to continue to test for a Condition instance while it is Disabled.
However, no Event Notifications will be generated while the Condition instance is
disabled.

• For any Condition that exists in the AddressSpace the Attributes and the following
Variables will continue to have valid values even in the Disabled state; EventId, Event
Type, Source Node, Source Name, Time, and EnabledState. Other Properties may no
longer provide current valid values. All Variables that are no longer provided shall return
a status of Bad_ConditionDisabled. The Event that reports the Disabled state should
report the Properties as NULL or with a status of Bad_ConditionDisabled.

When enabled, changes to the following components shall cause a ConditionType Event
Notification:

• Quality

• Severity (inherited from BaseEventType)

• Comment

Release 1.04 20 OPC Unified Architecture, Part 9

This may not be the complete list. Sub-Types may define additional Variables that trigger Event
Notifications. In general, changes to Variables of the types TwoStateVariableType or
ConditionVariableType trigger Event Notifications.

Quality reveals the status of process values or other resources that this Condition instance is
based upon. If, for example, a process value is “Uncertain”, the associated “LevelAlarm”
Condition is also questionable. Values for the Quality can be any of the OPC StatusCodes
defined in Part 8 as well as Good, Uncertain and Bad as defined in Part 4. These StatusCodes
are similar to but slightly more generic than the description of data quality in the various field
bus specifications. It is the responsibility of the Server to map internal status information to
these codes. A Server that supports no quality information shall return Good. This quality can
also reflect the communication status associated with the system that this value or resource is
based on and from which this Alarm was received. For communication errors to the underlying
system, especially those that result in some unavailable Event fields, the quality shall be
Bad_NoCommunication error.

Events are only generated for Conditions that have their Retain field set to True and for the
initial transition of the Retain field from True to False.

LastSeverity provides the previous severity of the ConditionBranch. Initially this Variable
contains a zero value; it will return a value only after a severity change. The new severity is
supplied via the Severity Property, which is inherited from the BaseEventType.

Comment contains the last comment provided for a certain state (ConditionBranch). It may have
been provided by an AddComment Method, some other Method or in some other manner. The
initial value of this Variable is NULL, unless it is provided in some other manner. If a Method
provides as an option the ability to set a Comment, then the value of this Variable is reset to
NULL if an optional comment is not provided.

ClientUserId is related to the Comment field and contains the identity of the user who inserted
the most recent Comment. The logic to obtain the ClientUserId is defined in Part 5.

The NodeId of the Condition instance is used as ConditionId. It is not explicitly modelled as a
component of the ConditionType. However, it can be requested with the following
SimpleAttributeOperand (see Table 10) in the SelectClause of the EventFilter:

Table 10 – SimpleAttributeOperand

Name Type Description

SimpleAttributeOperand

 typeId NodeId NodeId of the ConditionType Node

 browsePath[] QualifiedName empty

 attributeId IntegerId Id of the NodeId Attribute

5.5.3 Condition and branch instances

Conditions are Objects which have a state which changes over time. Each Condition instance
has the ConditionId as identifier which uniquely identifies it within the Server.

A Condition instance may be an Object that appears in the Server Address Space. If this is the
case the ConditionId is the NodeId for the Object.

The state of a Condition instance at any given time is the set values for the Variables that
belong to the Condition instance. If one or more Variable values change the Server generates
an Event with a unique EventId.

If a Client calls Refresh the Server will report the current state of a Condition instance by re-
sending the last Event (i.e. the same EventId and Time is sent).

A ConditionBranch is a copy of the Condition instance state that can change independently of
the current Condition instance state. Each Branch has an identifier called a BranchId which is
unique among all active Branches for a Condition instance. Branches are typically not visible in
the Address Space and this standard does not define a standard way to make them visible.

OPC Unified Architecture, Part 9 21 Release 1.04

5.5.4 Disable Method

The Disable Method is used to change a Condition instance to the Disabled state. Normally, the
NodeId of the object instance as the ObjectId is passed to the Call Service. However, some
Servers do not expose Condition instances in the AddressSpace. Therefore, all Servers shall
allow Clients to call the Disable Method by specifying ConditionId as the ObjectId. The Method
cannot be called with an ObjectId of the ConditionType Node.

Signature

Disable();

Method Result Codes in Table 11 (defined in Call Service)

Table 11 – Disable result codes

Result Code Description

Bad_ConditionAlreadyDisabled See Table 103 for the description of this result code.

Table 12 specifies the AddressSpace representation for the Disable Method.

Table 12 – Disable Method AddressSpace definition

Attribute Value

BrowseName Disable

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionEnable

EventType
Defined in 5.10.2

5.5.5 Enable Method

The Enable Method is used to change a Condition instance to the enabled state. Normally, the
NodeId of the object instance as the ObjectId is passed to the Call Service. However, some
Servers do not expose Condition instances in the AddressSpace. Therefore, all Servers shall
allow Clients to call the Enable Method by specifying ConditionId as the ObjectId. The Method
cannot be called with an ObjectId of the ConditionType Node. If the Condition instance is not
exposed, then it may be difficult for a Client to determine the ConditionId for a disabled
Condition.

Signature

Enable();

Method result codes in Table 13 (defined in Call Service)

Table 13 – Enable result codes

Result Code Description

Bad_ConditionAlreadyEnabled See Table 103 for the description of this result code.

Table 14 specifies the AddressSpace representation for the Enable Method.

Table 14 – Enable Method AddressSpace definition

Attribute Value

BrowseName Enable

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionEnableEventType Defined in 5.10.2

Release 1.04 22 OPC Unified Architecture, Part 9

5.5.6 AddComment Method

The AddComment Method is used to apply a comment to a specific state of a Condition instance.
Normally, the NodeId of the Object instance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore, all
Servers shall also allow Clients to call the AddComment Method by specifying ConditionId as
the ObjectId. The Method cannot be called with an ObjectId of the ConditionType Node.

Signature

AddComment(

 [in] ByteString EventId

 [in] LocalizedText Comment

);

The parameters are defined in Table 15

Table 15 – AddComment arguments

Argument Description

EventId EventId identifying a particular Event Notification where a state was reported for a

Condition.

Comment A localized text to be applied to the Condition.

Method result codes in Table 16 (defined in Call Service)

Table 16 – AddComment result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the
general description of this result code.

Bad_EventIdUnknown See Table 103 for the description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on

the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

Comments are added to Event occurrences identified via an EventId. EventIds where the related
EventType is not a ConditionType (or subtype of it) and thus does not support Comments are
rejected.

A ConditionEvent – where the Comment Variable contains this text – will be sent for the
identified state. If a comment is added to a previous state (i.e. a state for which the Server has
created a branch), the BranchId and all Condition values of this branch will be reported.

Table 17 specifies the AddressSpace representation for the AddComment Method.

Table 17 – AddComment Method AddressSpace definition

Attribute Value

BrowseName AddComment

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType AuditConditionComment

EventType
Defined in 5.10.4

5.5.7 ConditionRefresh Method

ConditionRefresh allows a Client to request a Refresh of all Condition instances that currently
are in an interesting state (they have the Retain flag set). This includes previous states of a
Condition instance for which the Server maintains Branches. A Client would typically invoke this
Method when it initially connects to a Server and following any situations, such as
communication disruptions, in which it would require resynchronization with the Server. This

OPC Unified Architecture, Part 9 23 Release 1.04

Method is only available on the ConditionType or its subtypes. To invoke this Method, the call
shall pass the well-known MethodId of the Method on the ConditionType and the ObjectId shall
be the well-known ObjectId of the ConditionType Object.

Signature

ConditionRefresh(

 [in] IntegerId SubscriptionId

);

The parameters are defined in Table 18

Table 18 – ConditionRefresh parameters

Argument Description

SubscriptionId A valid Subscription Id of the Subscription to be refreshed. The Server shall verify that
the SubscriptionId provided is part of the Session that is invoking the Method.

Method result codes in Table 19 (defined in Call Service)

Table 19 – ConditionRefresh result codes

Result Code Description

Bad_SubscriptionIdInvalid See Part 4 for the description of this result code

Bad_RefreshInProgress See Table 103 for the description of this result code

Bad_UserAccessDenied The Method was not called in the context of the Session that owns the Subscription

See Part 4 for the general description of this result code.

Comments

Sub clause 4.5 describes the concept, use cases and information flow in more detail.

The input argument provides a Subscription identifier indicating which Client Subscription shall
be refreshed. If the Subscription is accepted the Server will react as follows:

1) The Server issues an event of RefreshStartEventType(defined in 5.11.2) marking the
start of Refresh. A copy of the instance of RefreshStartEventType is queued into the
Event stream for every Notifier MonitoredItem in the Subscription. Each of the Event
copies shall contain the same EventId.

2) The Server issues Event Notifications of any Retained Conditions and Retained
Branches of Conditions that meet the Subscriptions content filter criteria. Note that the
EventId for such a refreshed Notification shall be identical to the one for the original
Notification, the values of the other Properties are Server specific, in that some Servers
may be able to replay the exact Events with all Properties/Variables maintaining the
same values as originally sent, but other Servers might only be able to regenerate the
Event. The regenerated Event might contain some updated Property/Variable values.
For example, if the Alarm limits associated with a Variable were changed after the
generation of the Event without generating a change in the Alarm state, the new limit
might be reported. In another example, if the HighLimit was 100 and the Variable is 120.
If the limit were changed to 90 no new Event would be generated since no change to the
StateMachine, but the limit on a Refresh would indicate 90, when the original Event had
indicated 100.

3) The Server may intersperse new Event Notifications that have not been previously
issued to the Notifier along with those being sent as part of the Refresh request. Clients
shall check for multiple Event Notifications for a ConditionBranch to avoid overwriting a
new state delivered together with an older state from the Refresh process.

4) The Server issues an instance of RefreshEndEventType (defined in 5.11.3) to signal the
end of the Refresh. A copy of the instance of RefreshEndEventType is queued into the
Event stream for every Notifier MonitoredItem in the Subscription. Each of the Events
copies shall contain the same EventId.

Release 1.04 24 OPC Unified Architecture, Part 9

It is important to note that if multiple Event Notifiers are in a Subscription all Event Notifiers are
processed. If a Client does not want all MonitoredItems refreshed, then the Client should place
each MonitoredItem in a separate Subscription or call ConditionRefresh2 if the Server supports
it.

If more than one Subscription is to be refreshed, then the standard call Service array processing
can be used.

As mentioned above, ConditionRefresh shall also issue Event Notifications for prior states if
they still need attention. In particular, this is True for Condition instances where previous states
still need acknowledgement or confirmation.

Table 20 specifies the AddressSpace representation for the ConditionRefresh Method.

Table 20 – ConditionRefresh Method AddressSpace definition

Attribute Value

BrowseName ConditionRefresh

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType RefreshStartEvent Defined in 5.11.2

AlwaysGeneratesEvent ObjectType RefreshEndEvent Defined in 5.11.3

5.5.8 ConditionRefresh2 Method

ConditionRefresh2 allows a Client to request a Refresh of all Condition instances that currently
are in an interesting state (they have the Retain flag set) that are associated with the given
Monitored item. In all other respects it functions as ConditionRefresh. A Client would typically
invoke this Method when it initially connects to a Server and following any situations, such as
communication disruptions where only a single MonitoredItem is to be resynchronized with the
Server. This Method is only available on the ConditionType or its subtypes. To invoke this
Method, the call shall pass the well-known MethodId of the Method on the ConditionType and
the ObjectId shall be the well-known ObjectId of the ConditionType Object.

This Method is optional and as such Clients must be prepared to handle Servers which do not
provide the Method. If the Method returns Bad_MethodInvalid, the Client shall revert to
ConditionRefresh.

Signature

ConditionRefresh2(

 [in] IntegerId SubscriptionId

 [in] IntegerId MonitoredItemId

);

The parameters are defined in Table 18

Table 21 – ConditionRefresh2 parameters

Argument Description

SubscriptionId The identifier of the Subscription containing the MonitoredItem to be refreshed. The
Server shall verify that the SubscriptionId provided is part of the Session that is invoking
the Method.

MonitoredItemId The identifier of the MonitoredItem to be refreshed. The MonitoredItemId shall be in the
provided Subscription.

Method result codes in Table 19 (defined in Call Service)

OPC Unified Architecture, Part 9 25 Release 1.04

Table 22 – ConditionRefresh2 result codes

Result Code Description

Bad_SubscriptionIdInvalid See Part 4 for the description of this result code

Bad_MonitoredItemIdInvalid See Part 4 for the description of this result code

Bad_RefreshInProgress See Table 103 for the description of this result code

Bad_UserAccessDenied The Method was not called in the context of the Session that owns the Subscription

See Part 4 for the general description of this result code.

Bad_MethodInvalid See Part 4 for the description of this result code

Comments

Sub clause 4.5 describes the concept, use cases and information flow in more detail.

The input argument provides a Subscription identifier and MonitoredItem identifier indicating
which MonitoredItem in the selected Client Subscription shall be refreshed. If the Subscription
and MonitoredItem is accepted the Server will react as follows:

1) The Server issues a RefreshStartEvent (defined in 5.11.2) marking the start of Refresh.
The RefreshStartEvent is queued into the Event stream for the Notifier MonitoredItem in
the Subscription.

2) The Server issues Event Notifications of any Retained Conditions and Retained
Branches of Conditions that meet the Subscriptions content filter criteria. Note that the
EventId for such a refreshed Notification shall be identical to the one for the original
Notification, the values of the other Properties are Server specific, in that some Servers
may be able to replay the exact Events with all Properties/Variables maintaining the
same values as originally sent, but other Servers might only be able to regenerate the
Event. The regenerated Event might contain some updated Property/Variable values.
For example, if the Alarm limits associated with a Variable were changed after the
generation of the Event without generating a change in the Alarm state, the new limit
might be reported. In another example, if the HighLimit was 100 and the Variable is 120.
If the limit were changed to 90 no new Event would be generated since no change to the
StateMachine, but the limit on a Refresh would indicate 90, when the original Event had
indicated 100.

3) The Server may intersperse new Event Notifications that have not been previously
issued to the notifier along with those being sent as part of the Refresh request. Clients
shall check for multiple Event Notifications for a ConditionBranch to avoid overwriting a
new state delivered together with an older state from the Refresh process.

4) The Server issues a RefreshEndEvent (defined in 5.11.3) to signal the end of the
Refresh. The RefreshEndEvent is queued into the Event stream for the Notifier
MonitoredItem in the Subscription.

If more than one MonitoredItem or Subscription is to be refreshed, then the standard call Service
array processing can be used.

As mentioned above, ConditionRefresh2 shall also issue Event Notifications for prior states if
those states still need attention. In particular, this is True for Condition instances where
previous states still need acknowledgement or confirmation.

Table 20 specifies the AddressSpace representation for the ConditionRefresh2 Method.

Table 23 – ConditionRefresh2 Method AddressSpace definition

Attribute Value

BrowseName ConditionRefresh2

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType RefreshStartEvent Defined in 5.11.2

AlwaysGeneratesEvent ObjectType RefreshEndEvent Defined in 5.11.3

Release 1.04 26 OPC Unified Architecture, Part 9

5.6 Dialog Model

5.6.1 General

The Dialog Model is an extension of the Condition model used by a Server to request user input.
It provides functionality similar to the standard Message dialogs found in most operating
systems. The model can easily be customized by providing Server specific response options in
the ResponseOptionSet and by adding additional functionality to derived Condition Types.

5.6.2 DialogConditionType

The DialogConditionType is used to represent Conditions as dialogs. It is illustrated in Figure
10 and formally defined in Table 24.

LastResponse

DialogConditionType

ResponseOptionSet

TwoStateVariableType:

DialogState
Respond

OkResponse

ConditionType

EnableState

IsTrueSubState

Prompt

DefaultResponse CancelResponse

Figure 10 - DialogConditionType Overview

Table 24 – DialogConditionType Definition

Attribute Value

BrowseName DialogConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ConditionType defined in clause 5.5.2

HasComponent Variable DialogState LocalizedText TwoStateVariableType Mandatory

HasProperty Variable Prompt LocalizedText PropertyType Mandatory

HasProperty Variable ResponseOptionSet LocalizedText [] PropertyType Mandatory

HasProperty Variable DefaultResponse Int32 PropertyType Mandatory

HasProperty Variable LastResponse Int32 PropertyType Mandatory

HasProperty Variable OkResponse Int32 PropertyType Mandatory

HasProperty Variable CancelResponse Int32 PropertyType Mandatory

HasComponent Method Respond Defined in Clause 5.6.3. Mandatory

The DialogConditionType inherits all Properties of the ConditionType.

DialogState/Id when set to True indicates that the Dialog is active and waiting for a response.
Recommended state names are described in Annex A.

Prompt is a dialog prompt to be shown to the user.

ResponseOptionSet specifies the desired set of responses as array of LocalizedText. The index
in this array is used for the corresponding fields like DefaultResponse, LastResponse and
SelectedOption in the Respond Method. The recommended localized names for the common
options are described in Annex A.

Typical combinations of response options are

OPC Unified Architecture, Part 9 27 Release 1.04

• OK

• OK, Cancel

• Yes, No, Cancel

• Abort, Retry, Ignore

• Retry, Cancel

• Yes, No

DefaultResponse identifies the response option that should be shown as default to the user. It
is the index in the ResponseOptionSet array. If no response option is the default, the value of
the Property is -1.

LastResponse contains the last response provided by a Client in the Respond Method. If no
previous response exists, then the value of the Property is -1.

OkResponse provides the index of the OK option in the ResponseOptionSet array. This choice
is the response that will allow the system to proceed with the operation described by the prompt.
This allows a Client to identify the OK option if a special handling for this option is available. If
no OK option is available, the value of this Property is -1.

CancelResponse provides the index of the response in the ResponseOptionSet array that will
cause the Dialog to go into the inactive state without proceeding with the operation described
by the prompt. This allows a Client to identify the Cancel option if a special handling for this
option is available. If no Cancel option is available, the value of this Property is -1.

5.6.3 Respond Method

Respond is used to pass the selected response option and end the dialog. DialogState/Id will
return to False.

Signature

Respond(

 [in] Int32 SelectedResponse

);

The parameters are defined in Table 25

Table 25 – Respond parameters

Argument Description

SelectedResponse Selected index of the ResponseOptionSet array.

Method result codes in Table 26 (defined in Call Service)

Table 26 – Respond Result Codes

Result Code Description

Bad_DialogNotActive See Table 103 for the description of this result code.

Bad_DialogResponseInvalid See Table 103 for the description of this result code.

Table 27 specifies the AddressSpace representation for the Respond Method.

Table 27 – Respond Method AddressSpace definition

Attribute Value

BrowseName Respond

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType AuditConditionRespondEventType Defined in 5.10.5

Release 1.04 28 OPC Unified Architecture, Part 9

5.7 Acknowledgeable Condition Model

5.7.1 General

The Acknowledgeable Condition Model extends the Condition model. States for
acknowledgement and confirmation are added to the Condition model.

AcknowledgeableConditions are represented by the AcknowledgeableConditionType which is a
subtype of the ConditionType. The model is formally defined in the following sub clauses.

5.7.2 AcknowledgeableConditionType

The AcknowledgeableConditionType extends the ConditionType by defining acknowledgement
characteristics. It is an abstract type. The AcknowledgeableConditionType is illustrated in
Figure 11 and formally defined in Table 28.

Acknowledgeable

ConditionType

Acknowledge
TwoStateVariableType:

AckedState

TwoStateVariableType:

ConfirmedState

Confirm

ConditionType

EnableState

HasTrueSubState

Figure 11 – AcknowledgeableConditionType overview

Table 28 – AcknowledgeableConditionType definition

Attribute Value

BrowseName AcknowledgeableConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ConditionType defined in clause 5.5.2.

HasSubtype ObjectType AlarmConditionType Defined in Clause 5.8.2

HasComponent Variable AckedState LocalizedText TwoStateVariableType Mandatory

HasComponent Variable ConfirmedState LocalizedText TwoStateVariableType Optional

HasComponent Method Acknowledge Defined in Clause 5.7.3 Mandatory

HasComponent Method Confirm Defined in Clause 5.7.4 Optional

The AcknowledgeableConditionType inherits all Properties of the ConditionType.

AckedState when False indicates that the Condition instance requires acknowledgement for the
reported Condition state. When the Condition instance is acknowledged the AckedState is set
to True. ConfirmedState indicates whether it requires confirmation. Recommended state names
are described in Annex A. The two states are sub-states of the True EnabledState. See 4.3 for
more information about acknowledgement and confirmation models. The EventId used in the
Event Notification is considered the identifier of this state and has to be used when calling the
Methods for acknowledgement or confirmation.

OPC Unified Architecture, Part 9 29 Release 1.04

A Server may require that previous states be acknowledged. If the acknowledgement of a
previous state is still open and a new state also requires acknowledgement, the Server shall
create a branch of the Condition instance as specified in 4.4. Clients are expected to keep track
of all ConditionBranches where AckedState/Id is False to allow acknowledgement of those. See
also 5.5.2 for more information about ConditionBranches and the examples in Clause B.1. The
handling of the AckedState and branches also applies to the ConfirmedState.

5.7.3 Acknowledge Method

The Acknowledge Method is used to acknowledge an Event Notification for a Condition instance
state where AckedState is False. Normally, the NodeId of the object instance is passed as the
ObjectId to the Call Service. However, some Servers do not expose Condition instances in the
AddressSpace. Therefore, Servers shall allow Clients to call the Acknowledge Method by
specifying ConditionId as the ObjectId. The Method cannot be called with an ObjectId of the
AcknowledgeableConditionType Node.

Signature

Acknowledge(

 [in] ByteString EventId

 [in] LocalizedText Comment

);

The parameters are defined in Table 29

Table 29 – Acknowledge parameters

Argument Description

EventId EventId identifying a particular Event Notification.

Only Event Notifications where AckedState/Id was False can be acknowledged.

Comment A localized text to be applied to the Condition.

Method result codes in Table 30 (defined in Call Service)

Table 30 – Acknowledge result codes

Result Code Description

Bad_ConditionBranchAlreadyAcked See Table 103 for the description of this result code.

Bad_MethodInvalid The method id does not refer to a method for the specified object or
ConditionId.

Bad_EventIdUnknown See Table 103 for the description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was

called on the ConditionType Node. See Part 4 for the general description of
this result code.

Comments

A Server is responsible to ensure that each Event has a unique EventId. This allows Clients to
identify and acknowledge a particular Event Notification.

The EventId identifies a specific Event Notification where a state to be acknowledged was
reported. Acknowledgement and the optional comment will be applied to the state identified with
the EventId. If the comment field is NULL (both locale and text are empty) it will be ignored and
any existing comments will remain unchanged. If the comment is to be reset, an empty text with
a locale shall be provided.

