ELEC-E8113
Information systems in industry

OPC UA teamwork

Information systems in industry Version 1.0

Author:

Versio:

Date:

llkka Seilonen

1.0

5.9.2022

Table of contents

O 1 10T (8 Tt A o] o RS RURPPRPSN 4
I R U 1 (o] 1 P A o] g o - L ST 4
1.2 Existing OPC UA server appliCation............cccoiveiiiieie e 5
1.3 New OPC UA server appliCaIONocoiiiiiiiiiiiicieiee e 5

N 110101 [=T 0 T=T 1 e LA o] (o To] S SO SSPSPSO 7
N R @ V=1 VSO S U RTRRRPRN 7
2.2 JAVA AN ECHPSE ..voviiieie ettt ettt e ne e e nre et 7
2.3 Prosys OPC UA JaVa SDK.........coiiiiiiiiieii e 8
P U L1 o 1] S SRR 9
2.5 EXAMPIE PIrOGIaMS. . ..ottt ettt b bbb ene s 10

3 USETUL TINKS . bbbttt bbbt 11

4 DEIVEIADIES ..ottt bbb bbb nrenre s 12

APPENAIX AL FAQ et bbb bbbttt b et bbb ene s 13

1 Introduction

In this OPC UA (Unified Architecture) assignment you are supposed to learn about OPC UA
technology and communication of automation data between automation systems and information
systems. You are doing this though implementing a simple OPC UA server application for
communicating data of an example process to an imaginary client in a particularly requested form.

1.1 Automation data

The example process is an educational process available at the laboratory of Aalto EEA. In this
exercise we consider the data available from a part of the boiler sub-process (see figure 1). The sub-
process contains a boiler, four sensors, three valves and a pump. The automation application
controlling the process runs on a PLC. It contains a PID controller controlling water level in the
boiler. Data form the automation is available through an OPC Classic server and an OPC UA
wrapper. The application was developed by a former employee several years ago. Your job now is
to develop the communication with support for selected standards requested by an imaginary client.

"\ — Liquid
Water NS - =) >
Process Makeup line e rl et |
- Anomate fine

7N

{ >4 ; T400

E y eedwate

V204 Tank :
|?J__l_—_l
T200

Water Treatment

V404

Figure 1. Diagram of the example process. Boiler is in the middle.

1.2 Existing OPC UA server application

The data needed in this exercise is available through a simple test application called DemoServer.
The application is available in Mycourses website in folder Materials / Teamwork / OPC UA. You
can download and install the application, and use it in as a part of your exercise. You might need to
modify the application (e.g. paths) to fit your own computer.

The DemoServer application is an OPC UA server. You can access it with UaExpert (see figure 2).
The data available at the DemoServer application is organized as a flat list of variables. This is quite
typical in OPC Classic based systems. The values of the variables are arbitrary and there is mostly
no application logic connected to them. You can change the values through UaExpert.

Address Space =
|No Highiight -
) Root -
4) Objects
4 |J) CoDeSys.OPC.DA
4) PLC_GW3

m

4 |J) Application
4 1) GYL_WP_HPP

: L300_AlrmEvtMsg
L300_AlrmEvtOn
L300_CurhModeVal
L300_MeasMan
L300_MeasVal
L300_SetModeluto
L300_SetModeMan
L301_AlrmEvtMsg
L301_AlrmEvtOn
1301 _CurModeVal
1301 _MeasMan
1301_MeasVal
1301 _SetModeluto
L301_SetModeMan
M200_AlrmEvtMsq
M200_AlrmEvtOn
M200_CtrlOut
M200_CurCtrlVal
M200_CurModeVal
M200_IntActive
M200_IntMsg
M200 ManCtrlVal S

essscccccccooossannnne

Figure 2. Part of data available from the DemoServer application

1.3 New OPC UA server application

You are supposed to develop a chained OPC UA server application which communicates with the
DemoServer application and provides its data in another form. The chained server pattern is
illustrated in figure 3. Let’s call the new application AppServer for now. The new form of data at
the AppServer application has to conform to a few specifications outlined below. Regardless the
different forms of data the values of the variables at the both servers should be the same.

