

Emerging micropollutants in wastewater treatment

Antonina Kruglova 10 October 2022

Terminology

- Priority substances chemical pollutants that pose a significant risk to (or via) the aquatic environment
- Environmental Quality Standards the concentrations, which should not be exceeded in order to protect human health and the environment
- Contaminants of emerging concern contaminants that have been detected recently and have raised the concern about their ecological or human health impacts.

Micropollutants - contaminants which are found in the mg L⁻¹ or ng L⁻¹ concentration range in the aquatic environment

The pathways of emerging micropollutants

Emerging micropollutants in wastewater treatment

Pharmaceuticals Hormones **Antibiotics**

~100 000

commercially registered

Household chemicals

Cosmetics Personal care products

Pesticides **Herbicides**

and more...

compounds in Europe

- ✓ the scientific literature contains descriptions of over 80 million chemicals
- ✓ approximately 4,600 substances annually in quantities exceeding 1,000 tons
- ✓ data are also lacking for the estimated 30,000 substances, whose market volume in Europe exceeds one ton (Federal office for the environment, 2015)

Emerging micropollutants in wastewater treatment

Pharmaceuticals

- almost 800 different pharmaceutical substances were measured worldwide in concentrations above their detection limits (mostly in effluents of wastewater treatment plants)*
- ~ 600 active substances detected above their detection limits in EU countries
- In surface water, groundwater and drinking water, >500 substances detected globally

^{*}Pharmaceuticals defined as substances that are mainly used for therapeutic purpose

Dusi et al., 2019

Examples of adverse effects of pharmaceuticals on non-target organisms

Pharmaceutical	Diclofenac	17α-Ethinylestradiol	Diclofenac	Sulfonamide
Therapeutic group	Analgesics	Synthetic estrogen	Analgesics	Antibiotic
Non-target organ- ism	Vulture (Gyps bengalensis)	Fathead minnow (<i>Pimephales promelas</i>)	Rainbow trout (On- corhynchus mykiss)	Maize (Zea mays) Willow (Salix fragilis)
Effects	Population collapse due to renal failure	Population collapse due to feminization of male fish	Strong reactions of liver, kidney, and gills	Adverse effects on root growth. Death of maize at high conc.
Study type	Wildlife	Whole-lake experiment	Laboratory	Greenhouse
Reference	Oakes et al. 2004	Kidd et al. 2007	Triebskorn et al. 2007	Michelini et al. 2012
Pharmaceutical	Fluoxetine	Oxazepam	Ivermectin	Enrofloxacin, Ciprof- loxacin
Therapeutic group	Antidepressant	Anxiolytics	Veterinary parasiticide	Antibiotics
Non-target organ- ism	Leopard Frog (Rana pipiens)	European perch (<i>Perca fluviatilis</i>)	Dung fly and beetle	Cyanobacterium (Anabaena flosaquae) Duckweed (Lemna minor)
Effects	Delayed tadpole development	Altered behaviour and feeding rate	Mortality of eggs and larvae	Growth inhibition
Study type	Laboratory	Laboratory	Laboratory and field	Laboratory
Reference	Foster et al. 2010	Brodin et al. 2013	Liebig et al. 2010	Ebert et al. 2011

Beek et al., 2016

Antimicrobial resistance (AMR)

~ 700,000 people a year dying from antimicrobial-resistant infections.

World Health Organization (WHO): antibiotic resistance as one of the most important public health problems of the 21st century, which needs to be immediately resolved

Microplastics in wastewaters

Typical wastewater treatment process

Typical wastewater treatment process

Removal of dissolved micropollutants in activated sludge

- The removal rates depend on micropollutant characteristics:
 - biodegradability
 - hydrophobicity
 - chemical transformation (hydrolisis, acid based, photocatalytic...)
- Biological removal rates are highly dependent on temperature and noticeably lower during cold seasons

Emerging micropollutants in Finnish wastewaters

~50 micropollutants were found in final effluents of wastewater treatment plants in Finland, including >20 antibiotics

*ibuprofen and acethaminophen concentrations are not presented in the picture

Microplastics in Finnish wastewaters

Microplastics in Finnish treated wastewaters

- 40-97% of plastic particles removed
- rest of microplastics pass most of wastewater treatment processes
- microplastics can carry attached bacteria and chemical pollutants from wastewaters to the effluents

Antibiotic resistant genes in Finnish wastewaters

>120 genes

Genes of **multi drug resistance** were found in effluents

Important process bacteria are among the potential hosts of multiple ARGs

Removal of microplastics in advanced wastewater treatment processes

Removal of antibiotic-resistant bacteria and antibiotic resistance genes by ultrafiltration

Log removal of antibiotic-resistant bacteria

Log removal of antibiotic resistance genes

Removal of dissolved micropollutants in advanced wastewater treatment processes

Cost of wastewater treatment

Removal of micropollutants and antibiotic resistance by ozonation

- Ozone treatment selects vancomycin- and imipenem- resistant bacteria
- Ozone impact depends on bacterial species
- Possible effluent toxicity (ozonation by-products)

Summary

- Raising concern on emerging micropollutants passing all wastewater treatment processes
- No perfect technology to remove emerging micropollutants from wastewater

What should we do?

https://www.oecd-ilibrary.org/sites/4781cb74-en/index.html?itemId=/content/component/4781cb74-en

Group task

https://flinga.fi/s/FT3PP29