A valid EventId will result in an Event Notification where AckedState/Id is set to True and the
Comment Property contains the text of the optional comment argument. If a previous state is
acknowledged, the BranchId and all Condition values of this branch will be reported. Table 31
specifies the AddressSpace representation for the Acknowledge Method.

Release 1.04 30 OPC Unified Architecture, Part 9

Table 31 – Acknowledge Method AddressSpace definition

Attribute Value

BrowseName Acknowledge

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGenerates

Event
ObjectType AuditConditionAcknowledge

EventType

Defined in 5.10.5

5.7.4 Confirm Method

The Confirm Method is used to confirm an Event Notifications for a Condition instance state
where ConfirmedState is False. Normally, the NodeId of the object instance is passed as the
ObjectId to the Call Service. However, some Servers do not expose Condition instances in the
AddressSpace. Therefore, Servers shall allow Clients to call the Confirm Method by specifying
ConditionId as the ObjectId. The Method cannot be called with an ObjectId of the
AcknowledgeableConditionType Node.

Signature

Confirm(

 [in] ByteString EventId

 [in] LocalizedText Comment

);

The parameters are defined in Table 32

Table 32 – Confirm Method parameters

Argument Description

EventId EventId identifying a particular Event Notification.

Only Event Notifications where the Id property of the ConfirmedState is False can be
confirmed.

Comment A localized text to be applied to the Conditions.

Method result codes in Table 33 (defined in Call Service)

Table 33 – Confirm result codes

Result Code Description

Bad_ConditionBranchAlreadyConfirmed See Table 103 for the description of this result code.

Bad_MethodInvalid The method id does not refer to a method for the specified object or

ConditionId.

See Part 4 for the general description of this result code.

Bad_EventIdUnknown See Table 103 for the description of this result code.

Bad_NodeIdUnknown Used to indicate that the specified ObjectId is not valid or that the Method

was called on the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

A Server is responsible to ensure that each Event has a unique EventId. This allows Clients to
identify and confirm a particular Event Notification.

The EventId identifies a specific Event Notification where a state to be confirmed was reported.
A Comment can be provided which will be applied to the state identified with the EventId.

A valid EventId will result in an Event Notification where ConfirmedState/Id is set to True and
the Comment Property contains the text of the optional comment argument. If a previous state
is confirmed, the BranchId and all Condition values of this branch will be reported. A Client can
confirm only events that have a ConfirmedState/Id set to False. The logic for setting
ConfirmedState/Id to False is Server specific and may even be event or condition specific.

Table 34 specifies the AddressSpace representation for the Confirm Method.

OPC Unified Architecture, Part 9 31 Release 1.04

Table 34 – Confirm Method AddressSpace definition

Attribute Value

BrowseName Confirm

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGenerates

Event
ObjectType AuditConditionConfirmEventType Defined in 5.10.7

5.8 Alarm model

5.8.1 General

Figure 12 informally describes the AlarmConditionType, its sub-types and where it is in the
hierarchy of Event Types.

AlarmConditionType

AcknowledgeableConditionType

ConditionType

ExclusiveLimit

AlarmType

Exclusive

Level
Exclusive

MultiDeviation

Exclusive

RateOfChange

NonExclusiveLimit

AlarmType

NonExclusive

Level

NonExclusive

MultiDeviation

NonExclusive

RateOfChange

OffNormalAlarmType

DiscreteAlarmType

SystemOffNormalAlarmType

LimitAlarmTypeDiscrepancy

AlarmType

Figure 12 - AlarmConditionType Hierarchy Model

5.8.2 AlarmConditionType

The AlarmConditionType is an abstract type that extends the AcknowledgeableConditionType
by introducing an ActiveState, SuppressedState and ShelvingState. It also adds the ability to
set a delay time, re-alarm time, Alarm groups and audible Alarm settings The Alarm model is
illustrated in Figure 13. This illustration is not intended to be a complete definition. It is formally
defined in Table 35.

Release 1.04 32 OPC Unified Architecture, Part 9

ConditionType

Acknowledgeable

ConditionType

AlarmCondition

Type

StateMachineType:

ShelvingState

EnableState

TwoStateVariableType:

ActiveState

TwoStateVariableType:

SuppressedState

CurrentState

InputNode

SuppressedOrShelved

MaxTimeShelved

AudibleEnable

AudibleSound

OnDelay

OffDelay
RepeatCount

FirstInGroup

TwoStateVariableType:

SilenceState

<AlarmGroup>

FirstInGroupFlag

ReAlarmTime

ReAlarmRepeatCount

Silence

Suppress

TwoStateVariableType:

OutOfServiceState

IsTrueSubState

OutOfService

Reset

TwoStateVariableType:

LatchedState

Figure 13 – Alarm Model

Table 35 – AlarmConditionType definition

Attribute Value

BrowseName AlarmConditionType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AcknowledgeableConditionType defined in clause 5.7.2

HasComponent Variable ActiveState LocalizedText TwoStateVariableType Mandatory

HasProperty Variable InputNode NodeId PropertyType Mandatory

HasComponent Variable SuppressedState LocalizedText TwoStateVariableType Optional

HasComponent Variable OutOfServiceState LocalizedText TwoStateVariableType Optional

OPC Unified Architecture, Part 9 33 Release 1.04

HasComponent Object ShelvingState ShelvedStateMachineType Optional

HasProperty Variable SuppressedOrShelved Boolean PropertyType Mandatory

HasProperty Variable MaxTimeShelved Duration PropertyType Optional

HasProperty Variable AudibleEnabled Boolean PropertyType Optional

HasProperty Variable AudibleSound AudioDataTyp

e
AudioVariableType Optional

HasComponent Variable SilenceState LocalizedText TwoStateVariableType Optional

HasProperty Variable OnDelay Duration PropertyType Optional

HasProperty Variable OffDelay Duration PropertyType Optional

HasComponent Variable FirstInGroupFlag Boolean BaseDataVariableType Optional

HasComponent Object FirstInGroup AlarmGroupType Optional

HasComponent Object LatchedState LocalizedText TwoStateVariableType Optional

HasAlarmSuppre

ssionGroup
Object <AlarmGroup> AlarmGroupType OptionalPla

ceholder

HasProperty Variable ReAlarmTime Duration PropertyType Optional

HasComponent Variable ReAlarmRepeatCount Int16 BaseDataVariableType Optional

HasComponent Method Silence Defined in 5.8.5 Optional

HasComponent Method Suppress Defined in 5.8.6 Optional

HasComponent Method Unsuppress Defined in 5.8.7 Optional

HasComponent Method RemoveFromService Defined in 5.8.8 Optional

HasComponent Method PlaceInService Defined in 5.8.9 Optional

HasComponent Method Reset Defined in 5.8.4 Optional

HasSubtype Object DiscreteAlarmType

HasSubtype Object LimitAlarmType

HasSubtype Object DiscrepancyAlarmType

The AlarmConditionType inherits all Properties of the AcknowledgeableConditionType. The

following states are sub-states of the True EnabledState.

ActiveState/Id when set to True indicates that the situation the Condition is representing
currently exists. When a Condition instance is in the inactive state (ActiveState/Id when set to
False) it is representing a situation that has returned to a normal state. The transitions of
Conditions to the inactive and Active states are triggered by Server specific actions. Subtypes
of the AlarmConditionType specified later in this document will have sub-state models that
further define the Active state. Recommended state names are described in Annex A.

The InputNode Property provides the NodeId of the Variable the Value of which is used as
primary input in the calculation of the Alarm state. If this Variable is not in the AddressSpace,
a NULL NodeId shall be provided. In some systems, an Alarm may be calculated based on
multiple Variables Values; it is up to the system to determine which Variable’s NodeId is used.

SuppressedState, OutOfServiceState and ShelvingState together allow the suppression of
Alarms on display systems. These three suppressions are generally used by different personnel
or systems at a plant, i.e. automatic systems, maintenance personnel and Operators.

SuppressedState is used internally by a Server to automatically suppress Alarms due to system
specific reasons. For example, a system may be configured to suppress Alarms that are
associated with machinery that is in a state such as shutdown. For example, a low level Alarm
for a tank that is currently not in use might be suppressed. Recommended state names are
described in Annex A.

OutOfServiceState is used by maintenance personnel to suppress Alarms due to a maintenance
issue. For example, if an instrument is taken out of service for maintenance or is removed
temporarily while it is being replaced or serviced the item would have the OutOfServiceState
set. Recommended state names are described in Annex A.

Release 1.04 34 OPC Unified Architecture, Part 9

ShelvingState suggests whether an Alarm shall (temporarily) be prevented from being displayed
to the user. It is quite often used by Operators to block nuisance Alarms. The ShelvingState is
defined in 5.8.10.

When an Alarm has any or all of the SuppressedState, OutOfServiceState or ShelvingState set
to True, the SuppressedOrShelved property shall be set True and this Alarm is then typically
not displayed by the Client. State transitions associated with the Alarm do occur, but they are
not typically displayed by the Clients as long as the Alarm remains in any of the
SuppressedState, OutOfServiceState or Shelved state.

The optional Property MaxTimeShelved is used to set the maximum time that an Alarm
Condition may be shelved. The value is expressed as duration. Systems can use this Property
to prevent permanent Shelving of an Alarm. If this Property is present it will be an upper limit
on the duration passed into a TimedShelve Method call. If a value that exceeds the value of
this Property is passed to the TimedShelve Method, then a Bad_ShelvingTimeOutOfRange error
code is returned on the call. If this Property is present it will also be enforced for the
OneShotShelved state, in that an Alarm Condition will transition to the Unshelved state from
the OneShotShelved state if the duration specified in this Property expires following a
OneShotShelve operation without a change of any of the other items associated with the
Condition.

The optional Property AudibleEnabled is a Boolean that indicates if the current state of this
Alarm includes an audible Alarm.

The optional Property AudibleSound contains the sound file that is to be played if an audible
Alarm is to be generated. This file would be play/generated as long as the Alarm is active and
unacknowledged, unless the silence StateMachine is included, in which case it may also be
silenced by this StateMachine.

The SilenceState is used to suppress the generation of audible Alarms. Typically, it is used
when an Operator silences all Alarms on a screen, but needs to acknowledge the Alarms
individually. Silencing an Alarm shall silence the Alarm on all systems (screens) that it is being
reported on. Not all Clients will make use of this StateMachine, but it allows multiple Clients to
synchronize audible Alarm states. Acknowledging an Alarm shall automatically silence an
Alarm.

The OnDelay and OffDelay Properties can be used to eliminate nuisance Alarms. The OnDelay
is used to avoid unnecessary Alarms when a signal temporarily overshoots its setpoint, thus
preventing the Alarm from being triggered until the signal remains in the Alarm state
continuously for a specified length of time (OnDelay time). The OffDelay is used to reduce
chattering Alarms by locking the Alarm indication for a certain holding period after the condition
has returned to normal. I.e. the Alarm shall stay active for the OffDelay time and shall not
regenerate if it returns to active in that period. If the Alarm remains in the inactive zone for
OffDelay it will then become inactive.

The optional variable FirstInGroupFlag is used together with the FirstInGroup object. The
FirstInGroup Object is an instance of an AlarmGroupType that groups a number of related
Alarms. The FirstInGroupFlag is set on the Alarm instance that was the first Alarm to trigger in
a FirstInGroup. If this variable is present, then the FirstInGroup shall also be present. These
two nodes allow an alarming system to determine which Alarm in the list was the trigger. It is
commonly used in situations where Alarms are interrelated and usually multiple Alarms occur.
For example, vibration sensors in a turbine, usually all sensors trigger if any one triggers, but
what is important for an Operator is the first sensor that triggered.

The LatchedState Object, if present, indicates that this Alarm supports being latched. The Alarm
will remain with a retain bit of True until it is no longer active, is acknowledge and is reset. The
Reset Method, if called while active has no effect on the Alarm and is ignored and an error of
Bad_InvalidState is return on the call. The Object indicates the current state, latched or not
latched. Recommended state names are described in Annex A. If this Object is provided the
Reset Method must also be provided.

An Alarm instance may contain HasAlarmSuppressionGroup reference(s) to instance(s) of
AlarmGroupType. Each instance is an AlarmSuppressionGroup. When an

OPC Unified Architecture, Part 9 35 Release 1.04

AlarmSuppressionGroup goes active, the Server shall set the SuppressedState of the Alarm to
True. When all of referenced AlarmSuppressionGroups are no longer active, then the Server
shall set SuppressedState to False. A single AlarmSuppressionGroup can be assigned to
multiple Alarms. AlarmSuppressionGroups are used to control Alarm floods and to help manage
Alarms.

ReAlarmTime if present sets a time that is used to bring an Alarm back to the top of an Alarm
list. If an Alarm has not returned to normal within the provided time (from when it last was
alarmed), the Server will generate a new Alarm for it (as if it just went into alarm). If it has been
silenced it shall return to an un-silenced state, if it has been acknowledged it shall return to
unacknowledged. The Alarm active time is set to the time of the re-alarm.

ReAlarmRepeatCount if present counts the number times an Alarm was re-alarmed. Some
smart alarming system would use this count to raise the priority or otherwise generate additional
or different annunciations for the given Alarm. The count is reset when an Alarm returns to
normal.

Silence Method can be used to silence an instance of an Alarm. It is defined in 5.8.5.

Suppress Method can be used to suppress an instance of an Alarm. Most Alarm suppression
occurs via advanced alarming, but this method allows additional access to suppress a particular
Alarm instance. Additional details are provided in the definition in 5.8.6.

Unsuppress Method can be used to remove an instance of an Alarm from SuppressedState.
Additional details are provided in the definition in 5.8.7.

PlaceInService Method can be used to remove an instance of an Alarm from OutOfServiceState.
It is defined in 5.8.9.

RemoveFromService Method can be used to place an instance of an Alarm in
OutOfServiceState. It is defined in 5.8.8.

Reset Method is used to clear a latched Alarm. It is defined in 5.8.4. If this Object is provided
the LatchedState Object shall also be provided.

More details about the Alarm Model and the various states can be found in Sub clause 4.8. and
in Annex E.

5.8.3 AlarmGroupType

The AlarmGroupType provides a simple manner of grouping Alarms. This grouping can be used
for Alarm suppression or for identifying related Alarms. The actual usage of the
AlarmGroupType is specified where it is used.

Table 36 – AlarmGroupType Definition

Attribute Value

BrowseName AlarmGroupType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype `of the FolderType defined in Part 5

AlarmGroupMember Object <AlarmConditionInstance> AlarmConditionType OptionalPla
ceholder

The instance of an AlarmGroupType should be given a name and description that describes the
purpose of the Alarm group.

The AlarmGroupType instance will contain a list of instances of AlarmConditionType or sub type
of AlarmConditionType referenced by AlarmGroupMember references. At least one Alarm must
be present in an instance of an AlarmGroupType.

Release 1.04 36 OPC Unified Architecture, Part 9

5.8.4 Reset Method

The Reset Method is used reset a latched Alarm instance. It is only available on an instance of
an AlarmConditionType that exposes the LatchedState. Normally, the NodeId of the Object
instance is passed as the ObjectId to the Call Service. However, some Servers do not expose
Condition instances in the AddressSpace. Therefore, Servers shall allow Clients to call the
Reset Method by specifying ConditionId as the ObjectId. The Method cannot be called with an
ObjectId of the AlarmConditionType Node.

Signature

Reset();

The parameters are defined in Table 40

Table 37 – Reset arguments

Argument Description

Method result codes in Table 41 (defined in Call service)

Table 38 – Silence result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the

general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on

the ConditionType Node.

See Part 4 for the general description of this result code.

Bad_InvalidState The Alarm instance was not latched or still active or still required acknowledgement.

For an Alarm Instance to be reset it must have been in Alarm, and returned to normal
and have been acknowledged prior to being reset.

Table 42 specifies the AddressSpace representation for the Reset Method.

Table 39 – Reset Method AddressSpace definition

Attribute Value

BrowseName Reset

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGenerates

Event
Ob jectType AuditConditionRes

etEventType
Defined in 5.10.11

5.8.5 Silence Method

The Silence Method is used silence a specific Alarm instance. It is only available on an instance
of an AlarmConditionType that also exposes the SilenceState. Normally, the NodeId of the
Object instance is passed as the ObjectId to the Call Service. However, some Servers do not
expose Condition instances in the AddressSpace. Therefore, Servers shall allow Clients to call
the Silence Method by specifying ConditionId as the ObjectId. The Method cannot be called
with an ObjectId of the AlarmConditionType Node.

Signature

Silence();

The parameters are defined in Table 40

OPC Unified Architecture, Part 9 37 Release 1.04

Table 40 – Silence arguments

Argument Description

Method result codes in Table 41 (defined in Call service)

Table 41 – Silence result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on

the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

If the instance is not currently in an audible state, the command is ignored.

Table 42 specifies the AddressSpace representation for the Silence Method.

Table 42 – Silence Method AddressSpace definition

Attribute Value

BrowseName Silence

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionSilenceEventType Defined in 5.10.10

5.8.6 Suppress Method

The Suppress Method is used to suppress a specific Alarm instance. It is only available on an
instance of an AlarmConditionType that also exposes the SuppressedState. This Method can
be used to change the SuppressedState of an Alarm and overwrite any suppression caused by
an associated AlarmSuppressionGroup. This Method works in parallel with any suppression
triggered by an AlarmSupressionGroup, in that if the Method is used to suppress an Alarm, an
AlarmSuppressionGroup might clear the suppression.

Normally, the NodeId of the object instance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore,
Servers shall allow Clients to call the Suppress Method by specifying ConditionId as the
ObjectId. The Method cannot be called with an ObjectId of the AlarmConditionType Node.

Signature

Suppress();

Method Result Codes in Table 43 (defined in Call Service)

Table 43 – Suppress result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the

general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on

the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

Suppress Method applies to an Alarm instance, even if it is not currently active.

Release 1.04 38 OPC Unified Architecture, Part 9

Table 44 specifies the AddressSpace representation for the Suppress Method.

Table 44 – Suppress Method AddressSpace definition

Attribute Value

BrowseName Suppress

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionSuppressionEvent
Type

Defined in 5.10.4

5.8.7 Unsuppress Method

The Unsuppress Method is used to clear the SuppressedState of a specific Alarm instance. It
is only available on an instance of an AlarmConditionType that also exposes the
SuppressedState. This Method can be used to overwrite any suppression cause by an
associated AlarmSuppressionGroup. This Method works in parallel with any suppression
triggered by an AlarmSuppressionGroup, in that if the Method is used to clear the
SuppressedState of an Alarm, any change in an AlarmSuppressionGroup might again suppress
the Alarm.

Normally, the NodeId of the ObjectInstance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore,
Servers shall allow Clients to call the Unsuppress Method by specifying ConditionId as the
ObjectId. The Method cannot be called with an ObjectId of the AlarmConditionType Node.

Signature

Unsuppress();

Method Result Codes in Table 43 (defined in Call Service)

Table 45 – Unsuppress result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on
the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

Unsuppress Method applies to an Alarm instance, even if it is not currently active.

Table 44 specifies the AddressSpace representation for the Suppress Method.

Table 46 – Unsuppress Method AddressSpace definition

Attribute Value

BrowseName Unsuppress

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionSuppressionEventType Defined in 5.10.4

5.8.8 RemoveFromService Method

The RemoveFromService Method is used to suppress a specific Alarm instance. It is only
available on an instance of an AlarmConditionType that also exposes the OutOfServiceState.
Normally, the NodeId of the object instance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore,

OPC Unified Architecture, Part 9 39 Release 1.04

Servers shall allow Clients to call the RemoveFromService Method by specifying ConditionId
as the ObjectId. The Method cannot be called with an ObjectId of the AlarmConditionType Node.

Signature

RemoveFromService ();

Method result codes in Table 47 (defined in Call Service)

Table 47 – RemoveFromService result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the

general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on
the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

Instances that do not expose the OutOfService State shall reject RemoveFromService calls.
RemoveFromService Method applies to an Alarm instance, even if it is not currently in the Active
State.

Table 48 specifies the AddressSpace representation for the RemoveFromService Method.

Table 48 – RemoveFromService Method AddressSpace definition

Attribute Value

BrowseName RemoveFromService

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

AlwaysGeneratesEvent ObjectType AuditConditionOutOfServiceEventType Defined in 5.10.12

5.8.9 PlaceInService Method

The PlaceInService Method is used to set the OutOfServiceState to False of a specific Alarm
instance. It is only available on an instance of an AlarmConditionType that also exposes the
OutOfServiceState. Normally, the NodeId of the ObjectInstance is passed as the ObjectId to
the Call Service. However, some Servers do not expose Condition instances in the
AddressSpace. Therefore, Servers shall allow Clients to call the PlaceInService Method by
specifying ConditionId as the ObjectId. The Method cannot be called with an ObjectId of the
AlarmConditionType Node.

Signature

PlaceInService ();

Method result codes in Table 47 (defined in Call Service)

Table 49 – PlaceInService result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the

general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on
the ConditionType Node.

See Part 4 for the general description of this result code.

Comments

Release 1.04 40 OPC Unified Architecture, Part 9

The PlaceInService Method applies to an Alarm instance, even if it is not currently in the Active
State.

Table 48 specifies the AddressSpace representation for the PlaceInService Method.

Table 50 – PlaceInService Method AddressSpace definition

Attribute Value

BrowseName PlaceInService

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionOutOfService
EventType

Defined in 5.10.12

5.8.10 ShelvedStateMachineType

5.8.10.1 Overview

The ShelvedStateMachineType defines a sub-state machine that represents an advanced Alarm
filtering model. This model is illustrated in Figure 15.

The state model supports two types of Shelving: OneShotShelving and TimedShelving. They
are illustrated in Figure 14. The illustration includes the allowed transitions between the various
sub-states. Shelving is an Operator initiated activity.

In OneShotShelving, a user requests that an Alarm be Shelved for its current Active state. This
type of Shelving is typically used when an Alarm is continually occurring on a boundary (i.e. a
Condition is jumping between High Alarm and HighHigh Alarm, always in the Active state). The
One Shot Shelving will automatically clear when an Alarm returns to an inactive state. Another
use for this type of Shelving is for a plant area that is shutdown i.e. a long running Alarm such
as a low level Alarm for a tank that is not in use. When the tank starts operation again the
Shelving state will automatically clear.

In TimedShelving, a user specifies that an Alarm be shelved for a fixed time period. This type
of Shelving is quite often used to block nuisance Alarms. For example, an Alarm that occurs
more than 10 times in a minute may get shelved for a few minutes.