OPC UA Client 1 ‘

QOPC UA Server 1

OPC UA Client 2

£ RECLEST
REEPOMEE

QPC UA Server 2 ‘

Figure 3. Chained OPC UA server pattern
The representation of data at the AppServer application should fulfil the following requirements:

1. The data about all other tags than PIC300 should follow the OPC UA for Process
Automation Devices Companion Specification, release 1.00. You have to utilize the
PADIMType type.

2. The data about the tag PIC300 should follow the OPC UA for Programmable Logic
Controllers base on IEC61131-3, release 1.00. You can utilize the CtrlConfigurationType

type.

3. The variables whose name contain SetModeAuto or SetModeMan should be provided as
OPC UA methods according to the OPC UA Specification, Part 3: Address Space Model,
release 1.04.

4. The variables who have the nature of alarms (e.g. name contains “Alrm”) should be
provided only as OPC UA alarms (and not as variables) according to the OPC UA
Specification Part 9: Alarms & Conditions, release 1.04.

The application logic of the AppServer is required to implement the following functionality:
1. Reading value of any variable. The values should be same at DemoServer and AppServer.
2. Writing value of any variable. The values should be same at both servers.
3. Subscribing and unsubscribing to any variable. The values should be same at both servers.
4

. Subscribing and unsubscribing to any alarm. The alarms at AppServer should follow the
same application logic than respective variables at DemoServer.

5. Calling any method with simple application logic. It is possible to call all methods with
names SetModeAuto and SetModeMan. The value of the variable CurModeVal is set to
either AUTO or MANUAL according these calls.

2 Implementation tools

2.1 Overview

This exercise has to be done with your own computer. A laptop with Windows operating system is
recommended but Linux might be possible as well.

You will need a few software tools in order to do the exercise. You have to install them yourself to
your computer. The required tools are listed below and explained in more details in subsequent
chapters.

e Java SE Development Kit (JDK), version 8, or later version compatible with Prosys SDK.
e Eclipse IDE for Java Developers, version 2018-12 or later.

e Prosys OPC UA Java SDK, version 4.9.0. (available from Prosys)

e UaExpert, version 1.5.0 or later.

e Example programs DemoServer and AppServer (available at Mycourses).

2.2 Java and Eclipse

This exercise is programmed with Java programming language. In order to do this you will need
Java SE Development Kit (JDK), version 8 or later version compatible with Prosys SDK. It is
available for download at Oracle website (see chapter 3). OpenJDK should also be fine in Linux.

It is proposed that you use the Eclipse IDE (integrated development environment) to do the required
programming and debugging. You will need Eclipse IDE for Java (or Java EE) Developers (see
figure 4). Eclipse is available for download at Eclipse website (see chapter 3). Download the 2018-
12 version or later. Documentation of Eclipse IDE is also available at the website. Alternatively you
can use another IDE for Java if you wish.

&) Java - AppServer/sic/fifaalto/app/server/AppServer.java - Eclipse = e |
File Edit Source Refactor Mavigate Search Project Run Window Help
- | B s H-0-~- Q- F G- =S 5 5 L e R Quick Access 1| % | (@ Java | 7@ Java EE 4 Debug
[% Package Explorer 52 = 8 [AppServerjava 5% = 8
k=4 - 1 package fi.aalto.app.server; A
= 2
4 [Appserver 3% import java.util.locale;[]
a (B sc
> f fi.aalto.app.client public class AppServer {
4 [fiaslto.app.server
1) ApploManagerListenes protected stat%c §tring APP_NAME = "AppServer”;
7 AppNodeM, protected static int TCP_PORT = 52528;
:_J pRHiodelianager.av: protected static int WTTP_PORT = 52445;
.| AppModeManagerList protected static boolean enableSessionDiagnostics = false;
\J) AppServer.java protected AppNodeManager appNodeManager;
> B JRE System Library [jdk1.7.0_5! protected UaServer server;
. i, Referenced Libraries private AppClient appClient;
= PR public static void main(string[] args) [
5] AppServerbat
1, PKlzip AppServer appServer = new AppServer();
(& DemoServer appServer.initialize(TCP_PORT, HTTP_PORT, APP_NAME);
appServer. createAddressSpace();
appServer. run(enableSessionDiagnostics);
}
public AppServer() {
this.appClient = new AppClient();
public AppClient getappClient() {
return this.appClient;
}
protected void initialize(int port, int httpsPort, String applicationiame) {
try {
server = new UaServer(); -
= Console 2 . == a
No consoles to display at this time,
< [»
fi.aalto.app.server.AppServer.java - AppServer/src