In all states, the Unshelve can be called to cause a transition to the Unshelve state; this includes
Un-shelving an Alarm that is in the TimedShelve state before the time has expired and the
OneShotShelve state without a transition to an inactive state.

All but two transitions are caused by Method calls as illustrated in Figure 14. The “Time Expired”
transition is simply a system generated transition that occurs when the time value defined as
part of the “Timed Shelved Call” has expired. The “Any Transition Occurs” transition is also a
system generated transition; this transition is generated when the Condition goes to an inactive
state.

Timed

Shelved

Oneshot

Shelved

Unshelved

Timed Shelve call

Any Transition Occurs

One Shot Shelve callTime Expired

UnShelve call
UnShelve call

Timed Shelve call

One Shot Shelve call

OPC Unified Architecture, Part 9 41 Release 1.04

Figure 14 – Shelve state transitions

The ShelvedStateMachineType includes a hierarchy of sub-states. It supports all transitions
between Unshelved, OneShotShelved and TimedShelved.

The state machine is illustrated in Figure 15 and formally defined in Table 51.

OneShotShelve

ShelvedStateMachine

Type

TimedShelved

OneShotShelved

UnShelvedToTimedShelved

HasCause

FiniteStateMachineType

Unshelved

UnShelvedToOneShotShelved

TimedShelvedToUnshelved

OneShotShelvedToUnShelved

Unshelve

HasCause

HasCause

TimedShelve

HasCause

TimedShelvedToOneShotShelved

HasCause
OneShotShelvedToTimedShelved

HasCause

StateType

TransitionType

UnshelveTime

Figure 15 – ShelvedStateMachineType model

Table 51 –ShelvedStateMachineType definition

Attribute Value

BrowseName ShelvedStateMachineType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType defined in Part 5

HasProperty Variable UnshelveTime Duration PropertyType Mandatory

HasComponent Object Unshelved StateType

HasComponent Object TimedShelved StateType

HasComponent Object OneShotShelved StateType

HasComponent Object UnshelvedToTimedShelved TransitionType

HasComponent Object TimedShelvedToUnshelved TransitionType

HasComponent Object TimedShelvedToOneShotShelved TransitionType

HasComponent Object UnshelvedToOneShotShelved TransitionType

HasComponent Object OneShotShelvedToUnshelved TransitionType

HasComponent Object OneShotShelvedToTimedShelved TransitionType

HasComponent Method TimedShelve Defined in Clause 5.8.10.3 Mandatory

HasComponent Method OneShotShelve Defined in Clause 5.8.10.4 Mandatory

HasComponent Method Unshelve Defined in Clause 5.8.10.2 Mandatory

UnshelveTime specifies the remaining time in milliseconds until the Alarm automatically
transitions into the Un-shelved state. For the TimedShelved state this time is initialised with the
ShelvingTime argument of the TimedShelve Method call. For the OneShotShelved state the
UnshelveTime will be a constant set to the maximum Duration except if a MaxTimeShelved
Property is provided.

Release 1.04 42 OPC Unified Architecture, Part 9

This FiniteStateMachine supports three Active states; Unshelved, TimedShelved and
OneShotShelved. It also supports six transitions. The states and transitions are described in
Table 52. This FiniteStateMachine also supports three Methods; TimedShelve, OneShotShelve
and Unshelve.

Table 52 – ShelvedStateMachineType transitions

BrowseName References BrowseName TypeDefinition

Transitions

UnshelvedToTimedShelved FromState Unshelved StateType

 ToState TimedShelved StateType

 HasEffect AlarmConditionType

 HasCause TimedShelve Method

UnshelvedToOneShotShelved FromState Unshelved StateType

 ToState OneShotShelved StateType

 HasEffect AlarmConditionType

 HasCause OneShotShelve Method

TimedShelvedToUnshelved FromState TimedShelved StateType

 ToState Unshelved StateType

 HasEffect AlarmConditionType

TimedShelvedToOneShotShelved FromState TimedShelved StateType

 ToState OneShotShelved StateType

 HasEffect AlarmConditionType

 HasCause OneShotShelving Method

OneShotShelvedToUnshelved FromState OneShotShelved StateType

 ToState Unshelved StateType

 HasEffect AlarmConditionType

OneShotShelvedToTimedShelved FromState OneShotShelved StateType

 ToState TimedShelved StateType

 HasEffect AlarmConditionType

 HasCause TimedShelve Method

5.8.10.2 Unshelve Method

The Unshelve Method sets the instance of AlarmConditionType to the Unshelved state.
Normally, the MethodId found in the Shelving child of the Condition instance and the NodeId of
the Shelving object as the ObjectId are passed to the Call Service. However, some Servers do
not expose Condition instances in the AddressSpace. Therefore, all Servers shall also allow
Clients to call the Unshelve Method by specifying ConditionId as the ObjectId. The Method
cannot be called with an ObjectId of the ShelvedStateMachineType Node.

Signature

Unshelve();

Method Result Codes in Table 53 (defined in Call Service)

Table 53 – Unshelve result codes

Result Code Description

Bad_ConditionNotShelved See Table 103 for the description of this result code.

Table 54 specifies the AddressSpace representation for the Unshelve Method.

Table 54 – Unshelve Method AddressSpace definition

Attribute Value

BrowseName Unshelve

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Defined in 5.10.7

OPC Unified Architecture, Part 9 43 Release 1.04

5.8.10.3 TimedShelve Method

The TimedShelve Method sets the instance of AlarmConditionType to the TimedShelved state
(parameters are defined in Table 55 and result codes are described in Table 56). Normally, the
MethodId found in the Shelving child of the Condition instance and the NodeId of the Shelving
object as the ObjectId are passed to the Call Service. However, some Servers do not expose
Condition instances in the AddressSpace. Therefore, all Servers shall also allow Clients to call
the TimedShelve Method by specifying ConditionId as the ObjectId. The Method cannot be
called with an ObjectId of the ShelvedStateMachineType Node.

Signature

TimedShelve(

 [in] Duration ShelvingTime

);

Table 55 – TimedShelve parameters

Argument Description

ShelvingTime Specifies a fixed time for which the Alarm is to be shelved. The Server may refuse the
provided duration. If a MaxTimeShelved Property exist on the Alarm than the Shelving
time shall be less than or equal to the value of this Property.

Method Result Codes (defined in Call Service)

Table 56 – TimedShelve result codes

Result Code Description

Bad_ConditionAlreadyShelved See Table 103 for the description of this result code.

The Alarm is already in TimedShelved state and the system does not allow a reset of the
shelved timer.

Bad_ShelvingTimeOutOfRange See Table 103 for the description of this result code.

Comments

Shelving for some time is quite often used to block nuisance Alarms. For example, an Alarm
that occurs more than 10 times in a minute may get shelved for a few minutes.

In some systems the length of time covered by this duration may be limited and the Server may
generate an error refusing the provided duration. This limit may be exposed as the
MaxTimeShelved Property.

Table 57 specifies the AddressSpace representation for the TimedShelve Method.

Table 57 – TimedShelve Method AddressSpace definition

Attribute Value

BrowseName TimedShelve

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Defined in 5.10.7

5.8.10.4 OneShotShelve Method

The OneShotShelve Method sets the instance of AlarmConditionType to the OneShotShelved
state. Normally, the MethodId found in the Shelving child of the Condition instance and the
NodeId of the Shelving object as the ObjectId are passed to the Call Service. However, some
Servers do not expose Condition instances in the AddressSpace. Therefore, all Servers shall
also allow Clients to call the OneShotShelve Method by specifying ConditionId as the ObjectId.
The Method cannot be called with an ObjectId of the ShelvedStateMachineType Node.

Signature

OneShotShelve();

Release 1.04 44 OPC Unified Architecture, Part 9

Method Result Codes are defined in Table 58 (status code field is defined in Call Service)

Table 58 – OneShotShelve result codes

Result Code Description

Bad_ConditionAlreadyShelved See Table 103 for the description of this result code.

The Alarm is already in OneShotShelved state.

Table 59 specifies the AddressSpace representation for the OneShotShelve Method.

Table 59 – OneShotShelve Method AddressSpace definition

Attribute Value

BrowseName OneShotShelve

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Defined in 5.10.7

5.8.11 LimitAlarmType

Alarms can be modelled with multiple exclusive sub-states and assigned limits or they may be
modelled with nonexclusive limits that can be used to group multiple states together.

The LimitAlarmType is an abstract type used to provide a base Type for AlarmConditionTypes
with multiple limits. The LimitAlarmType is illustrated in Figure 16.

AlarmConditionType

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimit

AlarmType
NonExclusiveLimit

AlarmType

BaseLowLimit

BaseLowLowLimit

BaseHighLimit

BaseHighHighLimit

Figure 16 – LimitAlarmType

The LimitAlarmType is formally defined in Table 60.

OPC Unified Architecture, Part 9 45 Release 1.04

Table 60 – LimitAlarmType definition

Attribute Value

BrowseName LimitAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AlarmConditionType defined in clause 5.8.2.

HasSubtype ObjectType ExclusiveLimitAlarmType Defined in Clause 5.8.12.3

HasSubtype ObjectType NonExclusiveLimitAlarmType Defined in Clause 5.8.13

HasProperty Variable HighHighLimit Double PropertyType Optional

HasProperty Variable HighLimit Double PropertyType Optional

HasProperty Variable LowLimit Double PropertyType Optional

HasProperty Variable LowLowLimit Double PropertyType Optional

HasProperty Variable BaseHighHighLimit Double PropertyType Optional

HasProperty Variable BaseHighLimit Double PropertyType Optional

HasProperty Variable BaseLowLimit Double PropertyType Optional

HasProperty Variable BaseLowLowLimit Double PropertyType Optional

Four optional limits are defined that configure the states of the derived limit Alarm Types. These
Properties shall be set for any Alarm limits that are exposed by the derived limit Alarm types.
These Properties are listed as optional but at least one is required. For cases where an
underlying system cannot provide the actual value of a limit, the limit Property shall still be
provided, but will have its AccessLevel set to not readable. It is assumed that the limits are
described using the same Engineering Unit that is assigned to the variable that is the source of
the Alarm. For Rate of change limit Alarms, it is assumed this rate is units per second unless
otherwise specified.

Four optional base limits are defined that are used for AdaptiveSAlarming. They contain the
configured Alarm limit. If a Server supports AdaptiveAlarming for Alarm limits, the
corresponding base Alarm limit shall be provided for any limits that are exposed by the derived
limit Alarm types. The value of this property is the value of the limit to which an AdaptiveAlarm
can be reset if any algorithmic changes need to be discarded.

The Alarm limits listed may cause an Alarm to be generated when a value equals the limit or it
may generate the Alarm when the limit is exceeded, (i.e. the Value is above the limit for
HighLimit and below the limit for LowLimit). The exact behaviour when the value is equal to the
limit is Server specific.

The Variable that is the source of the LimitAlarmType Alarm shall be a scalar. This
LimitAlarmType can be subtyped if the Variable that is the source is an array. The subtype shall
describe the expected behaviour with respect to limits and the array values. Some possible
options:

• if any element of the array exceeds the limit an Alarm is generated,

• if all elements exceed the limit an Alarm is generated,

• the limits may also be an array, in which case if any array limit is exceeded by the
corresponding source array element, an Alarm is generated.

5.8.12 Exclusive Limit Types

5.8.12.1 Overview

This clause describes the state machine and the base Alarm Type behaviour for
AlarmConditionTypes with multiple mutually exclusive limits.

5.8.12.2 ExclusiveLimitStateMachineType

The ExclusiveLimitStateMachineType defines the state machine used by AlarmConditionTypes
that handle multiple mutually exclusive limits. It is illustrated in Figure 17.

Release 1.04 46 OPC Unified Architecture, Part 9

FiniteStateMachineType

Low

High

ExclusiveLimit

StateMachineType

LowLow

HighHigh

HighHighToHigh

HighToHighHigh

LowToLowLow

LowLowToLow

StateType

TransitionType

Figure 17 – ExclusiveLimitStateMachineType

It is created by extending the FiniteStateMachineType. It is formally defined in Table 61 and
the state transitions are described in Table 62.

Table 61 – ExclusiveLimitStateMachineType definition

Attribute Value

BrowseName ExclusiveLimitStateMachineType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType

HasComponent Object HighHigh StateType

HasComponent Object High StateType

HasComponent Object Low StateType

HasComponent Object LowLow StateType

HasComponent Object LowToLowLow TransitionType

HasComponent Object LowLowToLow TransitionType

HasComponent Object HighToHighHigh TransitionType

HasComponent Object HighHighToHigh TransitionType

Table 62 – ExclusiveLimitStateMachineType transitions

BrowseName References BrowseName TypeDefinition

Transitions

HighHighToHigh FromState HighHigh StateType

 ToState High StateType

 HasEffect AlarmConditionType

HighToHighHigh FromState High StateType

 ToState HighHigh StateType

 HasEffect AlarmConditionType

LowLowToLow FromState LowLow StateType

 ToState Low StateType

 HasEffect AlarmConditionType

LowToLowLow FromState Low StateType

 ToState LowLow StateType

 HasEffect AlarmConditionType

The ExclusiveLimitStateMachineType defines the sub state machine that represents the actual
level of a multilevel Alarm when it is in the Active state. The sub state machine defined here

OPC Unified Architecture, Part 9 47 Release 1.04

includes High, Low, HighHigh and LowLow states. This model also includes in its transition
state a series of transition to and from a parent state, the inactive state. This state machine as
it is defined shall be used as a sub state machine for a state machine which has an Active state.
This Active state could be part of a “level” Alarm or “deviation” Alarm or any other Alarm state
machine.

The LowLow, Low, High, HighHigh are typical for many industries. Vendors can introduce sub-
state models that include additional limits; they may also omit limits in an instance. If a model
omits states or transitions in the StateMachine, it is recommended that they provide the optional
Property AvailableStates and/or AvailableTransitions (see Part 5).

5.8.12.3 ExclusiveLimitAlarmType

The ExclusiveLimitAlarmType is used to specify the common behaviour for Alarm Types with
multiple mutually exclusive limits. The ExclusiveLimitAlarmType is illustrated in Figure 18.

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

ExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimitStateMachineType:

LimitState

CurrentState

IsTrueSubState

ExclusiveLevel

AlarmType
ExclusiveDeviation

AlarmType

ExclusiveRateOfChange

AlarmType

LimitAlarmType

Figure 18 – ExclusiveLimitAlarmType

 The ExclusiveLimitAlarmType is formally defined in Table 63.

Release 1.04 48 OPC Unified Architecture, Part 9

Table 63 – ExclusiveLimitAlarmType definition

Attribute Value

BrowseName ExclusiveLimitAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the LimitAlarmType defined in clause 5.8.11.

HasSubtype ObjectType ExclusiveLevelAlarmType Defined in Clause 5.8.14.3

HasSubtype ObjectType ExclusiveDeviationAlarmType

Type
Defined in Clause 5.8.15.3

HasSubtype ObjectType ExclusiveRateOfChangeAlarm
Type

Defined in Clause 5.8.16.3

HasComponent Object LimitState ExclusiveLimitStateMachineType Mandatory

The LimitState is a sub state of the ActiveState and has an IsTrueSubStateOf reference to the
ActiveState. The LimitState represents the actual limit that is violated in an instance of
ExclusiveLimitAlarmType. When the ActiveState of the AlarmConditionType is inactive the
LimitState shall not be available and shall return NULL on read. Any Events that subscribe for
fields from the LimitState when the ActiveState is inactive shall return a NULL for these
unavailable fields.

5.8.13 NonExclusiveLimitAlarmType

The NonExclusiveLimitAlarmType is used to specify the common behaviour for Alarm Types
with multiple non-exclusive limits. The NonExclusiveLimitAlarmType is illustrated in Figure 19.

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

NonExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

IsTrueSubState

NonExclusiveLevel

AlarmType

NonExclusiveDeviation

AlarmType
NonExclusiveRateOfChange

AlarmType

HighHighState

HighState

LowState

LowLowState

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

Figure 19 – NonExclusiveLimitAlarmType

 The NonExclusiveLimitAlarmType is formally defined in Table 64.

OPC Unified Architecture, Part 9 49 Release 1.04

Table 64 – NonExclusiveLimitAlarmType definition

Attribute Value

BrowseName NonExclusiveLimitAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the LimitAlarmType defined in clause 5.8.11.

HasSubtype ObjectType NonExclusiveLevelAlarmType Defined in Clause 5.8.14.2

HasSubtype ObjectType NonExclusiveDeviationAlarmType Defined in Clause 5.8.15.2

HasSubtype ObjectType NonExclusiveRateOfChangeAlarm
Type

Defined in Clause 5.8.16.2

HasComponent Variable HighHighState LocalizedText TwoStateVariableType Optional

HasComponent Variable HighState LocalizedText TwoStateVariableType Optional

HasComponent Variable LowState LocalizedText TwoStateVariableType Optional

HasComponent Variable LowLowState LocalizedText TwoStateVariableType Optional

HighHighState, HighState, LowState, and LowLowState represent the non-exclusive states. As

an example, it is possible that both HighState and HighHighState are in their True state.
Vendors may choose to support any subset of these states. Recommended state names are
described in Annex A.

Four optional limits are defined that configure these states. At least the HighState or the
LowState shall be provided even though all states are optional. It is implied by the definition of
a HighState and a LowState, that these groupings are mutually exclusive. A value cannot
exceed both a HighState value and a LowState value simultaneously.

5.8.14 Level Alarm

5.8.14.1 Overview

A level Alarm is commonly used to report when a limit is exceeded. It typically relates to an
instrument – e.g. a temperature meter. The level Alarm becomes active when the observed
value is above a high limit or below a low limit.

5.8.14.2 NonExclusiveLevelAlarmType

The NonExclusiveLevelAlarmType is a special level Alarm utilized with one or more non-
exclusive states. If for example both the High and HighHigh states need to be maintained as
active at the same time then an instance of NonExclusiveLevelAlarmType should be used.

The NonExclusiveLevelAlarmType is based on the NonExclusiveLimitAlarmType. It is formally
defined in Table 65.

Table 65 – NonExclusiveLevelAlarmType definition

Attribute Value

BrowseName NonExclusiveLevelAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the NonExclusiveLimitAlarmType defined in clause 5.8.13.

No additional Properties to the NonExclusiveLimitAlarmType are defined.

5.8.14.3 ExclusiveLevelAlarmType

The ExclusiveLevelAlarmType is a special level Alarm utilized with multiple mutually exclusive
limits. It is formally defined in Table 66.

Release 1.04 50 OPC Unified Architecture, Part 9

Table 66 – ExclusiveLevelAlarmType definition

Attribute Value

BrowseName ExclusiveLevelAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherits the Properties of the ExclusiveLimitAlarmType defined in clause 5.8.12.3.

No additional Properties to the ExclusiveLimitAlarmType are defined.

5.8.15 Deviation Alarm

5.8.15.1 Overview

A deviation Alarm is commonly used to report an excess deviation between a desired set point
level of a process value and an actual measurement of that value. The deviation Alarm becomes
active when the deviation exceeds or drops below a defined limit.

For example, if a set point had a value of 10, a high deviation Alarm limit of 2 and a low deviation
Alarm limit of -1 then the low sub state is entered if the process value drops below 9; the high
sub state is entered if the process value raises above 12. If the set point were changed to 11
then the new deviation values would be 10 and 13 respectively. The set point can be fixed by
a configuration, adjusted by an Operator or it can be adjusted by an algorithm, the actual
functionality exposed by the set point is application specific. The deviation Alarm can also be
used to report a problem between a redundant data source where the difference between the
primary source and the secondary source exceeds the included limit. In this case, the
SetpointNode would point to the secondary source.

5.8.15.2 NonExclusiveDeviationAlarmType

The NonExclusiveDeviationAlarmType is a special level Alarm utilized with one or more non-
exclusive states. If for example both the High and HighHigh states need to be maintain ed as
active at the same time then an instance of NonExclusiveDeviationAlarmType should be used.

The NonExclusiveDeviationAlarmType is based on the NonExclusiveLimitAlarmType. It is
formally defined in Table 67.

Table 67 – NonExclusiveDeviationAlarmType definition

Attribute Value

BrowseName NonExclusiveDeviationAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the NonExclusiveLimitAlarmType defined in clause 5.8.13.

HasProperty Variable SetpointNode NodeId PropertyType Mandatory

HasProperty Variable BaseSetpointNode NodeId PropertyType Optional

The SetpointNode Property provides the NodeId of the set point used in the deviation
calculation. In cases where the Alarm is generated by an underlying system and if the Variable
is not in the AddressSpace, a NULL NodeId shall be provided.

The BaseSetpointNode Property provides the NodeId of the original or base setpoint. The value
of this node is the value of the setpoint to which an AdaptiveAlarm can be reset if any algorithmic
changes need to be discarded. The value of this node usually contains the originally configured
set point.

5.8.15.3 ExclusiveDeviationAlarmType

The ExclusiveDeviationAlarmType is utilized with multiple mutually exclusive limits. It is formally
defined in Table 68.

OPC Unified Architecture, Part 9 51 Release 1.04

Table 68 – ExclusiveDeviationAlarmType definition

Attribute Value

BrowseName ExclusiveDeviationAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Inherits the Properties of the ExclusiveLimitAlarmType defined in clause 5.8.12.3.

HasProperty Variable SetpointNode NodeId PropertyType Mandatory

HasProperty Variable BaseSetpointNode NodeId PropertyType Optional

The SetpointNode Property provides the NodeId of the set point used in the Deviation
calculation. If this Variable is not in the AddressSpace, a NULL NodeId shall be provided.

The BaseSetpointNode Property provides the NodeId of the original or base setpoint. The value
of this node is the value of the set point to which an AdaptiveAlarm can be reset if any
algorithmic changes need to be discarded. The value of this node usually contains the originally
configured set point.

5.8.16 Rate of change Alarms

5.8.16.1 Overview

A Rate of Change Alarm is commonly used to report an unusual change or lack of change in a
measured value related to the speed at which the value has changed. The Rate of Change
Alarm becomes active when the rate at which the value changes exceeds or drops below a
defined limit.

A Rate of Change is measured in some time unit, such as seconds or minutes and some unit of
measure such as percent or meter. For example, a tank may have a High limit for the Rate of
Change of its level (measured in meters) which would be 4 meters per minute. If the tank level
changes at a rate that is greater than 4 meters per minute then the High sub state is entered.

5.8.16.2 NonExclusiveRateOfChangeAlarmType

The NonExclusiveRateOfChangeAlarmType is a special level Alarm utilized with one or more
non-exclusive states. If for example both the High and HighHigh states need to be maintained
as active at the same time this AlarmConditionType should be used

The NonExclusiveRateOfChangeAlarmType is based on the NonExclusiveLimitAlarmType. It is
formally defined in Table 69.

Table 69 – NonExclusiveRateOfChangeAlarmType definition

Attribute Value

BrowseName NonExclusiveRateOfChangeAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the NonExclusiveLimitAlarmType defined in clause 5.8.13.

HasProperty Variable EngineeringUnits EUInformation PropertyType Optional

EngineeringUnits provides the engineering units associated with the limits values. If this is not
provided the assumed Engineering Unit is the same as the EU associated with the pa rent
variable per second e.g. if parent is meters, this unit is meters/second.

5.8.16.3 ExclusiveRateOfChangeAlarmType

ExclusiveRateOfChangeAlarmType is utilized with multiple mutually exclusive limits. It is
formally defined in Table 70.

Release 1.04 52 OPC Unified Architecture, Part 9

Table 70 – ExclusiveRateOfChangeAlarmType definition

Attribute Value

BrowseName ExclusiveRateOfChangeAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherits the Properties of the ExclusiveLimitAlarmType defined in clause 5.8.12.3.

HasProperty Variable EngineeringUnits EUInformation PropertyType Optional

EngineeringUnits provides the engineering units associated with the limits values. If this is not
provided the assumed Engineering Unit is the same as the EU associated with the parent
variable per second e.g. if parent is meters, this unit is meters/second.

5.8.17 Discrete Alarms

5.8.17.1 DiscreteAlarmType

The DiscreteAlarmType is used to classify Types into Alarm Conditions where the input for the
Alarm may take on only a certain number of possible values (e.g. True/False,
running/stopped/terminating). The DiscreteAlarmType with sub types defined in this standard
is illustrated in Figure 20. It is formally defined in Table 71.

AlarmCondition

Type

OffNormalAlarmType

DiscreteAlarmType

TripAlarmType

LimitAlarmType

CertificateExpirationType

SystemOffNormalAlarmType

Figure 20 – DiscreteAlarmType Hierarchy

Table 71 – DiscreteAlarmType definition

Attribute Value

BrowseName DiscreteAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the AlarmConditionType defined in clause 5.8.2.

HasSubtype ObjectType OffNormalAlarmType Defined in Clause 5.8.15

5.8.17.2 OffNormalAlarmType

The OffNormalAlarmType is a specialization of the DiscreteAlarmType intended to represent a
discrete Condition that is considered to be not normal. It is formally defined in Table 72. This
sub type is usually used to indicate that a discrete value is in an Alarm state, it is active as long
as a non-normal value is present.

OPC Unified Architecture, Part 9 53 Release 1.04

Table 72 – OffNormalAlarmType Definition

Attribute Value

BrowseName OffNormalAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DiscreteAlarmType defined in clause 5.8.17.1

HasSubtype ObjectType TripAlarmType Defined in Clause 5.8.17.4

HasSubtype ObjectType SystemOffNormalAlarmType Defined in Clause 5.8.17.3

HasProperty Variable NormalState NodeId PropertyType Mandatory

The NormalState Property is a Property that points to a Variable which has a value that
corresponds to one of the possible values of the Variable pointed to by the InputNode Property
where the NormalState Property Variable value is the value that is considered to be the normal
state of the Variable pointed to by the InputNode Property. When the value of the Variable
referenced by the InputNode Property is not equal to the value of the NormalState Property the
Alarm is Active. If this Variable is not in the AddressSpace, a NULL NodeId shall be provided.

5.8.17.3 SystemOffNormalAlarmType

This Condition is used by a Server to indicate that an underlying system that is providing Alarm
information is having a communication problem and that the Server may have invalid or
incomplete Condition state in the Subscription. Its representation in the AddressSpace is
formally defined in Table 73.

Table 73 – SystemOffNormalAlarmType definition

Attribute Value

BrowseName SystemOffNormalAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasSubtype ObjectType CertificateExpirationAlarm

Type
Defined in Clause 0

Subtype of the OffNormalAlarmType, i.e. it has HasProperty References to the same Nodes.

5.8.17.4 TripAlarmType

The TripAlarmType is a specialization of the OffNormalAlarmType intended to represent an
equipment trip Condition. The Alarm becomes active when the monitored piece of equipment
experiences some abnormal fault such as a motor shutting down due to an overload condition.
It is formally defined in Table 74. This Type is mainly used for categorization.

Table 74 – TripAlarmType definition

Attribute Value

BrowseName TripAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the OffNormalAlarmType defined in clause 5.8.17.2.

5.8.17.5 InstrumentDiagnosticAlarmType

The InstrumentDiagnosticAlarmType is a specialization of the OffNormalAlarmType intended to
represent a fault in a field device. The Alarm becomes active when the monitored device
experiences a fault such as a sensor failure. It is formally defined in Table 74. This Type is
mainly used for categorization.

Release 1.04 54 OPC Unified Architecture, Part 9

Table 75 – InstrumentDiagnosticAlarmType definition

Attribute Value

BrowseName InstrumentDiagnosticAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the OffNormalAlarmType defined in clause 5.8.17.2.

5.8.17.6 SystemDiagnosticAlarmType

The SystemDiagnosticAlarmType is a specialization of the OffNormalAlarmType intended to
represent a fault in a system or sub-system. The Alarm becomes active when the monitored
system experiences a fault. It is formally defined in Table 74. This Type is mainly used for
categorization.

Table 76 – SystemDiagnosticAlarmType definition

Attribute Value

BrowseName SystemDiagnosticAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the OffNormalAlarmType defined in clause 5.8.17.2.

5.8.17.7 CertificateExpirationAlarmType

This SystemOffNormalAlarmType is raised by the Server when the Server’s Certificate is within
the ExpirationLimit of expiration. This Alarm automatically returns to normal when the certificate
is updated.

Table 77 – CertificateExpirationAlarmType definition

Attribute Value

BrowseName CertificateExpirationAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemOffNormalAlarmType defined in clause 5.8.17.3

HasProperty Variable ExpirationDate DateTime PropertyType Mandatory

HasProperty Variable ExpirationLimit Duration PropertyType Optional

HasProperty Variable CertificateType NodeId PropertyType Mandatory

HasProperty Variable Certificate ByteString PropertyType Mandatory

ExpirationDate is the date and time this certificate will expire.

ExpirationLimit is the time interval before the ExpirationDate at which this Alarm will trigger.
This shall be a positive number. If the property is not provided, a defaul t of 2 weeks shall be
used.

CertificateType – See Part 12 for definition of CertificateType.

Certificate is the certificate that is about to expire.

5.8.18 DiscrepancyAlarmType

The DiscrepancyAlarmType is commonly used to report an action that did not occur within an
expected time range.

The DiscrepancyAlarmType is based on the AlarmConditionType. It is formally defined in Table
78.

OPC Unified Architecture, Part 9 55 Release 1.04

Table 78 – DiscrepancyAlarmType definition

Attribute Value

BrowseName DiscrepancyAlarmType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AlarmConditionType defined in 5.8.2.

HasProperty Variable TargetValueNode NodeId PropertyType Mandatory

HasProperty Variable ExpectedTime Duration PropertyType Mandatory

HasProperty Variable Tolerance Double PropertyType Optional

The TargetValueNode Property provides the NodeId of the Variable that is used for the target

value.

The ExpectedTime Property provides the Duration within which the value pointed to by the
InputNode shall equal the value specified by the TargetValueNode (or be within the Tolerance
range, if specified).

The Tolerance Property is a value that can be added to or subtracted from the
TargetValueNode’s value, providing a range that the value can be in without generating the
Alarm.

A DiscrepancyAlarmType can be used to indicate a motor has not responded to a start request
within a given time, or that a process value has not reached a given value after a setpoint
change within a given time interval.

The DiscrepancyAlarmType shall return to normal when the value has reached the target value.

5.9 ConditionClasses

5.9.1 Overview

Conditions are used in specific application domains like Maintenance, System or Process. The
ConditionClass hierarchy is used to specify domains and is orthogonal to the ConditionType
hierarchy. The ConditionClassId Property of the ConditionType is used to assign a Condition to
a ConditionClass. Clients can use this Property to filter out essential classes. OPC UA defines
the base ObjectType for all ConditionClasses and a set of common classes used across many
industries. Figure 21 informally describes the hierarchy of ConditionClass Types defined in this
standard.

Defined in [UA Part 5]
BaseObjectType

BaseConditionClass
Type

ProcessConditionClass
Type

MaintenanceConditionClass
Type

SystemConditionClass
Type

Figure 21 – ConditionClass type hierarchy

ConditionClasses are not representations of Objects in the underlying system and, therefore,
only exist as Type Nodes in the Address Space.

Release 1.04 56 OPC Unified Architecture, Part 9

5.9.2 BaseConditionClassType

BaseConditionClassType is used as class whenever a Condition cannot be assigned to a more
concrete class. Servers should use a more specific ConditionClass, if possible. All
ConditionClass Types derive from BaseConditionClassType. It is formally defined in Table 79.

Table 79 – BaseConditionClassType definition

Attribute Value

BrowseName BaseConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in Part 5.

5.9.3 ProcessConditionClassType

The ProcessConditionClassType is used to classify Conditions related to the process itself.
Examples of a process would be a control system in a boiler or the instrumentation associated
with a chemical plant or paper machine. The ProcessConditionClassType is formally defined in
Table 80.

Table 80 – ProcessConditionClassType definition

Attribute Value

BrowseName ProcessConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseConditionClassType defined in clause 5.9.2.

5.9.4 MaintenanceConditionClassType

The MaintenanceConditionClassType is used to classify Conditions related to maintenance.
Examples of maintenance would be Asset Management systems or conditions, which occur in
process control systems, which are related to calibration of equipment. The
MaintenanceConditionClassType is formally defined in Table 81. No further definition is
provided here. It is expected that other standards groups will define domain-specific sub-types.

Table 81 – MaintenanceConditionClassType definition

Attribute Value

BrowseName MaintenanceConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause 5.9.2.

5.9.5 SystemConditionClassType

The SystemConditionClassType is used to classify Conditions related to the System. It is
formally defined in Table 82. System Conditions occur in the controlling or monitoring system
process. Examples of System related items could include available disk space on a compute r,
Archive media availability, network loading issues or a controller error, No further definition is
provided here. It is expected that other standards groups or vendors will de fine domain-specific
sub-types.

OPC Unified Architecture, Part 9 57 Release 1.04

Table 82 – SystemConditionClassType definition

Attribute Value

BrowseNam
e

SystemConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause 5.9.2.

5.9.6 SafetyConditionClassType

The SafetyConditionClassType is used to classify Conditions related to safety. It is formally
defined in Table 82.

Safety Conditions occur in the controlling or monitoring system process. Examples of safety
related items could include, emergency shutdown systems or fire suppression systems.

Table 83 – SafetyConditionClassType definition

Attribute Value

BrowseName SafetyConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause 5.9.2.

5.9.7 HighlyManagedAlarmConditionClassType

In Alarm systems some Alarms may be classified as highly managed Alarms. This class of
Alarm requires special handling that varies according to the individual requirements. It might
require individual acknowledgement or not allow suppression or any of a number of other
special behaviours. The HighlyManagedAlarmConditionClassType is used to classify
Conditions as highly managed Alarms. It is formally defined in Table 84.

Table 84 – HighlyManagedAlarmConditionClassType definition

Attribute Value

BrowseName HighlyManagedAlarmConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause 5.9.2.

5.9.8 TrainingConditionClassType

The TrainingConditionClassType is used to classify Conditions related to training system or
training exercises. It is formally defined in Table 85. These Conditions typically occur in a
training system or are generated as part of a simulation for a training exercise. Training
Conditions might be process or system conditions. It is expected that other standards groups
or vendors will define domain-specific sub-types.

Table 85 – TrainingConditionClassType definition

Attribute Value

BrowseName TrainingConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause.

Release 1.04 58 OPC Unified Architecture, Part 9

5.9.9 StatisticalConditionClassType

The StatisticalConditionClassType is used to classify Conditions related that are based on
statistical calculations. It is formally defined in Table 86. These Conditions are generated as
part of a statistical analysis. They might be any of an Alarm number of types.

Table 86 – StatisticalConditionClassType definition

Attribute Value

BrowseName StatisticalConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause.

5.9.10 TestingConditionSubClassType

The TestingConditionSubClassType is used to classify Conditions related to testing of an Alarm
system or Alarm function. It is formally defined in Table 87. Testing Conditions might include a
condition to test an alarm annunciation such as a horn or other panel. It might also be used to
temporarily reclassify a Condition to check response times or suppression logic. It is expected
that other standards groups or vendors wil l define domain-specific sub-types.

Table 87 – TestingConditionSubClassType definition

Attribute Value

BrowseName TestingConditionSubClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in clause 5.9.2.

5.10 Audit Events

5.10.1 Overview

Following are sub-types of AuditUpdateMethodEventType that will be generated in response to
the Methods defined in this document. They are illustrated in Figure 22.

OPC Unified Architecture, Part 9 59 Release 1.04

Defined in [UA Part 5]
AuditEventType

AuditConditionComment

EventType

AuditCondition

EventType

AuditUpdateMethod

EventType

AuditConditionAcknowledge

EventType

AuditConditionEnable

EventType

AuditConditionShelving

EventType

AuditConditionRespond

EventType

AuditConditionConfirm

EventType

AuditConditionSupress

EventType

AuditConditionSIlence

EventType

AuditConditionOutOf

ServiceEventType

Figure 22 – AuditEvent hierarchy

AuditConditionEventTypes are normally used in response to a Method call. However, these
Events shall also be notified if the functionality of such a Method is performed by some other
Server-specific means. In this case, the SourceName Property shall contain a proper
description of this internal means and the other Properties should be filled in as described for
the given EventType.

5.10.2 AuditConditionEventType

This EventType is used to subsume all AuditConditionEventTypes. It is formally defined in Table
88.

Table 88 – AuditConditionEventType definition

Attribute Value

BrowseName AuditConditionEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateMethodEventType defined in Part 5

AuditConditionEventTypes inherit all Properties of the AuditUpdateMethodEventType defined
in Part 5. Unless a subtype overrides the definition, the inherited Properties of the Condition
will be used as defined.

• The inherited Property SourceNode shall be filled with the ConditionId.

• The SourceName shall be “Method/” and the name of the Service that generated the
Event (e.g. Disable, Enable, Acknowledge, etc.).

This EventType can be further customized to reflect particular Condition related actions.

Release 1.04 60 OPC Unified Architecture, Part 9

5.10.3 AuditConditionEnableEventType

This EventType is used to indicate a change in the enabled state of a Condition instance. It is
formally defined in Table 89.

Table 89 – AuditConditionEnableEventType definition

Attribute Value

BrowseName AuditConditionEnableEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The SourceName shall indicate Method/Enable or Method/Disable. If the audit Event is not the
result of a Method call, but due to an internal action of the Server, the SourceName shall reflect
Enable or Disable, it may be preceded by an appropriate description such as “ Internal/Enable”
or “Remote/Enable”.

5.10.4 AuditConditionCommentEventType

This EventType is used to report an AddComment action. It is formally defined in Table 90.

Table 90 – AuditConditionCommentEventType definition

Attribute Value

BrowseName AuditConditionCommentEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Mandatory

HasProperty Variable Comment LocalizedText PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The ConditionEventId field shall contain the id of the event for which the comment was added.

The Comment contains the actual comment that was added.

5.10.5 AuditConditionRespondEventType

This EventType is used to report a Respond action (see 5.6). It is formally defined in Table 91.

Table 91 – AuditConditionRespondEventType definition

Attribute Value

BrowseName AuditConditionRespondEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable SelectedResponse Uint32 PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The SelectedResponse field shall contain the response that was selected.

5.10.6 AuditConditionAcknowledgeEventType

This EventType is used to indicate acknowledgement or confirmation of one or more Conditions.
It is formally defined in Table 92.

Table 92 – AuditConditionAcknowledgeEventType definition

Attribute Value

BrowseName AuditConditionAcknowledgeEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Mandatory

HasProperty Variable Comment LocalizedText PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

OPC Unified Architecture, Part 9 61 Release 1.04

The ConditionEventId field shall contain the id of the Event that was acknowledged.

The Comment contains the actual comment that was added, it may be a blank comment or a
NULL.

5.10.7 AuditConditionConfirmEventType

This EventType is used to report a Confirm action. It is formally defined in Table 93.

Table 93 – AuditConditionConfirmEventType definition

Attribute Value

BrowseName AuditConditionConfirmEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Mandatory

HasProperty Variable Comment LocalizedText PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The ConditionEventId field shall contain the id of the Event that was confirmed.

The Comment contains the actual comment that was added, it may be a blank comment or a
NULL.

5.10.8 AuditConditionShelvingEventType

This EventType is used to indicate a change to the Shelving state of a Condition instance. It is
formally defined in Table 94.

Table 94 – AuditConditionShelvingEventType definition

Attribute Value

BrowseName AuditConditionShelvingEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ShelvingTime Duration PropertyType Optional

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

If the Method indicates a TimedShelve operation, the ShelvingTime field shall contain duration

for which the Alarm is to be shelved. For other Shelving Methods, this parameter may be omitted
or NULL.

5.10.9 AuditConditionSuppressionEventType

This EventType is used to indicate a change to the Suppression state of a Condition instance.
It is formally defined in Table 95.

Table 95 – AuditConditionSuppressionEventType definition

Attribute Value

BrowseName AuditConditionSuppressionEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

This Event indicates an Alarm suppression operation. An audit Event of this type shall be
generated, if audit events are supported for any suppression action, including automatic system
based suppression.

5.10.10 AuditConditionSilenceEventType

This EventType is used to indicate a change to the Silence state of a Condition instance. It is
formally defined in Table 96.

Release 1.04 62 OPC Unified Architecture, Part 9

Table 96 – AuditConditionSilenceEventType definition

Attribute Value

BrowseName AuditConditionSilenceEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

This event indicates that an Alarm was silenced, but not acknowledged. An audit event of this
type shall be generated, if Audit events are supported for any silence action, including automatic
system based silence.

5.10.11 AuditConditionResetEventType

This EventType is used to indicate a change to the Latched state of a Condition instance. It is
formally defined in Table 96.

Table 97 – AuditConditionResetEventType definition

Attribute Value

BrowseName AuditConditionResetEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

This event indicates that an Alarm was reset. An audit event of this type shall be generated, if
Audit events are supported for any Alarm action.

5.10.12 AuditConditionOutOfServiceEventType

This EventType is used to indicate a change to the OutOfService State of a Condition instance.
It is formally defined in Table 98.

Table 98 – AuditConditionOutOfServiceEventType definition

Attribute Value

BrowseName AuditConditionOutOfServiceEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

An audit Event of this type shall be generated if audit Events are supported.

5.11 Condition Refresh related Events

5.11.1 Overview

Following are sub-types of SystemEventType that will be generated in response to a Refresh
Methods call. They are illustrated in Figure 23.

OPC Unified Architecture, Part 9 63 Release 1.04

Defined in [UA Part 5]

RefreshEnd
EventType

SystemEventType

BaseEventType

RefreshRequired
EventType

RefreshStart
EventType

Figure 23 – Refresh Related Event Hierarchy

5.11.2 RefreshStartEventType

This EventType is used by a Server to mark the beginning of a Refresh Notification cycle. Its
representation in the AddressSpace is formally defined in Table 99.

Table 99 – RefreshStartEventType definition

Attribute Value

BrowseName RefreshStartEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in Part 5, i.e. it has HasProperty References to the same Nodes.

5.11.3 RefreshEndEventType

This EventType is used by a Server to mark the end of a Refresh Notification cycle. Its
representation in the AddressSpace is formally defined in Table 100.

Table 100 – RefreshEndEventType definition

Attribute Value

BrowseName RefreshEndEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in Part 5, i.e. it has HasProperty References to the same

Nodes.

5.11.4 RefreshRequiredEventType

This EventType is used by a Server to indicate that a significant change has occurred in the
Server or in the subsystem below the Server that may or does invalidate the Condition state of
a Subscription. Its representation in the AddressSpace is formally defined in Table 101.

Table 101 – RefreshRequiredEventType definition

Attribute Value

BrowseName RefreshRequiredEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in Part 5, i.e. it has HasProperty References to the same

Nodes.

Release 1.04 64 OPC Unified Architecture, Part 9

When a Server detects an Event queue overflow, it shall track if any Condition Events have

been lost, if any Condition Events were lost, it shall issue a RefreshRequiredEventType Event
to the Client after the Event queue is no longer in an overflow state.

5.12 HasCondition Reference type

The HasCondition ReferenceType is a concrete ReferenceType and can be used directly. It is
a subtype of NonHierarchicalReferences. The representation in the AddressSpace is specified
in Table 102.

The semantic of this ReferenceType is to specify the relationship between a ConditionSource
and its Conditions. Each ConditionSource shall be the target of a HasEventSource Reference
or a sub type of HasEventSource. The AddressSpace organisation that shall be provided for
Clients to detect Conditions and ConditionSources is defined in Clause 6. Various examples for
the use of this ReferenceType can be found in B.2.

HasCondition References can be used in the Type definition of an Object or a Variable. In this
case, the SourceNode of this ReferenceType shall be an ObjectType or VariableType Node or
one of their InstanceDeclaration Nodes. The TargetNode shall be a Condition instance
declaration or a ConditionType. The following rules for instantiation apply:

• All HasCondition References used in a Type shall exist in instances of these Types as
well.

• If the TargetNode in the Type definition is a ConditionType, the same TargetNode will
be referenced on the instance.

HasCondition References may be used solely in the instance space when they are not available
in Type definitions. In this case the SourceNode of this ReferenceType shall be an Object,
Variable or Method Node. The TargetNode shall be a Condition instance or a ConditionType.

Table 102 – HasCondition ReferenceType

Attributes Value

BrowseName HasCondition

InverseName IsConditionOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.13 Alarm & Condition status codes

Table 103 defines the StatusCodes defined for Alarm & Conditions.

Table 103 – Alarm & Condition result codes

Symbolic Id Description

Bad_ConditionAlreadyEnabled The addressed Condition is already enabled.

Bad_ConditionAlreadyDisabled The addressed Condition is already disabled.

Bad_ConditionAlreadyShelved The Alarm is already in a shelved state.

Bad_ConditionBranchAlreadyAcked The EventId does not refer to a state that needs acknowledgement.

Bad_ConditionBranchAlreadyConfirmed The EventId does not refer to a state that needs confirmation.

Bad_ConditionNotShelved The Alarm is not in the requested shelved state.

Bad_DialogNotActive The DialogConditionType instance is not in Active state.

Bad_DialogResponseInvalid The selected option is not a valid index in the ResponseOptionSet array.