Figure 4.Eclipse IDE for Java Developers

2.3 Prosys OPC UA Java SDK

Prosys OPC UA Java SDK is a software library you are going to use to develop the AppServer in
this exercise. It is a Java library you can use with Eclipse. The example programs were developed
with it. The library can be obtained from Prosys though a request.

Prosys OPC UA Java SDK download contains an OPC UA library and a few additional libraries.
The most essential library is the actual SDK which can be used to develop OPC UA client and
server applications. You can study the tutorials, documentation and sample programs in order to
learn how the SDK API is used for designing an OPC UA application. Javadoc documentation of
the SDK API is included in the Prosys OPC UA Java SDK download (see figure 5). The SDK also
contains a few useful tutorials. It is very much recommended to study them.

In order to implement the requested new address space for your application you will need to use the
code generation tools of the SDK. You have to read its documentation provided with the SDK.
Information model files for the requested AppServer application are available in the AppServer
project. You will need them in code generation.

[[[o[=] s

/ [OPC Foundation Unified X '\

< C | @ filey/f/C:/Program%20Files/prosys-opc-ua-java-sdk-3.1.4-514-client-server-evaluation/javadoc/opc-ua-stack-1.3.344-173-javadoc/index.html *
All Classes X Package Class Use Tree Deprecated Index Help
PREV NEXT FRAMES MO FRAMES
Packages
org.opcfoundation.ua application
0rg.opeioundalion ua buillintypes OPC Foundation Unified Architecture Java Stack 1.3.344-173 API

org.opcfoundation ua cert

org.opcfoundation.ua.common
org.opcfoundation ua.core Packages
org.opcfoundation.ua.encoding

a0, opeioundation ua encoding.bi org.opcfoundation.ua.application The code in this package is for application developer.
org.opcfoundation. ua encoding.ut org.opcfoundation.ua.builtintypes OPC UA Part 6 defines 23 builtin types.
arn ancinnndatinn na encndinn e T " Y

. org tion.ua.cert

org.opcfoundation.ua.common This package contains common and shared classes

All Classes
AbstractSerializer org.opcfoundation.ua.core All the code 1n this package are codegenerated.
AbstraciServerConnection org.opcfoundation.ua.encoding This folder contains serialization interfaces and serialization implementations
AbstractServerSecureChannel
AbstractServiceHandler org.opcfoundation.ua.encoding binary | The implementation of binary sertalization
%m[e org.opcfoundation.ua.encoding.utils Utility classes for encoding
Accesslevel org.opcfoundation.ua.encoding.xml The implementation of xml serialization.
Acknowledge - -
ActivateSessionRequest org.opcfoundation.ua.transport This package contains SecureChannel and related interfaces

ActivateSessionResponse

AddNodesitem org.opcfoundation.ua.transport.endpoint | Endpoint related classes

AddNodesRequest org.opcfoundation.ua.transport.https Code for creating a HTTPS based secure channel
AddNodesResponse N N N N N
AddNodesResult org.opcfoundation.ua.transport.impl This package contains SecureChannel related implementations
iiggggggﬂgziggguest org. fe dation.ua.transport.security, |This folder contains common security related classes
AddReferencesResponse org.opcfoundation.ua.transport.tcp Code for creating TCP/IP based secure channel (in subpackages)
AggregateConfiguration foundati p ton.imnl
AgaregateFilter org.opcioundalion.ua.fransport.tcp.impl
AggregateFilterResult org.opcfoundation.ua.transport.tep.io
AllowAllCertificates\Validator - -
Annotation org.opcfoundation.ua.transport.tcp.nio
AnonymousidentityToken org.opcfoundation.ua.utils Utlity classes
Application
ApplicationDescription org.opcfoundation.ua.utils.asyncsocket |Small java NIO based library that enables asynchronous and event based socket operations
ApplicationType
;ngu ment e org.opcfoundation.ua.utils.bytebuffer A byte buffer implementation

/nclnputStream

/ncQutputStream
AsyncRead
AsyncResult
AsyncResult AsyncResuliStatus - || [SIINIET) Package Class Use Tree Deprecated Index Help

3 PREV NEXT FRAMES NO FRAMES -

Figure 5. Javadoc documentation of Prosys OPC UA Java SDK.

2.4 UaExpert

UaExpert is a general purpose OPC UA client application which can be used to connect to any OPC
UA server (see figure 6). It is available for download at Unified Automation website. Versions for
Windows and Linux and documentation are provided. If necessary you can replace UaExpert with
another generic OPC UA client, e.g. Prosys OPC UA Client.

In this exercise you can use UaExpert for connecting both the DemoServer and AppServer. You can
study the contents of data at both servers and make sure that their form and content are as required.

[Unified Automation UaExpert - The OPC Unified Architecture Client - DemoServer* = e |
File View Server Document Settings Help
DPBPO[+ =0 243 « 8 &
Project B || DataAccessView | EventView Q |atibutes B %
4 [3 Project # Server Nodeld Display Name Value Datstype iource Timestal| 2 [l @ o
« B };rvers 1 NS2[String|L300... L300_CurModeVal AUTO String 114756463 | [pctribute Value ~
- 4 Nodeld Nodeld
Q Namespacelndex 2
4 [Documents IdentifierType String
[Data Access View Identifier L300_CurModeVal
O Event View NodeClass Variable
BrowseName 2, "L300_CurModeVal"
DisplayName ", "L1300_CurModeVal" | =
Address Space 5 X DE_S["pt'D" hiul
WriteMask 0
S |dodiatioh e UserWriteMask 0
2 Root - 4 Value
4 |0 Objects SourceTimestamp 24.7.2018 11:47:56.463
4 |2 CoDeSys.OPC.DA SourcePicoseconds 0
4 3 PLC GW3 ServerTimestamp 2472018 11:52:46.674
4 [Application £ ServerPicoseconds 0
2) GVL WP_HPP StatusCode Good (0:00000000)
@ 1300_AlrmEvthsg Value AUTO
&) 1300_AlimEvtOn “ DataType String
41500 Mook g:fl:'t::ﬂ%:‘:da ?\Iumenc v
@ 1300_MeasMan - ~ D
@ 1300_MeasVal
@ 1300_SetModeAuto References g%
@@ 1300_SetModeMan [0 [S| Forward ~ [+]
@ 1301 AlmEvthsg Reference Target DisplayMame
g Sgtﬁt::;:;::al HasTypeDefiniti... BaseDataVariableType
@ 1301_MeasMan
@ 1301_MeasVal
@ 1301_SetModeAuto
@ 1301_SetModeMan
@ M200_AlrmEvtMsq
@ M200_AlrmEvtOn
@ M200_CtrlOut
& M200_CurCtriVal
@ M200_CurlodeVal
@ M200_IntActive
@ M200_IntMsg
@ M200 ManCtrlVal S
Log | Address Space d 1l C
Figure 6. User interface of UaExpert.
2.5 Example programs

Two example programs are available as a starting point for the exercise: DemoServer and
AppServer. Both are provided as source code and binaries. In Windows you can run them through
their bat-files. However, you have to modify the content of the bat-files to match your installation.
You can also create Eclipse projects for editing and running them. In this case you have to check
that the project properties match your Eclipse installation (e.g. Java build path).

DemoServer is a relatively simple OPC UA server application developed with Prosys OPC UA Java
SDK. It creates a simple address space with a structure consisting a flat list of variables. The
variables have initial values but they do not change unless your write new values. There is no
application logic between values of different variables. However, this is the input data to your
application. You can access the address space of DemoServer e.g. with UaExpert at URL
opc.tcp://localhost:52500/DemoServer.