Bad_EventIdUnknown The specified EventId is not known to the Server.

Bad_RefreshInProgress A ConditionRefresh operation is already in progress.

Bad_ShelvingTimeOutOfRange The provided Shelving time is outside the range allowed by the Server for Shelving

5.14 Expected A&C server behaviours

5.14.1 General

This section describes behaviour that is expected from an OPC UA Server that is implementing
the A&C Information Model. In particular this section describes specific behaviours that apply
to various aspect of the A&C Information Model.

OPC Unified Architecture, Part 9 65 Release 1.04

5.14.2 Communication problems

In some implementation of an OPC UA A&C Server, the Alarms and Condition are provided by
an underlying system. The expected behaviour of an A&C Server when it is encountering
communication problems with the underlying system is:

• If communication fails to the underlying system,

– For any Event field related information that is exposed in the address space, the
Value/StatusCode obtained when reading the Event fields that are associated with the
communication failure shall have a value of NULL and a StatusCode of
Bad_CommunicationError.

– For Subscriptions that contain Conditions for which the failure applies, the effected
Conditions generate an Event, if the Retain field is set to True. These Events shall have
their Event fields that are associated with the communication failure contain a
StatusCode of Bad_CommunicationError for the value.

– A Condition of the SystemOffNormalAlarmType shall be used to report the
communication failure to Alarm Clients. The NormalState field shall contain the NodeId
of the Variable that indicates the status of the underlying system.

• For start-up of an A&C Server that is obtaining A&C information from an already running
underlying system:

– If a value is unavailable for an Event field that is being reported do to a start-up of the
UA Server (i.e. the information is just not available for the Event) the Event field shall
contain a StatusCode set to Bad_WaitingForInitialData for the value.

– If the Time field is normally provided by the underlying system and is unavailable, the
Time will be reported as a StatusCode with a value of Bad_WaitingForInitialData.

5.14.3 Redundant A&C servers

In an OPC UA Server that is implementing the A&C Information Model and that is configured to
be a redundant OPC UA Server the following behaviour is expected:

• The EventId is used to uniquely identify an Event. For an Event that is in each of the
redundant Servers, it shall be identical. This applies to all standard Events, Alarms and
Conditions. This may be accomplished by sharing of information between redundant
Server (such as actual Events) or it may be accomplished by providing a strict EventId
generating algorithm that will generate an identical EventId for each Event

• It is expected that for cold or warm failovers of redundant Servers, Subscription for
Events shall require a Refresh operation. The Client shall initiate this Refresh operation.

• It is expected that for hot failovers of redundant Servers, Subscriptions for Events may
require a Refresh operation. The Server shall issue a RefreshRequiredEventType Event
if it is required.

• For transparent redundancy, a Server shall not require any action be performed by a
Client.

6 AddressSpace organisation

6.1 General

The AddressSpace organisation described in this Clause allows Clients to detect Conditions
and ConditionSources. An additional hierarchy of Object Nodes that are notifies may be
established to define one or more areas; the Client can subscribe to specific areas to limit the
Event Notifications sent by the Server. Additional examples can be found in Clause B.2.

6.2 EventNotifier and source hierarchy

HasNotifier and HasEventSource References are used to expose the hierarchical organization
of Event notifying Objects and ConditionSources. An Event notifying Object represents typically
an area of Operator responsibility. The definition of such an area configuration is outside the
scope of this standard. If areas are available, they shall be linked together and with the included
ConditionSources using the HasNotifier and the HasEventSource Reference Types. The Server
Object shall be the root of this hierarchy.

Release 1.04 66 OPC Unified Architecture, Part 9

Figure 24 shows such a hierarchy. Note that HasNotifier is a sub-type of HasEventSource. I.e.
the target Node of a HasNotifier Reference (an Event notifying Object) may also be a
ConditionSource. The HasEventSource Reference is used if the target Node is a
ConditionSource but cannot be used as Event notifier. See Part 3 for the formal definition of
these Reference Types.

Server

Tank A

LevelMeasurement

Area 1

HasNotifier

HasNotifier

Tank FarmHasNotifier

HasEventSource

Machine B

HasNotifier

Device B

HasNotifier

Device C

HasEventSource

Figure 24 – Typical HasNotifier Hierarchy

6.3 Adding Conditions to the hierarchy

HasCondition is used to reference Conditions. The Reference is from a ConditionSource to a
Condition instance or – if no instance is exposed by the Server – to the ConditionType.

Clients can locate Conditions by first browsing for ConditionSources following HasEventSource
References (including sub-types like the HasNotifier Reference) and then browsing for
HasCondition References from all target Nodes of the discovered References.

Figure 25 shows the application of the HasCondition Reference in a HasNotifier hierarchy. The
Variable LevelMeasurement and the Object “Device B” Reference Condition instances. The
Object “Tank A” References a ConditionType (MySystemAlarmType) indicating that a Condition
exists but is not exposed in the AddressSpace.

OPC Unified Architecture, Part 9 67 Release 1.04

Server

Tank A

LevelMeasurement

Area 1

HasNotifier

HasNotifier

Tank FarmHasNotifier

HasEventSource

Machine B

HasNotifier

Device B

HasNotifier

MyLevelAlarmType:

LevelMonitoring
HasCondition

MyAlarmTypeA:

Condition 1

MyAlarmTypeA:

Condition 2

HasCondition

HasCondition

MySystemAlarmType

Figure 25 – Use of HasCondition in a HasNotifier hierarchy

6.4 Conditions in InstanceDeclarations

Figure 26 shows the use of the HasCondition Reference and the HasEventSource Reference in
an InstanceDeclaration. They are used to indicate what References and Conditions are
available on the instance of the ObjectType.

The use of the HasEventSource Reference in the context of InstanceDeclarations and
TypeDefinition Nodes has no effect for Event generation.

Tank A

MyLevelAlarmType:

LevelMonitoring

LevelMeasurement

MyLevelAlarmType:

LevelMonitoring

LevelMeasurement

TankType

HasCondition

HasEventSource
HasEventSource

HasCondition

Figure 26 – Use of HasCondition in an InstanceDeclaration

6.5 Conditions in a VariableType

Use of HasCondition in a VariableType is a special use case since Variables (and
VariableTypes) may not have Conditions as components. Figure 27 provides an example of this
use case. Note that there is no component relationship for the “LevelMonitoring” Alarm. It is
Server-specific whether and where they assign a HasComponent Reference.

Release 1.04 68 OPC Unified Architecture, Part 9

Tank A

ExclusiveLevelAlarmType:

LevelMonitoring

LevelMeasurementType:

LevelMeasurement

HasEventSource

HasCondition

AlarmType

LevelMeasurementType

AnalogItemType

ExclusiveLevelAlarmType:

LevelMonitoring

HasCondition

ExclusiveLevel
AlarmType

BaseObjectType BaseVariableType

Figure 27 – Use of HasCondition in a VariableType

OPC Unified Architecture, Part 9 69 Release 1.04

7 System State & Alarms

7.1 Overview

The state of alarms is affected by the state of the process, equipment, system or plant. For
example, when a tank is taken out of service, the level alarms associated with the tank would
be no longer used, until the tank is returned to service. This section describes ReferenceTypes
that can be used by a StateMachine to indicate that a specific Effect on Alarms caused by the
transition of a StateMachine. StateMachines that describe the state of a process, system or
equipment can vary, but an example StateMachine is provided in Annex F.

7.2 HasEffectDisable

The HasEffectDisable ReferenceType is a concrete ReferenceType and can be used directly.
It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will be
disabled.

• If the Reference is to an Object then all Alarms in the HasNotifier hierarchy below that
Object are disabled,

• If the target is an AlarmType then all instances of that AlarmType in the HasNotifier
hierarchy below the Object containing the StateMachine are disabled,

• If the target is an Alarm instance then the given Alarm instance is disabled.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of an Object or AlarmType.

The representation of the HasEffectDisable ReferenceType in the AddressSpace is specified in
Table 104

Table 104 – HasEffectDisable ReferenceType

Attributes Value

BrowseName HasEffectDisable

InverseName MayBeDisabledBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

7.3 HasEffectEnable

The HasEffectEnable ReferenceType is a concrete ReferenceType and can be used directly. It
is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will be
enabled.

• If the Reference is to an Object then all Alarms in the HasNotifier hierarchy below that
Object are enabled,

• If the target is an AlarmType then all instances of that AlarmType in the HasNotifier
hierarchy below the Object containing the StateMachine are enabled

• If the target is an Alarm instance then the given Alarm instance is enabled.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

Release 1.04 70 OPC Unified Architecture, Part 9

The representation of the HasEffectenable ReferenceType in the AddressSpace is specified in
Table 105

Table 105 – HasEffectEnable ReferenceType

Attributes Value

BrowseName HasEffectEnable

InverseName MayBeEnabledBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

7.4 HasEffectSuppress

The HasEffectSuppress ReferenceType is a concrete ReferenceType and can be used directly.
It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will be
suppressed.

• If the reference is to an Object then all Alarms in the EventNotifer hierarchy below that
Object are suppressed,

• If the target is an AlarmType then all instance of that AlarmType in the HasNotifier
hierarchy below the Object containing the StateMachine are suppressed,

• If the target is an Alarm instance then the given Alarm instance is suppressed.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffectSuppress ReferenceType in the AddressSpace is specified
in Table 106

Table 106 – HasEffectSuppress ReferenceType

Attributes Value

BrowseName HasEffectSuppress

InverseName MayBeSuppressedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

7.5 HasEffectUnsuppressed

The HasEffectUnsuppressed ReferenceType is a concrete ReferenceType and can be used
directly. It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will no longer
be suppressed.

• If the Reference is to an Object then all Alarms in the HasNotifier hierarchy below that
Object are removed from being suppressed,

• If the target is an AlarmType then all instance of that AlarmType are no longer
suppressed below the Object containing the StateMachine,

• if the target is an Alarm instance then the given Alarm instance is no longer suppressed.
No errors are logged if the Alarm was not suppressed.

OPC Unified Architecture, Part 9 71 Release 1.04

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or
one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffectUnsuppress ReferenceType in the AddressSpace is
specified in Table 107

Table 107 – HasEffectUnsuppress ReferenceType

Attributes Value

BrowseName HasEffectUnsuppress

InverseName MayBeUnsuppressedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

8 Alarm Metrics

8.1 Overview

The goal of a well-designed alarm system is to ensure that an Operator is made aware of issues,
both critical and non-critical, but is not overwhelmed by alarms/alerts or other messages. When
designing an alarm system, criteria are defined for alarm rates and general performance of the
system at various levels (Operator station, plant area, overall system etc.). Evaluating the
performance of an alarm system with regard to these design criteria requires the collection of
alarm metrics. These metrics provide summaries of alarm rates and other alarm related
information.

This section defines a standard structure for metrics. This structure can be implemented at
multiple levels allowing a Server to collect metrics as needed. For example, an Object of this
type might be added to the Server Object providing a summary of the Alarm performance for
the entire Server. An instance might also be provided on an Object that includes a HasNotifier
hierarchy, such as a tank Object. In this case, it would provide the summary of all of the Alarms
that are part of the tank HasNotifier hierarchy.

8.2 AlarmMetricsType

This ObjectType is used for metric information. The ObjectType is formally defined in Table
108.

Table 108 – AlarmMetricsType Definition

Attribute Value

BrowseName AlarmMetricsType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in Part 5.

HasComponent Variable AlarmCount UInt32 BaseDataVariableType Mandatory

HasComponent Variable StartTime UtcTime BaseDataVariableType Mandatory

HasComponent Variable MaximumActiveState Duration BaseDataVariableType Mandatory

HasComponent Variable MaximumUnAck Duration BaseDataVariableType Mandatory

HasComponent Variable CurrentAlarmRate Double AlarmRateVariableType Mandatory

HasComponent Variable MaximumAlarmRate Double AlarmRateVariableType Mandatory

HasComponent Variable MaximumReAlarmCount UInt32 BaseDataVariableType Mandatory

HasComponent Variable AverageAlarmRate Double AlarmRateVariableType Mandatory

HasComponent Method Reset Mandatory

An instance of AlarmMetricsType can be added, with a HasComponent reference, to any Object
that has its “SubscribeToEvents” bit set within the EventNotifier Attribute. It will collect the Alarm
metrics for all Alarm sources assigned to this notifier Object. For example, if Alarm metrics are
desired for Tank A Object (see Figure B.3) that is in the HasNotifier hierarchy than an instance

Release 1.04 72 OPC Unified Architecture, Part 9

of this object would be referenced by the Tank A object. When this object is associated with the
Server Object it will report Alarm metrics for the entire Server.

AlarmCount is the total count of Alarms since the last restart of the system or reset of this
counter.

StartTime is the time at which the Server started or the time of the last Reset Method invocation,
whichever is later.

MaximumActiveState is the maximum time for which an Alarm was in the active state.

MaximumUnAck is the maximum time for which an Alarm was in the unacknowledged state.

CurrentAlarmRate is the sum of Alarms that occurred in the last Rate number of minutes (see
8.3). This sum should not include nuisance Alarms (i.e. chattering alarms). It is updated every
Rate number of minutes.

MaximumAlarmRate is the maximum Alarm rate detected since the start of the Server, where
the rate is calculated as for CurrentAlarmRate.

MaximumReAlarmCount is the maximum ReAlarmCount for any Alarm.

AverageAlarmRate is the average Alarm rate since the start of the Server or the last invocation
of Reset Method, where the rate is calculated as for CurrentAlarmRate.

Reset is a Method that will reset all of the counters, rates or times in this Object

8.3 AlarmRateVariableType

This variable type provides a unit field for the rate for which the Alarm diagnostic applies.

Table 109 – AlarmRateVariableType Definition

Attribute Value

BrowseName AlarmRateVariableType

IsAbstract False

ValueRank Scalar

DataType Double

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Rate UInt16 PropertyType Mandatory

Rate – is the number of minutes over which the item is calculated.

8.4 Reset Method

The Reset Method is used reset all of the counters, rates and time in the Object

Signature

Reset();

Method Result Codes in Table 43 (defined in Call Service)

Table 110 – Suppress result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See Part 4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid. See Part 4 for the general
description of this result code.

Comments

The Reset Method will clear all setting in the diagnostic object and initialize them to zero.

OPC Unified Architecture, Part 9 73 Release 1.04

Table 111 specifies the AddressSpace representation for the Reset Method.

Table 111 – Reset Method AddressSpace definition

Attribute Value

BrowseName Reset

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditUpdateMethodEventType Defined in Part 5

Release 1.04 74 OPC Unified Architecture, Part 9

Annex A (informative)

Recommended localized names

A.1 Recommended state names for TwoState variables

A.1.1 LocaleId “en”

The recommended state display names for the LocaleId “en” are listed in Table A.1 and
Table A.2

Table A.1 – Recommended state names for LocaleId “en”

Condition Type State Variable False State Name True State Name

ConditionType EnabledState Disabled Enabled

DialogConditionType DialogState Inactive Active

AcknowledgeableConditionType

AckedState Unacknowledged Acknowledged

ConfirmedState Unconfirmed Confirmed

AlarmConditionType ActiveState Inactive Active

SuppressedState Unsuppressed Suppressed

OutOfServiceState In Service Out of Service

SilenceState Silenced Not Silenced

LatchedState Latched Unlatched

NonExclusiveLimitAlarmType HighHighState HighHigh inactive HighHigh active

HighState High inactive High active

LowState Low inactive Low active

LowLowState LowLow inactive LowLow active

Table A.2 – Recommended display names for LocaleId “en”

Condition Type Browse Name display name

Shelved

Unshelved Unshelved

TimedShelved Timed Shelved

OneShotShelved One Shot Shelved

Exclusive HighHigh HighHigh

High High

Low Low

LowLow LowLow

A.1.2 LocaleId “de”

The recommended state display names for the LocaleId “de” are listed in Table A.3 and
Table A.4.

OPC Unified Architecture, Part 9 75 Release 1.04

Table A.3 – Recommended state names for LocaleId “de”

Condition Type State Variable False State Name True State Name

ConditionType EnabledState Ausgeschaltet Eingeschaltet

DialogConditionType DialogState Inaktiv Aktiv

AcknowledgeableConditionType

AckedState Unquittiert Quittiert

ConfirmedState Unbestätigt Bestätigt

AlarmConditionType ActiveState Inaktiv Aktiv

SuppressedState Nicht unterdrückt Unterdrückt

OutOfServiceState In Betrieb Außer Betrieb

SilenceState Stumm Nicht Stumm

LatchedState Verriegelt Entriegelt

NonExclusiveLimitAlarmType HighHighState HighHigh inaktiv HighHigh aktiv

HighState High inaktiv High aktiv

LowState Low inaktiv Low aktiv

LowLowState LowLow inaktiv LowLow aktiv

Table A.4 – Recommended display names for LocaleId “de”

Condition Type Browse Name display name

Shelved

Unshelved Nicht zurückgestellt

TimedShelved Befristet zurückgestellt

OneShotShelved Einmalig zurückgestellt

Exclusive HighHigh HighHigh

High High

Low Low

LowLow LowLow

A.1.3 LocaleId “fr”

The recommended state display names for the LocaleId “fr” are listed in Table A.5 and
Table A.6.

Table A.5 – Recommended state names for LocaleId “fr”

Condition Type State Variable False State Name True State Name

ConditionType EnabledState Hors Service En Service

DialogConditionType DialogState Inactive Active

AcknowledgeableConditionType

AckedState Non-acquitté Acquitté

ConfirmedState Non-Confirmé Confirmé

AlarmConditionType ActiveState Inactive Active

SuppressedState Présent Supprimé

OutOfServiceState En Fonction Hors Fonction

SilenceState Muette Non-Muette

LatchedState

NonExclusiveLimitAlarmType HighHighState Très Haute Inactive Très Haute Active

HighState Haute inactive Haute active

LowState Basse inactive Basse active

LowLowState Très basse inactive Très basse active

Table A.6 – Recommended display names for LocaleId “fr”

Condition Type Browse Name display name

Shelved

Unshelved Surveillée

TimedShelved Mise de coté temporelle

OneShotShelved Mise de coté unique

Exclusive HighHigh Très haute

High Haute

Low Basse

LowLow Très basse

A.2 Recommended dialog response options

The recommended Dialog response option names in different locales are listed in Table A.7.

Release 1.04 76 OPC Unified Architecture, Part 9

Table A.7 – Recommended dialog response options

Locale “en” Locale “de” Locale “fr”

Ok OK Ok

Cancel Abbrechen Annuler

Yes Ja Oui

No Nein Non

Abort Abbrechen Abandonner

Retry Wiederholen Réessayer

Ignore Ignorieren Ignorer

Next Nächster Prochain

Previous Vorheriger Precedent

OPC Unified Architecture, Part 9 77 Release 1.04

Annex B(informative)

Examples

B.1 Examples for Event sequences from Condition instances

B.1.1 Overview

 The following examples show the Event flow for typical Alarm situations. The tables list the
value of state Variables for each Event Notification.

B.1.2 Server maintains current state only

This example is for Servers that do not support previous states and therefore do not create and
maintain Branches of a single Condition.

Figure B.1 shows an Alarm as it becomes active and then inactive and also the
acknowledgement and confirmation cycles. Table B.1 lists the values of the state Variables. All
Events are coming from the same Condition instance and therefore have the same ConditionId.

Time Axis

Active

1
Event

Notifications

Acked

Confirmed

76532 84

Figure B.1 – Single state example

Table B.1 – Example of a Condition that only keeps the latest state

EventId BranchId Active Acked Confirmed Retain Description

-*) NULL False True True False Initial state of Condition.

1 NULL True False True True Alarm goes active.

2 NULL True True False True Condition acknowledged Confirm required

3 NULL False True False True Alarm goes inactive.

4 NULL False True True False Condition confirmed

5 NULL True False True True Alarm goes active.

6 NULL False False True True Alarm goes inactive.

7 NULL False True False True Condition acknowledged, Confirm required.

8 NULL False True True False Condition confirmed.

*) The first row is included to illustrate the initial state of the Condition. This state will not be reported by an Event.

B.1.3 Server maintains previous states

This example is for Servers that are able to maintain previous states of a Condition and
therefore create and maintain Branches of a single Condition.

Figure B.2 illustrates the use of branches by a Server requiring acknowledgement of all
transitions into Active state, not just the most recent transition. In this example no
acknowledgement is required on a transition into an inactive state. Table B.2 lists the values of
the state Variables. All Events are coming from the same Condition instance and have therefore
the same ConditionId.

Release 1.04 78 OPC Unified Architecture, Part 9

 Time Axis

Active

1
Event

Notifications

Acked

Confirmed

832

Current State

(BranchId Null)

Active=true

Previous State

(BranchId 1)

Previous State

(BranchId 2)

Active=true

Acked=false

5

7

6

9

11

12

13

1410

4

Figure B.2 – Previous state example

Table B.2 – Example of a Condition that maintains previous states via branches

EventId BranchId Active Acked Confirmed Retain Description
a)

 NULL False True True False Initial state of Condition.

1 NULL True False True True Alarm goes active.

2 NULL True True True True Condition acknowledged requires Confirm

3 NULL False True False True Alarm goes inactive.

4 NULL False True True False Confirmed

5 NULL True False True True Alarm goes active.

6 NULL False True True True Alarm goes inactive.

7 1 True False True True
b)

Prior state needs acknowledgment. Branch #1

created.

8 NULL True False True True Alarm goes active again.

9 1 True True False True Prior state acknowledged, Confirm required.

10 NULL False True True True
b)

 Alarm goes inactive again.

11 2 True False True True
Prior state needs acknowledgment. Branch #2

created.

12 1 True True True False Prior state confirmed. Branch #1 deleted.

13 2 True True True False
Prior state acknowledged, Auto Confirmed by

system Branch #2 deleted.

14 NULL False True True False No longer of interest.

a) The first row is included to illustrate the initial state of the Condition. This state will not be reported by an Event.

Notes on specific situations shown with this example:

If the current state of the Condition is acknowledged then the Acked flag is set and the new state is reported (Event
#2). If the Condition state changes before it can be acknowledged (Event #6) then a branch state is reported (Event
#7). Timestamps for the Events #6 and #7 is identical.

The branch state can be updated several times (Events #9) before it is cleared (Event #12).

A single Condition can have many branch states active (Events #11)

b) It is recommended as in this table to leave Retain=True as long as there exist previous states (branches).

OPC Unified Architecture, Part 9 79 Release 1.04

B.2 AddressSpace examples

This Clause provides additional examples for the use of HasNotifier, HasEventSource and
HasCondition References to expose the organization of areas and sources with their associated
Conditions. This hierarchy is additional to a hierarchy provided with Organizes and Aggregates
References.