AppServer provided as an example program is a relatively simple OPC UA server application that
you can use as a starting point for developing your own AppServer application. You can access the
address space of AppServer e.g. with UaExpert at URL opc.tcp://localhost:52520/AppServer. The
provided AppServer does not fulfil all the requirements presented in chapter 1.3. The address space
it creates is an identical copy of the original one. It implements reading, writing and subscription to
variables but not subscription to alarms nor calling methods. Even so, the AppServer application

contains the basic structure of the requested application. The important Java classes are explained

below.

3

AppServer defines the application main program you can run. After initialization it creates
other necessary objects (AppNodeManager and listeners). It also has a link to AppClient.

AppNodeManager creates the address space. The example program creates a copy of the
original address space read from DemoServer through AppClient. You have to modify this.

ApploManagerLister implements read and write services. Read and write service calls are
redirected to the original address space.

AppNodeManagerListener implements subscription to variables service. Subscriptions are
redirected to the original address space.

AppClient provides OPC UA connection to the original address space of DemoServer.

AppMonitoredDataltemListener observes changes of variable values in the original address
space. This is needed for implementing subscriptions.

AppEventManagerListener does not exist but you will need one in your AppServer
application. It will be needed for implementing subscriptions to alarms. It should be a
subclass of EventManagerListener.

AppMethodManagerListener does not exist either but should be developed too. It will be
need for implementing method calls. It should be a subclass of CallableListener.

Useful links

The following links are likely to contain useful information about OPC UA and the necessary
software tools. You can find more through Google searches. However, note that all information that
you may find might not be relevant to those versions of OPC UA or the tools you have, or might not
be relevant at all. Be critical about the information you find.

OPC UA

Mahnke, W., Leitner, S-H., Damm, M. OPC Unified Architecture, Springer, 2009. (available
in Mycourses)

https://opcfoundation.org/developer-tools/specifications-unified-architecture

Java 8

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Eclipse

http://www.eclipse.org/downloads/eclipse-packages/

Prosys OPC UA Java SDK

https://www.prosysopc.com/products/opc-ua-java-sdk/ (mention Aalto University and ELEC-
E8113 course in your request, ask for SDK version 4.9.0)

UaExpert

https://www.unified-automation.com/products/development-tools/uaexpert.html

4 Deliverables

You need to demonstrate the teacher that your application works and you have a justified
understanding how it does its job. You are requested to provide the following deliverables:

1. Programs. You need to present the Java source code of your application that fulfils the given
requirements.

2. Demonstration. You have to agree a demonstration event with the teacher. In the event you
are requested to present the address space of your application and show that the application
fulfils its functional requirements.

3. Document. You need to create a very short (preferably no more than 3 pages) document
about the address space of your application. One or more figures describing the address
space with the notation used in OPC UA specifications accompanied with short textual
explanations when needed is quite enough. A draft version of this document should be
delivered before the actual implementation of the application.

Appendix A: FAQ

Q1: We have serious trouble and cannot make any progress. What should we do?

Al: Check the course web page on mycouses.aalto.fi first. If that does not help then send email to
ilkka.seilonen@aalto.fi.

Q2: How | add new Listener classes for Events and Methods?
A2: The following code could be useful.

appNodeManager.getEventManager().setListener(new
AppEventManagerListener(appClient.getClient(), this.server));

((MethodManagerUaNode)appNodeManager.getMethodManager()).addCallListener(new
AppMethodManagerListener(appClient.getClient()));

Q3: What is the minimum set of results needed for accepted teamwork?

A3: You have to be able to demonstrate an OPC UA server which has an address space with
required data model. In addition, the server should fulfil requirements concerning read, write and
subscriptions to variables at least.

Q4: Can I ask the teacher if my answer is “right” or “perfect”?

A4: The teacher should refuse to answer such questions. The quality of your answer will be
evaluated after the teamwork. You should have a reason to believe that your answer is “good
enough”.

The teacher is supposed to provide hints about how to make progress and overcome problematic
situations.