Figure B.3 illustrates the use of the HasCondition Reference with Condition instances.

HasNotifier

Objects

Server

Tank A

Organizes

MyLevelAlarmType:

LevelMonitoring

LevelMeasurement

Area 1

Tank Farm Machine B

Device B

MyAlarmTypeA:

Condition 1

MyAlarmTypeA:

Condition 2

HasEventSource

HasEventSource
HasCondition

HasCondition

Figure B.3 – HasCondition used with Condition instances

In systems where Conditions are not available as instances, the ConditionSource can reference
the ConditionTypes instead. This is illustrated with the example in Figure B.4.

Release 1.04 80 OPC Unified Architecture, Part 9

Objects

Server

Tank A

Organizes

LevelMeasurement

ProcessAlarm

Type

ExclusiveLimit

AlarmType

Exclusive

Level

MyLevelAlarmType

HasNotifier

Area 1

Tank Farm Machine B

HasEventSource

HasCondition

Figure B.4 – HasCondition reference to a Condition type

Figure B.5 provides an example where the HasCondition Reference is already defined in the
Type system. The Reference can point to a Condition Type or to an instance. Both variants are
shown in this example. A Reference to a Condition Type in the Type system will result in a
Reference to the same Type Node in the instance.

Tank A

MyLevelAlarmType:

LevelMonitoring

LevelMeasurement

Tank Farm

HasEventSource

HasCondition

MyLevelAlarmType:

LevelMonitoring

LevelMeasurement

TankType

HasCondition

HasEventSource

MySystemAlarmType

HasNotifier
HasCondition

HasCondition

Figure B.5 – HasCondition used with an instance declaration

OPC Unified Architecture, Part 9 81 Release 1.04

Annex C
(informative)

Mapping to EEMUA

Table C.1 lists EEMUA terms and how OPC UA terms maps to them.

Table C.1 – EEMUA Terms

EEMUA Term OPC UA Term EEMUA Definition

Accepted Acknowledged=True
An Alarm is accepted when the Operator has indicated awareness of its presence.

In OPC UA this can be accomplished with the Acknowledge Method.

Active Alarm Active = True
An Alarm Condition which is on (i.e. limit has been exceeded and Condition

continues to exist).

Alarm

Message

Message Property

(defined in Part 5.)
Test information presented to the Operator that describes the Alarm Condition.

Alarm Priority
Severity Property

(defined in Part 5.)
The ranking of Alarms by severity and response time.

Alert -

A lower priority Notification than an Alarm that has no serious consequence if

ignored or missed. In some Industries also referred to as a Prompt or Warning”.

No direct mapping! In UA the concept of Alerts can be accomplished by the use of
severity. E.g., Alarms that have a severity below 50 may be considered as Alerts.

Cleared Active = False An Alarm state that indicates the Condition has returned to normal.

Disable Enabled = False
An Alarm is disabled when the system is configured such that the Alarm will not be

generated even though the base Alarm Condition is present.

Prompt Dialog
A request from the control system that the Operator perform some process action

that the system cannot perform or that requires Operator authority to perform.

Raised Active = True An Alarm is Raised or initiated when the Condition creating the Alarm has occurred.

Release OneShotShelving

A ‘release’ is a facility that can be applied to a standing (UA = active) Alarm in a similar

way to which Shelving is applied. A released Alarm is temporarily removed from the
Alarm list and put on the shelf. There is no indication to the Operator when the Alarm
clears, but it is taken off the shelf. Hence, when the Alarm is raised again it appears
on the Alarm list in the normal way.

Reset Retain=False

An Alarm is Reset when it is in a state that can be removed from the Display list.

OPC UA includes Retain flag which as part of its definition states: “when a Client
receives an Event with the Retain flag set to False, the Client should consider this as
a Condition/Branch that is no longer of interest, in the case of a “current Alarm display”
the Condition/Branch would be removed from the display”

Shelving Shelving

Shelving is a facility where the Operator is able to temporarily prevent an Alarm from

being displayed to the Operator when it is causing the Operator a nuisance. A
Shelved Alarm will be removed from the list and will not re-annunciate until un-
shelved.

Standing Active = True
An Alarm is Standing whilst the Condition persists (Raised and Standing are often

used interchangeably)’.

Suppress Suppress

An Alarm is suppressed when logical criteria are applied to determine that the Alarm

should not occur, even though the base Alarm Condition (e.g. Alarm setting
exceeded) is present.

Unaccepted
Acknowledged =

False

An Alarm is accepted when the Operator has indicated awareness of its presence. It

is unaccepted until this has been done.

Release 1.04 82 OPC Unified Architecture, Part 9

Annex D(informative)

Mapping from OPC A&E to OPC UA A&C

D.1 Overview

Serving as a bridge between COM and OPC UA components, the Alarm and Events proxy and
wrapper enable existing A&E COM Clients and Servers to connect to UA Alarms and Conditions
components.

Simply stated, there are two aspects to the migration strategy. The first aspect enables a UA
Alarms and Conditions Client to connect to an existing Alarms and Events COM Server via a
UA Server wrapper. This wrapper is notated from this point forward as the A&E COM UA
Wrapper. The second aspect enables an existing Alarms and Events COM Client to connect to
a UA Alarms and Conditions Server via a COM proxy. This proxy is notated from this point
forward as the A&E COM UA Proxy.

An Alarms and Events COM Client is notated from this point forward as A&E COM Client.

A UA Alarms and Conditions Server is notated from this point forward as UA A&C Server.

The mappings describe generic A&E COM interoperability components. It is recommended that
vendors use this mapping if they develop their own components, however, some applications
may benefit from vendor specific mappings.

D.2 Alarms and Events COM UA wrapper

D.2.1 Event areas

Event Areas in the A&E COM Server are represented in the A&E COM UA Wrapper as Objects
with a TypeDefinition of BaseObjectType. The EventNotifier Attribute for these Objects always
has the SubscribeToEvents flag set to True.

The root Area is represented by an Object with a BrowseName that depends on the UA Server.
It is always the target of a HasNotifier Reference from the Server Node. The root Area allows
multiple A&E COM Servers to be wrapped within a single UA Server.

The Area hierarchy is discovered with the BrowseOPCAreas and the GetQualifiedAreaName
Methods. The Area name returned by BrowseOPCAreas is used as the BrowseName and
DisplayName for each Area Node. The QualifiedAreaName is used to construct the NodeId. The
NamespaceURI qualifying the NodeId and BrowseName is a unique URI assigned to the
combination of machine and COM Server.

Each Area is the target of HasNotifier Reference from its parent Area. It may be the source of
one or more HasNotifier References to its child Areas. It may also be a source of a
HasEventSource Reference to any sources in the Area.

The A&E COM Server may not support filtering by Areas. If this is the case then no Area Nodes
are shown in the UA Server address space. Some implementations could use the AREAS
Attribute to provide filtering by Areas within the A&E COM UA Wrapper.

D.2.2 Event sources

Event Sources in the A&E COM Server are represented in the A&E COM UA Wrapper as Objects
with a TypeDefinition of BaseObjectType. If the A&E COM Server supports source filtering then
the SubscribeToEvents flag is True and the Source is a target of a HasNotifier Reference. If
source filtering is not supported the SubscribeToEvents flag is False and the Source is a target
of a HasEventSource Reference.

The Sources are discovered by calling BrowseOPCAreas and the GetQualifiedSourceName
Methods. The Source name returned by BrowseOPCAreas is used as the BrowseName and
DisplayName. The QualifiedSourceName is used to construct the NodeId. Event Source Nodes
are always targets of a HasEventSource Reference from an Area.

OPC Unified Architecture, Part 9 83 Release 1.04

D.2.3 Event categories

Event Categories in the A&E COM Server are represented in the UA Server as ObjectTypes
which are subtypes of BaseEventType. The BrowseName and DisplayName of the ObjectType
Node for Simple and Tracking Event Types are constructed by appending the text ‘EventType’
to the Description of the Event Category. For Condition Event Types the text ‘AlarmType’ is
appended to the Condition Name.

These ObjectType Nodes have a super type which depends on the A&E Event Type, the Event
Category Description and the Condition Name; however, the best mapping requires knowledge
of the semantics associated with the Event Categories and Condition Names. If an A&E COM
UA Wrapper does not know these semantics then Simple Event Types are subtypes of
BaseEventType, Tracking Event Types are subtypes of AuditEventType and Condition Event
Types are subtypes of the AlarmType. Table D.1 defines mappings for a set of “well known”
Category description and Condition Names to a standard super type.

Table D.1 – Mapping from standard Event categories to OPC UA Event types

COM A&E Event Type Category Description Condition Name OPC UA EventType

Simple --- --- BaseEventType

Simple Device Failure --- DeviceFailureEventType

Simple System Message --- SystemEventType

Tracking --- --- AuditEventType

Condition --- --- AlarmType

Condition Level --- LimitAlarmType

Condition Level PVLEVEL ExclusiveLevelAlarmType

Condition Level SPLEVEL ExclusiveLevelAlarmType

Condition Level HI HI NonExclusiveLevelAlarmType

Condition Level HI NonExclusiveLevelAlarmType

Condition Level LO NonExclusiveLevelAlarmType

Condition Level LO LO NonExclusiveLevelAlarmType

Condition Deviation --- NonExclusiveDeviationAlarmType

Condition Discrete --- DiscreteAlarmType

Condition Discrete CFN OffNormalAlarmType

Condition Discrete TRIP TripAlarmType

There is no generic mapping defined for A&E COM sub-Conditions. If an Event Category is

mapped to a LimitAlarmType then the sub Condition name in the Event are be used to set the
state of a suitable State Variable. For example, if the sub-Condition name is “HI HI” then that
means the HighHigh state for the LimitAlarmType is active

For Condition Event Types the Event Category is also used to define subtypes of
BaseConditionClassType.

Figure D.1 illustrates how ObjectType Nodes created from the Event Categories and Condition
Names are placed in the standard OPC UA HasNotifier hierarchy.

Release 1.04 84 OPC Unified Architecture, Part 9

BaseEventType

<CategoryA>

EventType

<CategoryB>

EventType
AuditEventType

<CategoryC>

EventType

AlarmType
<ConditionNameX>

AlarmType

ExclusiveLevel

AlarmType

LevelAlarmType

ExclusiveLimit

AlarmType

DeviationAlarmType

<ConditionNameY>

AlarmType

<ConditionNameZ>

AlarmType

Figure D.1 – The type model of a wrapped COM AE server

D.2.4 Event attributes

Event Attributes in the A&E COM Server are represented in the UA Server as Variables which
are targets of HasProperty References from the ObjectTypes which represent the Event
Categories. The BrowseName and DisplayName are the description for the Event Attribute. The
data type of the Event Attribute is used to set DataType and ValueRank. The NodeId is
constructed from the EventCategoryId, ConditionName and the AttributeId.

D.2.5 Event subscriptions

The A&E COM UA Wrapper creates a Subscription with the COM AE Server the first time a
MonitoredItem is created for the Server Object or one of the Nodes representing Areas. The
Area filter is set based on the Node being monitored. No other filters are specified.

If all MonitoredItems for an Area are disabled then the Subscription will be deactivated.

The Subscription is deleted when the last MonitoredItem for the Node is deleted.

When filtering by Area the A&E COM UA Wrapper needs to add two Area filters: one based on
the QualifiedAreaName which forms the NodeId and one with the text ‘/*’ appended to it. This
ensures that Events from sub areas are correctly reported by the COM AE Server.

A simple A&E COM UA Wrapper will always request all Attributes for all Event Categories when
creating the Subscription. A more sophisticated wrapper may look at the EventFilter to
determine which Attributes are actually used and only request those.

Table D.2 lists how the fields in the ONEVENTSTRUCT that are used by the A&E COM UA
Wrapper are mapped to UA BaseEventType Variables.

OPC Unified Architecture, Part 9 85 Release 1.04

Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

EventId

szSource

szConditionName

ftTime

ftActiveTime

dwCookie

A ByteString constructed by appending the fields together.

EventType

dwEventType

dwEventCategory

szConditionName

The NodeId for the corresponding ObjectType Node. The
szConditionName maybe omitted by some implementations.

SourceNode szSource The NodeId of the corresponding Source Object Node.

SourceName szSource -

Time ftTime -

ReceiveTime - Set when the Notification is received by the wrapper.

LocalTime - Set based on the clock of the machine running the wrapper.

Message szMessage Locale is the default locale for the COM AE Server.

Severity dwSeverity -

Table D.3 lists how the fields in the ONEVENTSTRUCT that are used by the A&E COM UA
Wrapper are mapped to UA AuditEventType Variables.

Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

ActionTimeStamp ftTime Only set for tracking Events.

Status - Always set to True.

ServerId - Set to the COM AE Server NamespaceURI

ClientAuditEntryId - Not set.

ClientUserId szActorID -

Table D.4 lists how the fields in the ONEVENTSTRUCT that are used by the A&E COM UA

Wrapper are mapped to UA AlarmType Variables.

Release 1.04 86 OPC Unified Architecture, Part 9

Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

ConditionClassId dwEventType

Set to the NodeId of the ConditionClassType for the Event
Category of a Condition Event Type. Set to the NodeId of
BaseConditionClassType Node for non-Condition Event Types.

ConditionClassName dwEventType

Set to the BrowseName of the ConditionClassType for the Event
Category of Condition Event Type. To set “BaseConditionClass"
non-Condition Event Types.

ConditionName szConditionName -

BranchId - Always set to NULL.

Retain wNewState
Set to True if the OPC_CONDITION_ACKED bit is not set or
OPC_CONDITION_ACTIVE bit is set.

EnabledState wNewState Set to "Enabled" or "Disabled"

EnabledState.Id wNewState Set to True if OPC_CONDITION_ENABLED is set

EnabledState.

EffectiveDisplayName
wNewState

A string constructed from the bits in the wNewState flag.

The following rules are applied in order to select the string:

"Disabled" if OPC_CONDITION_ENABLED is not set.

"Unacknowledged" if OPC_CONDITION_ACKED is not set.

"Active" if OPC_CONDITION_ACKED is set.

"Enabled" if OPC_CONDITION_ENABLED is set.

Quality wQuality The COM DA Quality converted to a UA StatusCode.

Severity dwSeverity
Set based on the last Event received for the Condition instance.

Set to the current value if the last Event is not available.

Comment - The value of the ACK_COMMENT Attribute

ClientUserId szActorID -

AckedState wNewState Set to "Acknowledged" or "Unacknowledged "

AckedState.Id wNewState Set to True if OPC_CONDITION_ACKED is set

ActiveState wNewState Set to "Active" or "Inactive "

ActiveState.Id wNewState Set to True if OPC_CONDITION_ACTIVE is set

ActiveState.TransitionTime ftActiveTime

This time is set when the ActiveState transitions from False to
True.

 Note: Additional logic applies to exclusive limit alarms, in that the
LimitState.TransitionTime also needs to be set, but this is set each
time a limit is crossed (multiple limits might exist). For the initial
transition to True the ftActiveTime is used for both
LimitState.TransitionTime and ActiveState.TransitionTime. For
subsequent transition the ActiveState.Transition time does not
change, but the LimitState.TransitionTime will be updated with the
new ftActiveTime.

For example, if an alarm has Hi and HiHi limits, when the Hi limit
is crossed and the alarm goes active the FTActiveTime is used for
both times, but when the HiHi limit is later crossed, the
FtActiveTime is only be used for the LimitState.TransitionTime.
Note: The ftActiveTime is part of the key for identifying the unique
event in the A&E server and needs to be saved for processing any
commands back to the A&E Server.

The A&C Condition Model defines other optional Variables which are not needed in the A&E
COM UA Wrapper. Any additional fields associated with Event Attributes are also reported.

D.2.6 Condition instances

Condition instances do not appear in the UA Server address space. Conditions can be
acknowledged by passing the EventId to the Acknowledge Method defined on the
AcknowledgeableConditionType.

Conditions cannot be enabled or disabled via the COM A&E Wrapper.

OPC Unified Architecture, Part 9 87 Release 1.04

D.2.7 Condition Refresh

The COM A&E Wrapper does not store the state of Conditions. When ConditionRefresh is called
the Refresh Method is called on all COM AE Subscriptions associated with the ConditionRefresh
call. The wrapper needs to wait until it receives the call back with the bLastRefresh flag set to
True in the OnEvent call before it can tell the UA Client that the Refresh has completed.

D.3 Alarms and Events COM UA proxy

D.3.1 General

As illustrated in the figure below, the A&E COM UA Proxy is a COM Server combined with a UA
Client. It maps the Alarms and Conditions address space of UA A&C Server into the appropriate
COM Alarms and Event Objects.

Subclauses D.3.2 through D.3.9 identify the design guidelines and constraints used to develop
the A&E COM UA Proxy provided by the OPC Foundation. In order to maintain a high degree
of consistency and interoperability, it is strongly recommended that vendors, who choose to
implement their own version of the A&E COM UA Proxy, follow these same guidelines and
constraints.

The A&E COM Client simply needs to address how to connect to the UA A&C Server.
Connectivity approaches include the one where A&E COM Clients connect to a UA A&C Server
with a CLSID just as if the target Server were an A&E COM Server. However, the CLSID can
be considered virtual since it is defined to connect to intermediary components that ultimately
connect to the UA A&C Server. Using this approach, the A&E COM Client calls co-create
instance with a virtual CLSID as described above. This connects to the A&E COM UA Proxy
components. The A&E COM UA Proxy then establishes a secure channel and session with the
UA A&C Server. As a result, the A&E COM Client gets a COM Event Server interface pointer.

D.3.2 Server status mapping

The A&E COM UA Proxy reads the UA A&C Server status from the Server Object Variable
Node. Status enumeration values that are returned in ServerStatusDataType structure can be
mapped 1 for 1 to the A&E COM Server status values with the exception of UA A&C Server
status values Unknown and Communication Fault. These both map to the A&E COM Server
status value of Failed.

The VendorInfo string of the A&E COM Server status is mapped from ManufacturerName.

D.3.3 Event Type mapping

Since all Alarms and Conditions Events belong to a subtype of BaseEventType, the A&E COM
UA Proxy maps the subtype as received from the UA A&C Server to one of the three A&E Event
types: Simple, Tracking and Condition. Figure D.2 shows the mapping as follows:

• Those A&C Events which are of subtype AuditEventType are marked as A&E Event type
Tracking.

• Those A&C Events which are ConditionType are marked as A&E Event type Condition.

• Those A&C Events which are of any subtype except AuditEventType or ConditionType
are marked as A&E Event type Simple.

Release 1.04 88 OPC Unified Architecture, Part 9

BaseEvent
Type

AuditEvent
Type

BaseModelChangeEvent
Type

Condition
Type

SystemEvent
Type

 UA Base Event

Types

COM Alarm and

Event Types

Tracking Condition Simple

Mapping of UA Events includes subtypes of each base event type

Figure D.2 – Mapping UA Event Types to COM A&E Event Types

Note that the Event type mapping described above also applies to the children of each subtype.

D.3.4 Event category mapping

Each A&E Event type (e.g. Simple, Tracking, Condition) has an associated set of Event
categories which are intended to define groupings of A&E Events. For example, Level and
Deviation are possible Event categories of the Condition Event type for an A&E COM Server.
However, since A&C does not explicitly support Event categories, the A&E COM UA Proxy uses
A&C Event types to return A&E Event categories to the A&E COM Client. The A&E COM UA
Proxy builds the collection of supported categories by traversing the type definitions in the
address space of the UA A&C Server. Figure D.3 shows the mapping as follows:

• A&E Tracking categories consist of the set of all Event types defined in the hierarchy of
subtypes of AuditEventType and TransitionEventType, including AuditEventType itself
and TransitionEventType itself.

• A&E Condition categories consist of the set of all Event types defined in the hierarchy
of subtypes of ConditionType, including ConditionType itself.

• A&E Simple categories consist of the set of Event types defined in the hierarchy of
subtypes of BaseEventType excluding AuditEventType and ConditionType and their
respective subtypes.

OPC Unified Architecture, Part 9 89 Release 1.04

BaseEvent

Type

Condition

Type

 UA Condition Type

Hierarchy

(partial)

COM A&E Condition

Type

Condition Event Type

AcknowledgeableCondition

Type

AlarmCondition

Type

Catergory 2 : AcknowledgeableConditionType

Catergory 3 : AlarmConditionType

Catergory 1 : ConditionType

Figure D.3 – Example mapping of UA Event Types to COM A&E categories

Category name is derived from the display name Attribute of the Node type as discovered in
the type hierarchy of the UA A&C Server.

Category description is derived from the description Attribute of the Node type as discovered in
the type hierarchy of the UA A&C Server.

The A&E COM UA Proxy assigns Category IDs.

D.3.5 Event Category attribute mapping

The collection of Attributes associated with any given A&E Event is encapsulated within the
ONEVENTSTRUCT. Therefore, the A&E COM UA Proxy populates the Attribute fields within
the ONEVENTSTRUCT using corresponding values from UA Event Notifications either directly
(e.g., Source, Time, Severity) or indirectly (e.g., OPC COM Event category determined by way
of the UA Event type). Table D.5 lists the Attributes currently defined in the ONEVENTSTRUCT
in the leftmost column. The rightmost column of Table D.5 indicates how the A&E COM UA
proxy defines that Attribute.

Table D.5 – Event category attribute mapping table

A&E ONEVENTSTRUCT “attribute” A&E COM UA Proxy Mapping

The following items are present for all A&E event types

szSource UA BaseEventType Property: SourceName

ftTime UA BaseEventType Property: Time

szMessage UA BaseEventType Property: Message

dwEventType See Clause D.3.3

dwEventCategory See Clause D.3.4

dwSeverity UA BaseEventType Property: Severity

dwNumEventAttrs Calculated within A&E COM UA Proxy

pEventAttributes Constructed within A&E COM UA Proxy

The following items are present only for A&E Condition-Related Events

szConditionName UA ConditionType Property: ConditionName

Release 1.04 90 OPC Unified Architecture, Part 9

A&E ONEVENTSTRUCT “attribute” A&E COM UA Proxy Mapping

szSubConditionName UA ActiveState Property: EffectiveDisplayName

wChangeMask Calculated within Alarms and Events COM UA proxy

wNewState: OPC_CONDITION_ACTIVE A&C AlarmConditionType Property: ActiveState

Note that events mapped as non-Condition Events and those that do not derive
from AlarmConditionType are set to ACTIVE by default.

wNewState:

OPC_CONDITION_ENABLED
A&C ConditionType Property: EnabledState

 Note, Events mapped as non-Condition Events are set to ENABLED (state bit
mask = 0x1) by default.

wNewState: OPC_CONDITION_ACKED A&C AcknowledgeableConditionType Property: AckedState

Note that A&C Events mapped as non-Condition Events or which do not derive
from AcknowledgeableConditionType are set to UNACKNOWLEDGED and
AckRequired = False by default.

wQuality A&C ConditionType Property: Quality

 Note that Events mapped as non-Condition Events are set to
OPC_QUALITY_GOOD by default.

In general, the Severity field of the StatusCode is used to map COM status
codes OPC_QUALITY_BAD, OPC_QUALITY_GOOD and
OPC_QUALITY_UNCERTAIN. When possible, specific status' are mapped
directly. These include (UA => COM):

Bad status codes

 Bad_ConfigurationError => OPC_QUALITY_CONFIG_ERROR

 Bad_NotConnected => OPC_QUALITY_NOT_CONNECTED

 Bad_DeviceFailure => OPC_QUALITY_DEVICE_FAILURE

 Bad_SensorFailure => OPC_QUALITY_SENSOR_FAILURE

 Bad_NoCommunication => OPC_QUALITY_COMM_FAILURE

 Bad_OutOfService => OPC_QUALITY_OUT_OF_SERVICE

Uncertain status codes

 Uncertain_NoCommunicationLastUsableValue =>
OPC_QUALITY_LAST_USABLE

 Uncertain_LastUsableValue => OPC_QUALITY_LAST_USABLE

 Uncertain_SensorNotAccurate => OPC_QUALITY_SENSOR_CAL

 Uncertain_EngineeringUnitsExceeded =>
OPC_QUALITY_EGU_EXCEEDED

 Uncertain_SubNormal => OPC_QUALITY_SUB_NORMAL

Good status codes

 Good_LocalOverride => OPC_QUALITY_LOCAL_OVERRIDE

bAckRequired If the ACKNOWLEDGED bit (OPC_CONDITION_ACKED) is set then the Ack

Required Boolean is set to False, otherwise the Ack Required Boolean is set to
True. If the Event is not of type AcknowledgeableConditionType or subtype then
the AckRequired Boolean is set to False.

ftActiveTime If the Event is of type AlarmConditionType or subtype and a transition from

ActiveState of False to ActiveState to True is being processed then the
TransitionTime Property of ActiveState is used. If the Event is not of type
AlarmConditionType or subtype then this field is set to current time.

Note: Additional logic applies to exclusive limit alarms, This value should be
mapped to the LimitState.TransitionTime.

dwCookie Generated by the A&E COM UA Proxy. These unique Condition Event cookies

are not associated with any related identifier from the address space of the UA
A&C Server.

The following is used only for A&E tracking events and for A&E condition-relate events which are acknowledgement
notifications

szActorID

OPC Unified Architecture, Part 9 91 Release 1.04

A&E ONEVENTSTRUCT “attribute” A&E COM UA Proxy Mapping

Vendor specific Attributes – ALL

ACK Comment

AREAS All A&E Events are assumed to support the "Areas" Attribute. However, no
Attribute or Property of an A&C Event is available which provides this value.
Therefore, the A&E COM UA Proxy initializes the value of the Areas Attribute
based on the MonitoredItem producing the Event. If the A&E COM Client has
applied no area filtering to a Subscription, the corresponding A&C Subscription
will contain just one MonitoredItem – that of the UA A&C Server Object. Events
forwarded to the A&E COM Client on behalf of this Subscription will carry an
Areas Attribute value of empty string. If the A&E COM Client has applied an
area filter to a Subscription then the related UA A&C Subscription will contain
one or more MonitoredItems for each notifier Node identified by the area
string(s). Events forwarded to the A&E COM Client on behalf of such a
Subscription will carry an areas Attribute whose value is the relative path to the
notifier which produced the Event (i.e., the fully qualified area name).

Vendor specific Attributes – based on category

SubtypeProperty1 All the UA A&C subtype Properties that are not part of the standard set exposed

by BaseEventType or ConditionType SubtypePropertyn

Condition Event instance records are stored locally within the A&E COM UA Proxy. Each record

holds ONEVENTSTRUCT data for each EventSource/Condition instance. When the Condition
instance transitions to the state INACTIVE|ACKED, where AckRequired = True or simply
INACTIVE, where AckRequired = False, the local Condition record is deleted. When a Condition
Event is received from the UA A&C Server and a record for this Event (identified by
source/Condition pair) already exists in the proxy Condition Event store, the existing record is
simply updated to reflect the new state or other change to the Condition, setting the change
mask accordingly and producing an OnEvent callback to any subscribing Clients. In the case
where the Client application acknowledges an Event which is currently unacknowledged
(AckRequired = True), the UA A&C Server Acknowledge Method associated with the Condition
is called and the subsequent Event produced by the UA A&C Server indicating the transition to
acknowledged will result in an update to the current state of the local Condition record as well
as an OnEvent Notification to any subscribing Clients.

The A&E COM UA Proxy maintains the mapping of Attributes on an Event category basis. An
Event category inherits its Attributes from the Properties defined on all supertypes in the UA
Event Type hierarchy. New Attributes are added for any Properties defined on the direct UA
Event type to A&E category mapping. The A&E COM UA Proxy adds two Attributes to each
category: AckComment and Areas. Figure D.4 shows an example of this mapping.

Release 1.04 92 OPC Unified Architecture, Part 9

BaseEvent

Type

Condition

Type

AcknowledgeableCondition

Type

AlarmCondition

Type

 UA Condition Type

Hierarchy

(partial)

Composite set of UA properties from

BaseEventType +

ConditionType +

AcknowleageableConditionType +

AlarmConditionType

Composite set of UA properties from

BaseEventType +

ConditionType

Composite set of UA properties from

BaseEventType +

ConditionType +

AcknowleageableConditionType A&E COM UA

Proxy : Mapped

Categories and

Associated

Attributes

Figure D.4 – Example mapping of UA Event Types to A&E categories with attributes

D.3.6 Event Condition mapping

Events of any subtype of ConditionType are designated COM Condition Events and are subject
to additional processing due to the stateful nature of Condition Events. COM Condition Events
transition between states composed of the triplet ENABLED|ACTIVE|ACKNOWLEDGED. In UA
A&C, Event subtypes of ConditionType only carry a value which can be mapped to ENABLED
(DISABLED) and optionally, depending on further sub typing, may carry additional information
which can be mapped to ACTIVE (INACTIVE) or ACKNOWLEDGED (UNACKNOWLEGED).
Condition Event processing proceeds as described in Table D.5 (see A&E ONEVENTSTRUCT
“Attribute” rows: OPC_CONDITION_ACTIVE, OPC_CONDITION_ENABLED and
OPC_CONDITION_ACKED).

D.3.7 Browse mapping

A&E COM browsing yields a hierarchy of areas and sources. Areas can contain both sources
and other areas in tree fashion where areas are the branches and sources are the leaves. The
A&E COM UA Proxy relies on the "HasNotifier" Reference to assemble a hierarchy of
branches/areas such that each Object Node which contains a HasNotifier Reference and whose
EventNotifier Attribute is set to SubscribeToEvents is considered an area. The root for the
HasNotifier hierarchy is the Server Object. Starting at the Server Object, HasNotifier
References are followed and each HasNotifier target whose EventNotifier Attribute is set to
SubscribeToEvents becomes a nested COM area within the hierarchy.

Note that the HasNotifier target can also be a HasNotifier source. Further, any Node which is a
HasEventSource source and whose EventNotifier Attribute is set to SubscribeToEvents is also
considered a COM Area. The target Node of any HasEventSource Reference is considered an
A&E COM “source” or leaf in the A&E COM browse tree.

OPC Unified Architecture, Part 9 93 Release 1.04

In general, Nodes which are the source Nodes of the HasEventSource Reference and/or are
the source Nodes of the HasNotifier Reference are always A&ECOM Areas. Nodes which are
the target Nodes of the HasEventSource Reference are always A&E COM Sources. Note
however that targets of HasEventSource which cannot be found by following the HasNotifier
References from the Server Object are ignored.

Given the above logic, the A&E COM UA Proxy browsing will have the following limitations:
Only those Nodes in the UA A&C Server’s address space which are connected by the
HasNotifier Reference (with exception of those contained within the top level Objects folder)
are considered for area designation. Only those Nodes in the UA A&C Server’s address space
which are connected by the HasEventSource Reference (with exception of those contained
within the top level Objects folder) are considered for area or source designation. To be an
area, a Node shall contain a HasNotifier Reference and its EventNotifier Attribute shall be set
to SubscribeToEvents. To be a source, a Node shall be the target Node of a HasEventSource
Reference and shall have been found by following HasNotifier References from the Server
Object.

D.3.8 Qualified names

D.3.8.1 Qualified name syntax

From the root of any sub tree in the address space of the UA A&C Server, the A&E COM Client
may request the list of areas and/or sources contained within that level. The resultant list of
area names or source names will consist of the set of browse names belonging to those Nodes
which meet the criteria for area or source designation as described above. These names are
"short" names meaning that they are not fully qualified. The A&E COM Client may request the
fully qualified representation of any of the short area or source names. In the case of sources,
the fully qualified source name returned to the A&E COM Client will be the string encoded value
of the NodeId as defined in Part 6 (e.g., “ns=10;i=859“). In the case of areas, the fully qualified
area name returned to the COM Client will be the relative path to the notifier Node as defined
in Part 4 (e.g., “/6:Boiler1/6:Pipe100X/1:Input/2:Measurement“). Relative path indices refer to
the namespace table described below.

D.3.8.2 Namespace table

UA Server Namespace table indices may vary over time. This represents a problem for those
A&E COM Clients which cache and reuse fully qualified area names. One solution to this
problem would be to use a qualified name syntax which includes the complete URIs for all
referenced table indices. This however would result in fully qualified area names which are
unwieldy and impractical for use by A&E COM Clients. As an alternative, the A&E COM UA
Proxy will maintain an internal copy of the UA A&C Server's namespace table together with the
locally cached endpoint description. The A&E COM UA Proxy will evaluate the UA A&C Server’s
namespace table at connect time against the cached copy and automatically handle any re -
mapping of indices if required. The A&E COM Client can continue to present cached fully
qualified area names for filter purposes and the A&E COM UA Proxy will ensure these names
continue to reference the same notifier Node even if the Server's namespace table changes
over time.

To implement the relative path, the A&E COM UA Proxy maintains a stack of INode interfaces
of all the Nodes browsed leading to the current level. When the A&E COM Client calls
GetQualifiedAreaName, the A&E COM UA Proxy first validates that the area name provided is
a valid area at the current level. Then looping through the stack, the A&E COM UA Proxy builds
the relative path. Using the browse name of each Node, the A&E COM UA Proxy constructs the
translated name as follows:

QualifiedName translatedName = new QualifiedName(Name,(ushort)
ServerMappingTable[NamespaceIndex]) where

Name – the unqualified browse name of the Node

NamespaceIndex – the Server index

the ServerMappingTable provides the Client namespace index that corresponds to the
Server index.

Release 1.04 94 OPC Unified Architecture, Part 9

A ‘/’ is appended to the translated name and the A&E COM UA Proxy continues to loop through
the stack until the relative path is fully constructed.

D.3.9 Subscription filters

D.3.9.1 General

The A&E COM UA Proxy supports all of the defined A&E COM filter criteria.

D.3.9.2 Filter by Event, category or severity

These filter types are implemented using simple numeric comparisons. For Event filters, the
received Event shall match the Event type(s) specified by the filter. For Category filters, the
received Event’s category (as mapped from UA Event type) shall match the category or
categories specified by the filter. For severity filters, the received Event severity shall be within
the range specified by the Subscription filter.

D.3.9.3 Filter by source

In the case of source filters, the UA A&C Server is free to provide any appropriate, Server-
specific value for SourceName. There is no expectation that source Nodes discovered via
browsing can be matched to the SourceName Property of the Event returned by the UA A&C
Server using string comparisons. Further, the A&E COM Client may receive Events from
sources which are not discoverable by following only HasNotifier and/or HasEventSource
References. Thus, source filters will only apply if the source string can be matched to the
SourceName Property of an Event as received from the target UA A & C Server. Source filter
logic will use the pattern matching rules documented in the A&E COM specification, including
the use of wildcard characters.

D.3.9.4 Filter by area

The A&E COM UA Proxy implements Area filtering by adjusting the set of MonitoredItems
associated with a Subscription. In the simple case where the Client selects no area filter, the
A&E COM UA Proxy will create a UA Subscription which contains just one MonitoredItem, the
Server Object. In doing so, the A&E COM UA Proxy will receive Events from the entire Server
address space – that is, all Areas. The A&E COM Client will discover the areas associated with
the UA Server address space by browsing. The A&E COM Client will use
GetQualifiedAreaName as usual in order to obtain area strings which can be used as filters.
When the A&E COM Client applies one or more of these area strings to the COM Subscription
filter, the A&E COM UA Proxy will create MonitoredItems for each notifier Node identified by
the area string(s). Recall that the fully qualified area name is in fact the namespace qualified
relative path to the associated notifier Node.

The A&E COM UA Proxy calls the TranslateBrowsePathsToNodeIds Service to get the Node
ids of the fully qualified area names in the filter. The Node ids are then added as MonitoredItems
to the UA Subscription maintained by the A&E COM UA Proxy. The A&E COM UA Proxy also
maintains a reference count for each of the areas added, to handle the case of multiple A&E
COM Subscription applying the same area filter. When the A&E COM Subscriptions are
removed or when the area name is removed from the filter, the ref count on the MonitoredItem
corresponding to the area name is decremented. When the ref count goes to zero, the
MonitoredItem is removed from the UA Subscription.

As with source filter strings, area filter strings can contain wildcard characters. Area filter strings
which contain wildcard characters require more processing by the A&E COM UA Proxy. When
the A&E COM Client specifies an area filter string containing wildcard characters, the A&E COM
UA Proxy will scan the relative path for path elements that are completely specified. The partial
path containing just those segments which are fully specified represents the root of the notifier
sub tree of interest. From this sub tree root Node, the A&E COM UA Proxy will collect the list
of notifier Nodes below this point. The relative path associated with each of the collected notifier
Nodes in the sub tree will be matched against the Client supplied relative path containing the
wildcard character. A MonitoredItem is created for each notifier Node in the sub tree whose
relative path matches that of the supplied relative path using established pattern matching rules.
An area filter string which contains wildcard characters may result in multiple MonitoredItems
added to the UA Subscription. By contrast, an area filter string made up of fully specified path

OPC Unified Architecture, Part 9 95 Release 1.04

segments and no wildcard characters will result in one MonitoredItem added to the UA
Subscription. So, the steps involved are:

1) Check if the filter string contains any of these wild card characters, '*', '?', '#', '[', ']', '!', ' -
'.

2) Scan the string for path elements that are completely specified by retrieving the substring
up to the last occurrence of the ‘/’ character.

3) Obtain the NodeId for this path using TranslateBrowsePathsToNodeIds

4) Browse the Node for all notifiers below it.

5) Using the ComUtils.Match() function match the browse names of these notifiers against
the Client supplied string containing the wild card character.

6) Add the Node ids of the notifiers that match as MonitoredItems to the UA Subscription.

Release 1.04 96 OPC Unified Architecture, Part 9

Annex E – IEC62682 Mapping

E.1 Overview

This section provides a description of how the IEC 62682 information model can be mapped to
OPC UA. It highlights term differences, concepts and other functionality. IEC 62682 provides
additional information about managing and limiting alarms not covered by this specifi cation.

Note: ISA 18.2 is not discussed by this mapping, but IEC 62682 and ISA 18.2 are related and
most definitions in ISA 18.2 correspond to the definitions in IEC 62682.

E.2 Terms

IEC 62682 defines a large number of terms that are covered by the OPC UA model but not used
in the text. These IEC 62682 terms are listed below and include a description, mapping or
relationship to OPC UA Alarms and Events:

Table E.1 - IEC62682 Mapping

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

absolute alarm ExclusiveDeviationAlar
mType
NonExclusiveDeviation
AlarmType

An alarm generated when the alarm set point is exceeded.

Both OPC UA models expose a set point and process the
Alarm as an absolute Alarm requires, the only difference is the
interaction between relative states (High, HighHigh...)

adaptive alarm Alarm for which the setpoint is changed by an algorithm (e.g.,
rate based).

In OPC UA adaptive alarming may be part of a vendor
specific alarm application, but it would or could make use
of a number of standard Alarm functions described in this
specification. OPC UA provides limit, rate of change and
deviation alarming. Vendors can easily develop algorithms to
adjust any of the limits that are exposed.

adjustable alarm
/ operator-set
alarm

ExclusiveLimitAlarm
Type
NonExclusiveLimitAlar
mType

An alarm for which the set point can be changed
manually by the Operator.

Both OPC UA models allow Alarm limits to be writeable
and allow for an Operator to change the limit. For all
changes to limits an audit event should be generated
tracking the change.

advanced
alarming

 A collection of techniques that can help manage
annunciations during specific situations.

In OPC UA advanced alarming may be part of a vendor
specific alarm application, but it would or could make use
of a number of standard Alarm functions described in this
specification, such as adaptive setting of a setpoint for
deviation Alarm. It might also require the definition of
new Alarm sub-types.

OPC Unified Architecture, Part 9 97 Release 1.04

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

Annunciation /
Alarm
Annunciation

Retain A function of the alarm system is to call the attention of
the Operator to an alarm.

OPC UA provides an Alarm model that includes concepts
such as re-alarming, Alarm silence and Alarm delays, but
it is up to the Client application to make use of these
features to generate both audible and visual
annunciation to the Operator. OPC UA does not provide
visual indication but it does provide priority information
on which the client can be configured to provide the
appropriate visual display. A key concept for alarm
display is the concept of Alarm states and a Retain bit
(see Annex B for more details).

alarm attribute Various Alarm
Properties

The setting for an alarm within the process control
system.

OPC UA defines a number of Properties that reflect what
would be termed alarm attributes in IEC 62682 such as
Alarm setpoint which maps to the setpoint property in an
ExclusiveDeviationAlarmType.

alarm class ConditionClass,

ConditionSubClass

A group of alarms with a common set of alarm
management requirements (e.g., testing, training,
monitoring, and audit requirements).

OPC UA provides ConditionClasses, but also provides
other groupings, like ConditionSubClass OPC UA also
specifies a number of predefined classes, but it is
expected that vendors, other standards group or even
end users will define their own extensions to these
classes. The OPC concepts allow Alarms to be
categorized as needed.

alarm Deadband ExclusiveDeviationAl
armType
NonExclusiveDeviati
onAlarmType

A change in signal from the alarm setpoint necessary for
the alarm to return to normal.

In OPC UA the ExclusiveDeviationAlarmType and
NonExclusiveDeviationAlarmType contain an Alarm
deadband and can be used for the same functionality
described in IEC 62682.

filtering(alarm) Event Subscription A function which selects alarm records to be displayed
according to a given element of the alarm record.

In OPC UA Alarms are received by a Client according to
the specific filter requested by the Client. The filtering
can be very robust or very simple according to the needs
of the client. It is up to the Client application to generate
and provide the appropriate filter to the server. OPC UA’s
Alarm model is a subscription based model, not a push
model that is configured on a server. The choice of filter
is a client’s responsibility.

alarm flood Alarm diagnostics A condition during which the Alarm rate is greater than
the Operator can effectively manage - (e.g., more than
10 Alarms per 10 minutes).

Release 1.04 98 OPC Unified Architecture, Part 9

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

OPC UA does not define Alarm flooding but it does
provide the capability to collect diagnostics that would
allow an engineer to review overall Alarm performance.

alarm group alarm group A set of alarms with common association (e.g., process
unit, process area, equipment set, or service). Alarm
groups are primarily used for display purposes.

OPC UA allows the definition of Alarm groups and the
assignment of Alarms to these groups. In addition. OPC
UA allows Alarms to also be part of a category. OPC UA
also allows Alarms to be organized as a HasNotifier
hierarchy (see clause 6). Groups, categories and
hierarchies can be used for filtering or restricting Alarms
that are being displayed.

alarm history historical events long term repository for alarm records.

Part 11 describes historical Events.

alarm log short term repository for alarm records.

This part does not specify repositories for Alarms. Alarm
logging is a Client function.

alarm
management

alarm system
management

 collection of processes and practices for determining,
documenting, designing, operating, monitoring, and
maintaining alarm systems.

OPC UA provides an infrastructure to allow vendors and
Operators to provide Alarm management, as such it
should be an integral part of an alarm management
system.

alarm message Events text string displayed with the alarm indication that
provides additional information to the Operator (e.g.,
Operator action).

OPC UA provides an Event structure that includes many
different pieces of information (see Part 5 for additional
details). Clients can subscribe for as much of this
information as desired and display this as an Alarm
message. All typical fields that would be associated with
an Alarm message are available. In addition OPC UA
provides significant additional information.

alarm priority Priority relative importance assigned to an alarm within the alarm
system to indicate the urgency of response (e.g.,
seriousness of consequences and allowable response
time)

OPC UA provides a Priority Variable as part of the Alarm
Object that provides the same functionality

OPC Unified Architecture, Part 9 99 Release 1.04

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

alarm rate Alarm diagnostics the number of alarm annunciation, per Operator, in a
specific time interval.

OPC UA provides diagnostics allowing the collection of
Alarm rate information at any level in the system.

Record (Alarm) Events, Event
filtering

a set of information which documents an alarm state
change.

In OPC UA all Alarms are generated as an Event and the
Client can select the fields that are to be included in the
Events. This selection can be customized for each
AlarmConditionType, which allows a customized Alarm
record to be generated.

alarm setpoint,
alarm limit,
alarm trip point

Limit Alarms,
Discrete Alarms

the threshold value of a process variable or discrete state
that triggers the alarm indication.

OPC UA supports Alarm limits and setpoints for multiple
Alarm types, including limit Alarms and discrete Alarms.

Sorting (alarm) a function which orders alarm records to be displayed
according to a given element of alarm record.

OPC UA does not provide Alarm sorting as part of an
event subscription. Multiple filtering options are
provided, but the Client is required to perform any
ordering of Alarms.

alarm summary,
alarm list

 a display that lists alarm annunciations with selected
information (e.g., date, time, priority, and alarm type).

In OPC UA Alarm summaries and Alarm lists are Client
functionality and are not specified. Extensive filtering
capabilities are provided by the Server to allow easier
implementation of Alarm summaries or lists by a Client.

Alert An audible and/or visible means of indicating to the
Operator an equipment or process condition that can
require evaluation when time allows.

Alerts are items that should be attended to, but are not
as urgent as Alarms. OPC UA does not differentiate
between Alarms and alerts, but it does provide a full
range of priorities for Alarms. It is up to the end users to
determine what range of priorities are considered an
alert vs an Alarm etc.

Release 1.04 100 OPC Unified Architecture, Part 9

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

allowable
response time

 The maximum time between the annunciation of the
alarm and when the Operator takes corrective action to
avoid the consequence.

OPC UA does not provide any specific fields for
allowable response time, but it does track the times at
which an Alarm occurs and when any actions are taken
on the Alarm.

annunciator device or group of devices that call attention to changes
in process conditions

OPC UA does not define annunciators, this is Client
functionality that can be implemented using OPC UA

Audit comprehensive assessment that includes the evaluation
of alarm system performance and the effectiveness of
the work practices used to administer the alarm system.

OPC UA does provide a number of features that can
facilitate an audit, including diagnostics and audit
events. Do not confuse OPC Audit Event with the IEC
audit concept.

bad-
measurement
alarm

 an alarm generated when the signal for a process
measurement is outside the expected range (e.g., 3.8
mA for a 4 mA to 20 mA signal).

A bad measurement Alarm is not defined in OPC UA,
but limit Alarms are defined and they could be used
directly to represent a bad-measurement Alarm.
Alternatively, limit Alarms could be further subtyped to
allow easier filtering on bad-measurement Alarms if
desired.

bit-pattern alarm Discrete alarm an alarm that is generated when a pattern of digital
signals matches a predetermined pattern.

In OPC UA a bit pattern Alarm can be mapped to a
DiscreteAlarmType.

calculated alarm An alarm generated from a calculated value instead of a
direct process measurement.

In OPC UA any of the defined Alarm types can be applied
to calculated values or to process values.

OPC Unified Architecture, Part 9 101 Release 1.04

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

call-out alarm alarm that notifies and informs an Operator by means
other than, or in addition to, a console display (e.g.,
pager or telephone)

OPC UA does not specify call-out alarms, since this is
client functionality. OPC UA does provide the ability to
categorize or group an Alarm such that it could be easily
identified as requiring a different type of annunciation.

chattering alarm OnDelay, OffDelay alarm that repeatedly transitions between the alarm state
and the normal state in a short period of time.

The OPC UA features of OnDelay and OffDelay can be
used to help control chattering Alarms.

classification ConditionClasses the process of separating alarms into alarm classes
based on common requirements (e.g. testing, training,
monitoring, and auditing requirements).

OPC defines a number of extensible ConditionClasses
that can be used for this purpose.

controller-output
alarm

 alarm generated from the output signal of a control
algorithm (e.g., PID controller) instead of a direct
process measurement.

OPC UA does not provide an Alarm type for controller-
output alarm, but a type could be created or an existing
type could be used, depending on the requirements.

dynamic
alarming

 An automatic modification of alarm attributes based on
process state or conditions.

OPC UA does not define dynamic alarming behaviour,
but it allows programmatic access to limits, set points or
other parameters that would be required for a dynamic
alarming solution.

enforcement enhanced alarming technique that can verify and restore
alarm attributes in the control system to the values in the
master alarm database.

OPC UA does not provide enforcement, but it enables
enforcement by providing an information model that
includes default setting for Alarm types as well as original
settings for dynamic Alarms. These features can be used
by a Client application to provide enforcement.

fleeting alarm Suppression,
Shelving

An alarm that transitions between an active alarm state
and an inactive alarm state in a short period of time.

OPC UA provides Alarm Suppression and Shelving which
an Operator might use to control fleeting Alarms.

Release 1.04 102 OPC Unified Architecture, Part 9

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

first-out alarm
first-up alarm

FirstInGroup

FirstInGroupFlag

An alarm determined (i.e., by first-out logic) to be the
first, in a multiple-alarm scenario.

OPC UA can support first-up/first-out Alarms as part of
the Alarm information model, including definition of the
group of Alarms.

instrument
diagnostic alarm

InstrumentDiagnostic
AlarmType

An alarm generated by a field device to indicate a fault (e.g.,
sensor failure).

OPC UA provides support for InstrumentDiagnostic Alarms
that can be used to represent a failed sensor or an instrument
diagnostic.

monitoring Alarm Diagnostics measurement and reporting of quantitative (objective) aspects
of alarm system performance.

OPC UA provides diagnostic collection capabilities that can be
used to measure and reports quantitative information related

to alarm system performance.

nuisance alarm Alarm Diagnostics

An alarm that annunciates excessively, unnecessarily, or
does not return to normal after the Operator response is
taken. EXAMPLE: Chattering alarm, fleeting alarm, or
stale alarm.

The OPC UA model provides Alarm Diagnostics for
tracking the information needed to identify if an Alarm is
a nuisance Alarm (i.e. has been in an Alarm state
excessively or does not return to normal).

plant state

plant mode

StateMachines defined set of operational conditions for a process plant.

OPC UA provides an example StateMachine (see
Annex F) that can be customized or adapted to provide
process information. This StateMachine could also be
used to affect alarming.

process area Event Hierarchies

Object References
(Part 5)

physical, geographical or logical grouping of resources
determined by the site.

OPC UA provides multiple manners in which an
information model can be displayed, this includes
grouping objects into process areas or any other desired
grouping. This is an inherent part of the OPC UA
information model.

re-alarming
alarm, re-
triggering alarm

ReAlarmTime

ReAlarmRepeatCoun
t

alarm that is automatically re-annunciated to the
Operator under certain conditions.

OPC UA supports re-alarming as part of its base
AlarmConditionType.

OPC Unified Architecture, Part 9 103 Release 1.04

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

recipe-driven
alarm

StateMachines

Alarm Limits

alarm with setpoints that depend on the recipe that is
currently being executed.

OPC UA provides support for adjustable Alarm limits. It
also provides support for programs and other
functionality that could be used to drive recipes. Annex F
provides an example of a StateMachine and how it could
be used to adjust Alarm settings.

Reset LatchedState / Reset Operator action that unlatches a latched alarm.

OPC UA provides an optional StateMachine to indicate
an Alarm is capable of being latched and is in a latched
state. It also provides a Reset Method for clearing the
latched state.

safety related
alarm

safety alarm

SafetyConditionClas
sType

an alarm that is classified as critical to process safety for
the protection of human life or the environment.

OPC UA defines a safety ConditionClass for grouping
safety related alarms.

stale alarm Alarm Diagnostics alarm that remains annunciated for an extended period
of time (e.g., 24 hours).

OPC UA Alarm Diagnostics can track the length of time
an Alarm is active.

state-based
alarm - mode-
based alarms

StateMachine alarm that has attributes modified or is suppressed based
on operating states or process conditions.

OPC UA can provide a system state StateMachine to
support process, device or system states (see Annex F).
With this StateMachine Servers can adjust Alarm
attributes or just Suppress or Disable Alarms based on
the StateMachine. The StateMachine can be applied at
multiple levels in the system.

statistical alarm StatisticalConditionC
lassType

alarm generated based on statistical processing of a
process variable or variables.

OPC UA provides an Alarm Condition class that any of
the existing AlarmConditionTypes can be assigned to.
This allows any Alarm types, such as limit Alarms, to be
generated by statistical analysis.

Suppress SuppressedOrShelv
ed

Any mechanism to prevent the indication of the alarm to
the Operator when the base alarm condition is present
(i.e., shelving, suppressed by design, out-of-service).

OPC UA provides a flag SuppressedOrShelved that
matches this functionality.

Release 1.04 104 OPC Unified Architecture, Part 9

IEC 62682 OPC UA Mapping /
Related Concept

IEC 62682 Definition

OPC UA Application of

suppressed by
design

SuppressedState alarm annunciation to the Operator prevented based on
plant state or other conditions.

OPC UA provides a SuppressedState that matches this
functionality.

system
diagnostic alarm

SystemDiagnosticAla
rmType

alarm generated by the control system to indicate a fault
within the system hardware, software or components.

OPC UA defines a system diagnostic Alarm that can be
used to represent faults with system hardware, software
or components.,

The following terms in IEC 62682 match the terms/concepts defined in the OPC UA specification and
do not need any addition mapping or discussion:

• Acknowledge

• Active

• Alarm

• Alarm OffDelay

• Alarm OnDelay

• Alarm Type

• Deviation Alarm

• Discrepancy Alarm

• Event

• Highly Managed Alarm

• LatchingAlarm

• OutofService

• Rateofchange alarms

• Return to normal

• Shelve

• Silence

• Unacknowledged

E.3 Alarm records & State Indications

OPC UA provides all of the items listed as both required and recommended as part of its
alarm definitions, but it is up to the client to subscribe for the information. In OPC UA the
Client controls what alarm information is requested and obtained from the Server. The Server
does not define visual aspects of the alarm system, but does provide priority information from
which the visual aspect can be set on the client side.

OPC UA also supports all of the states described in IEC 62682. This includes tracking the
process states, system states and individual alarm states. OPC UA also provides a
StateMachine model that can be used in conjunction with an alarm system to alter alarm
behaviour based on the state of a system or process. For example , during start-up or
shutdown of a process or a system some alarms might be suppressed.

The behaviour of an OPC UA alarm system also mimics that required by IEC 62682. All
behaviour described in IEC 62682 can easily be mapped to functionality define in OPC UA
Alarm & Conditions.

OPC Unified Architecture, Part 9 105 Release 1.04

Release 1.04 106 OPC Unified Architecture, Part 9

Annex F System State (Informative)

F.1 Overview

The state of alarms is affected by the state of the process, equipment, system or plant. For
example, when a tank is taken out of service, the level alarms associated with the tank would
be no longer used, until the tank is returned to service. This section describes a StateMachine
that can be deployed as part of a system designed and used to reflect the current state of the
system, process, equipment or item. Customized version of this model can be implemented for
any system, this sample is just an illustration.

The current state from the StateMachine is applied to all items in the HasNotifier hierarchy
below the object with which the StateMachine is associated. The SystemState StateMachine
can be used to automatically disable, enable, suppress or un-suppress Alarms related to the
Object (with in the hierarchy of alarms from the given object). The StateMachine can also be
used by advanced alarming software to adjust the setpoint, limits or other items related to the
Alarms in the hierarchy.

Optionally, multiple SystemState StateMachines can be deployed.

StartingUp ShuttingDown

Operating

Emergency

Shutdown/

Other

Process

 Shutdown
Stabilized

Shutdown

CompleteInitiate

Startup

Shutdown

StartUp

OutofService

Maintenance

Return to

Service

Take Out

 Of Service

Hand to

Process

Hand to

Maintenance

Line Up
Isolate

 System

Figure F. 1 - SystemState transitions

OPC Unified Architecture, Part 9 107 Release 1.04

F.2 SystemStateStateMachineType

The SystemStateStateMachineType includes a hierarchy of sub-states. It supports multiple
transitions between Operating, StartingUp, ShuttingDown, Shutdown, OutOfService and
Maintenance.

The state machine is illustrated in Figure F. 2 and formally defined in Table 51.

Maintain

SystemState

StateMachineType

ShuttingDown

StartingUp

StartingUpToOperating
HasCause

FiniteStateMachineType

Operating

OutOfserviceToMaintenance

OutofServiceToOperating

OperatingToOutofService

Place

OutOfService

HasCause

HasCause

Start

MaintenanceToOutOfService
HasCause

ShutdownToStartingUpHasCause

StateType

TransitionType

Shutdown

Maintenance

OutOfService OutofServiceToShutdown

ShutdownToOutOfService

OutOfService

Shutdown

HasCause

HasCause

ShutdownToOperating

QuickStart

HasCause

ShuttingdownToShutdown

Stop

OperatingToShuttingDownHasCause

OperatingToShutdown

Quick

Shutdown

HasCause

Figure F. 2 - SystemStateStateMachineType Model

Release 1.04 108 OPC Unified Architecture, Part 9

Table F.1 – SystemStateStateMachineType definition

Attribute Value

BrowseName SystemStateStateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling Rule

Subtype of the FiniteStateMachineType defined in Part 5

HasComponent Object Operating StateType

HasComponent Object ShuttingDown StateType

HasComponent Object StartingUp StateType

HasComponent Object Shutdown StateType

HasComponent Object OutOfService StateType

HasComponent Object Maintenance StateType

HasComponent Object ShutdownToOperating TransitionType

HasComponent Object OperatingToShutdown TransitionType

HasComponent Object ShuttingdownToShutdown TransitionType

HasComponent Object OperatingToShuttingdown TransitionType

HasComponent Object StartingUpToOperating TransitionType

HasComponent Object ShutdownToStartingUp TransitionType

HasComponent Object OutofServiceToShutdown TransitionType

HasComponent Object ShutdownToOutOfService TransitionType

HasComponent Object OutofServiceToOperating TransitionType

HasComponent Object OperatingToOutofService TransitionType

HasComponent Object MaintenanceToOutOfService TransitionType

HasComponent Object OutOfServiceToMaintenance TransitionType

HasComponent Method Start Defined in Clause XXX Optional

HasComponent Method Maintain Defined in Clause XXX Optional

HasComponent Method Stop Defined in Clause XXX Optional

HasComponent Method PlaceOutOfservice Defined in Clause XXX Optional

HasComponent Method QuickShutdown Defined in Clause XXX Optional

HasComponent Method QuickStart Defined in Clause XXX Optional

HasComponent Method OutOfServiceShutdown Defined in Clause XXX Optional

The actual selection of States and Transitions would depend on the deployment of the

StateMachine. If the StateMachine were being applied to a tank or other part of a process it
might have a different set of States then if it was applied to a meter or instrument. The meter
may only have Operating, OutOfService and Maintenance, while the tank may have all of the
described States and Transitions.

The StateMachine supports six possible states including: Operating, ShuttingDown, StartingUp,
Shutdown, OutOfService, Maintenance. It supports 12 possible Transitions and 7 possible
Methods.

OPC Unified Architecture, Part 9 109 Release 1.04

Table F.2 - SystemStateStateMachineType transitions

BrowseName References BrowseName TypeDefinition

Transitions

ShutdownToOperating FromState Shutdown StateType

 ToState Operating StateType

 HasCause QuickStart Method

OperatingToShutdown FromState Operating StateType

 ToState Shutdown StateType

 HasCause QuickShutdown Method

ShuttingdownToShutdown FromState ShuttingDown StateType

 ToState Shutdown StateType

OperatingToShuttingdown FromState Operating StateType

 ToState ShuttingDown StateType

 HasCause Stop Method

StartingUpToOperating FromState StartingUp StateType

 ToState Operating StateType

ShutdownToStartingUp FromState Shutdown StateType

 ToState StartingUp StateType

 HasCause Start Method

OutofServiceToShutdown FromState OutOfService StateType

 ToState Shutdown StateType

 HasCause OutOfServiceShutdown Method

ShutdownToOutOfService FromState Shutdown StateType

 ToState OutOfService StateType

 HasCause OutOfServiceShutdown Method

OutOfServiceToOperating FromState OutOfService StateType

 ToState Operating StateType

 HasCause PlaceOutOfService Method

OperatingToOutofService FromState Operating StateType

 ToState OutOfService StateType

 HasCause PlaceOutOfService Method

MaintenanceToOutofService FromState Maintenance StateType

 ToState OutOfService StateType

 HasCause Maintain Method

OutOfServiceToMaintenance FromState OutOfService StateType

 ToState Maintenance StateType

 HasCause Maintain Method

The system can always generate additional HasCause References, such as internal code. No
HasEffect References are defined, but an implementation might define HasEffect References
(such as HasEffectDisable) for disabling or enabling Alarms, suppressing Alarms or adjusting
setpoints or limits of Alarms. The targets of the reference might be an individual Alarm or portion
of a plant or piece of equipment. See section 7 for a list of HasEffect References that could be
used.

	Figures
	TABLES
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviations
	3.1 Terms and definitions
	3.2 Abbreviations and symbols
	3.3 Used data types

	4 Concepts
	4.1 General
	4.2 Conditions
	4.3 Acknowledgeable Conditions
	4.4 Previous states of Conditions
	4.5 Condition state synchronization
	4.6 Severity, quality, and comment
	4.7 Dialogs
	4.8 Alarms
	4.9 Multiple active states
	4.10 Condition instances in the AddressSpace
	4.11 Alarm and Condition auditing

	5 Model
	5.1 General
	5.2 Two-state state machines
	5.3 ConditionVariable
	5.4 ReferenceTypes
	5.4.1 General
	5.4.2 HasTrueSubState ReferenceType
	5.4.3 HasFalseSubState ReferenceType
	5.4.4 HasAlarmSuppressionGroup ReferenceType
	5.4.5 AlarmGroupMember ReferenceType

	5.5 Condition Model
	5.5.1 General
	5.5.2 ConditionType
	5.5.3 Condition and branch instances
	5.5.4 Disable Method
	5.5.5 Enable Method
	5.5.6 AddComment Method
	5.5.7 ConditionRefresh Method
	5.5.8 ConditionRefresh2 Method

	5.6 Dialog Model
	5.6.1 General
	5.6.2 DialogConditionType
	5.6.3 Respond Method

	5.7 Acknowledgeable Condition Model
	5.7.1 General
	5.7.2 AcknowledgeableConditionType
	5.7.3 Acknowledge Method
	5.7.4 Confirm Method

	5.8 Alarm model
	5.8.1 General
	5.8.2 AlarmConditionType
	5.8.3 AlarmGroupType
	5.8.4 Reset Method
	5.8.5 Silence Method
	5.8.6 Suppress Method
	5.8.7 Unsuppress Method
	5.8.8 RemoveFromService Method
	5.8.9 PlaceInService Method
	5.8.10 ShelvedStateMachineType
	5.8.10.1 Overview
	5.8.10.2 Unshelve Method
	5.8.10.3 TimedShelve Method
	5.8.10.4 OneShotShelve Method

	5.8.11 LimitAlarmType
	5.8.12 Exclusive Limit Types
	5.8.12.1 Overview
	5.8.12.2 ExclusiveLimitStateMachineType
	5.8.12.3 ExclusiveLimitAlarmType

	5.8.13 NonExclusiveLimitAlarmType
	5.8.14 Level Alarm
	5.8.14.1 Overview
	5.8.14.2 NonExclusiveLevelAlarmType
	5.8.14.3 ExclusiveLevelAlarmType

	5.8.15 Deviation Alarm
	5.8.15.1 Overview
	5.8.15.2 NonExclusiveDeviationAlarmType
	5.8.15.3 ExclusiveDeviationAlarmType

	5.8.16 Rate of change Alarms
	5.8.16.1 Overview
	5.8.16.2 NonExclusiveRateOfChangeAlarmType
	5.8.16.3 ExclusiveRateOfChangeAlarmType

	5.8.17 Discrete Alarms
	5.8.17.1 DiscreteAlarmType
	5.8.17.2 OffNormalAlarmType
	5.8.17.3 SystemOffNormalAlarmType
	5.8.17.4 TripAlarmType
	5.8.17.5 InstrumentDiagnosticAlarmType
	5.8.17.6 SystemDiagnosticAlarmType
	5.8.17.7 CertificateExpirationAlarmType

	5.8.18 DiscrepancyAlarmType

	5.9 ConditionClasses
	5.9.1 Overview
	5.9.2 BaseConditionClassType
	5.9.3 ProcessConditionClassType
	5.9.4 MaintenanceConditionClassType
	5.9.5 SystemConditionClassType
	5.9.6 SafetyConditionClassType
	5.9.7 HighlyManagedAlarmConditionClassType
	5.9.8 TrainingConditionClassType
	5.9.9 StatisticalConditionClassType
	5.9.10 TestingConditionSubClassType

	5.10 Audit Events
	5.10.1 Overview
	5.10.2 AuditConditionEventType
	5.10.3 AuditConditionEnableEventType
	5.10.4 AuditConditionCommentEventType
	5.10.5 AuditConditionRespondEventType
	5.10.6 AuditConditionAcknowledgeEventType
	5.10.7 AuditConditionConfirmEventType
	5.10.8 AuditConditionShelvingEventType
	5.10.9 AuditConditionSuppressionEventType
	5.10.10 AuditConditionSilenceEventType
	5.10.11 AuditConditionResetEventType
	5.10.12 AuditConditionOutOfServiceEventType

	5.11 Condition Refresh related Events
	5.11.1 Overview
	5.11.2 RefreshStartEventType
	5.11.3 RefreshEndEventType
	5.11.4 RefreshRequiredEventType

	5.12 HasCondition Reference type
	5.13 Alarm & Condition status codes
	5.14 Expected A&C server behaviours
	5.14.1 General
	5.14.2 Communication problems
	5.14.3 Redundant A&C servers

	6 AddressSpace organisation
	6.1 General
	6.2 EventNotifier and source hierarchy
	6.3 Adding Conditions to the hierarchy
	6.4 Conditions in InstanceDeclarations
	6.5 Conditions in a VariableType

	7 System State & Alarms
	7.1 Overview
	7.2 HasEffectDisable
	7.3 HasEffectEnable
	7.4 HasEffectSuppress
	7.5 HasEffectUnsuppressed

	8 Alarm Metrics
	8.1 Overview
	8.2 AlarmMetricsType
	8.3 AlarmRateVariableType
	8.4 Reset Method

	Annex A (informative) Recommended localized names
	A.1 Recommended state names for TwoState variables
	A.1.1 LocaleId “en”
	A.1.2 LocaleId “de”
	A.1.3 LocaleId “fr”

	A.2 Recommended dialog response options

	Annex B (informative) Examples
	B.1 Examples for Event sequences from Condition instances
	B.1.1 Overview
	B.1.2 Server maintains current state only
	B.1.3 Server maintains previous states

	B.2 AddressSpace examples

	Annex C (informative) Mapping to EEMUA
	Annex D (informative) Mapping from OPC A&E to OPC UA A&C
	D.1 Overview
	D.2 Alarms and Events COM UA wrapper
	D.2.1 Event areas
	D.2.2 Event sources
	D.2.3 Event categories
	D.2.4 Event attributes
	D.2.5 Event subscriptions
	D.2.6 Condition instances
	D.2.7 Condition Refresh

	D.3 Alarms and Events COM UA proxy
	D.3.1 General
	D.3.2 Server status mapping
	D.3.3 Event Type mapping
	D.3.4 Event category mapping
	D.3.5 Event Category attribute mapping
	D.3.6 Event Condition mapping
	D.3.7 Browse mapping
	D.3.8 Qualified names
	D.3.8.1 Qualified name syntax
	D.3.8.2 Namespace table

	D.3.9 Subscription filters
	D.3.9.1 General
	D.3.9.2 Filter by Event, category or severity
	D.3.9.3 Filter by source
	D.3.9.4 Filter by area

	Annex E – IEC62682 Mapping
	E.1 Overview
	E.2 Terms
	E.3 Alarm records & State Indications

	Annex F System State (Informative)
	F.1 Overview
	F.2 SystemStateStateMachineType

