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Classi�cation of signals

In this course, we divide signals into two classes:

(A) Analog s : R→ C (continuous time t ∈ R),
(D) Digital s : Z→ C (discrete time t ∈ Z).

Moreover, we split these classes into two parts: a signal can be

either (0) non-periodic

or (1) periodic : s(t + P) = s(t).

We shall study the connections between cases
(A0), (A1), (D0), (D1).
Fourier methods in this course:

Fourier integrals (A0), Fourier coe�cients (A1),

Fourier series (D0), DFT or FFT (D1).

Examples: sound, pictures, video; physical measurements;
technology and sciences (1-dimensional signals in these notes).
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Reminder: operations with complex numbers

Identify the point (x , y) ∈ R× R in plane
and the complex number x + iy ∈ C, where i is the imaginary unit.
Interpretation: real number x ∈ R is same as x + i0 ∈ C.

Real part Re(x + iy) := x ∈ R.
Imaginary part Im(x + iy) := y ∈ R.

Complex conjugate (x + iy)∗ = x + iy := x − iy ∈ C.
Absolute value |x + iy | := (x2 + y2)1/2 ∈ R+.

Operations: e.g. −(a + ib) := −a + i(−b) and

(a + ib) + (x + iy) := (a + x) + i(b + y),

(a + ib)(x + iy) := (ax − by) + i(ay + bx),

especially i2 = (0+ i1)2 = (0+ i1)(0+ i1) = −1.
Euler's formula eit = cos(t) + i sin(t),
and then ei(α+β) = eiαeiβ .

3 / 58



Analog non-periodic world (A0)

Continuous time (t ∈ R) signal s is a �nice-enough� function
s : R→ C. For example, t ∈ R time (or position), and s(t) ∈ C
pressure/temperature/luminosity/position/wave function...
Signal s has energy density |s|2 : R→ [0,∞], meaning that∫

[a,b]
|s(t)|2 dt ∈ [0,∞] (1)

is the energy during interval [a, b] ⊂ R. The energy of signal s is

‖s‖2 :=
∫
R
|s(t)|2 dt. (2)

Fourier (integral) transform of a �nice enough� signal s : R→ C
is signal ŝ : R→ C of frequency variable ν ∈ R, where

ŝ(ν) :=

∫
R
e−i2πt·ν s(t) dt. (3)

Absolute integrability ‖s‖L1 :=
∫
R |s(t)| dt <∞ is �nice enough�,

because |̂s(ν)| ≤
∫
R |s(t)| dt. Write s ∈ L1(R) if ‖s‖L1 <∞.
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Example. Let |c| = 1 for c ∈ C, and let s : R→ C, where

s(t) :=

{
c 2πε e−2πε (t−t0) ei2π(t−t0)·α when t > t0,

0 when t ≤ t0.

This is �vibration� at frequency α ∈ R, starting at time t0 ∈ R,
decaying at rate ε > 0. Then

ŝ(ν) =

∫
R
e−i2πt·ν s(t) dt =

∫ ∞
t0

· · · dt = . . . = c
e−i2πt0·ν

1+ i(ν − α)/ε
.

Energy densities |s|2 in time and |̂s|2 in frequency:

|s(t)|2 =

{
(2πε)2 e−4πε (t−t0) when t > t0,

0 when t ≤ t0,

|̂s(ν)|2 =
1

1+ (ν − α)2/ε2
for all ν ∈ R.

Obviously, s cannot be retrieved back from |s|2 and |̂s|2, but we
shall learn that ŝ contains essentially all the information about s:
this enables useful operations on signals. Also, we shall learn that
the energy is conserved in the Fourier transform: ‖ŝ‖2 = ‖s‖2.
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Schwartz test signals

Schwartz test signals s : R→ C are �smooth and rapidly decaying�
� let us be more precise:

Schwartz test signal s ∈ S (R) is an in�nitely smooth function
s : R→ C for which

lim
|t|→∞

tn s(m)(t) = 0 (4)

for all m, n ∈ N = {0, 1, 2, 3, 4, 5, · · · }. There are many test signals:

Example. If s ∈ C∞(R) and s(t) = 0 whenever |t| ≥ 1 then
s ∈ S (R); e.g. de�ne s(t) := exp(1/(t2 − 1)) for |t| < 1. Also
Gaussian signals t 7→ eat

2+bt+c are examples of Schwartz test
functions (when Re(a) < 0, a, b, c ∈ C).

Example. Let k ∈ N, λ ∈ C, r , s ∈ S (R), and let q : R→ C be a
polynomial. Then λs, r + s, s(k), qs, rs ∈ S (R).
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Derivation and Fourier: If s ∈ S (R) then ŝ ∈ S (R), because
(writing r̂ = t̂ s for r(t) := t s(t) simply)

ŝ ′(ν) = −i2π t̂ s (ν), (5)

ŝ ′ (ν) = +i2π ν ŝ(ν). (6)

Formulas (5),(6) motivate the de�nition of Schwartz test signals!
Hence the Fourier transform gives a linear mapping

(s 7→ ŝ) : S (R)→ S (R). (7)

We leave checking (5) as an exercise, proving here only (6):

ŝ ′ (ν) =

∫
R
s ′(t) e−i2πt·ν dt

integrate by parts
= −

∫
R
s(t)

d

dt
e−i2πt·ν dt

= −
∫
R
s(t) e−i2πt·ν (−i2π ν) dt

= +i2π ν ŝ(ν).
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Example. Let s(t) = sε(t) = e−επt
2

, where ε > 0. First,

s ′(t) = −2επ t s(t)
(6),(5)
=⇒ +i2π ν ŝ(ν) = (ε/i) ŝ ′(ν)

⇐⇒ ŝ ′(ν) = −(2π/ε) ν ŝ(ν)
Exercise!⇐⇒ ŝ(ν) = ŝ(0) e−πν

2/ε,

and here

ŝ(0) =

∫
R
s(t) dt =

[∫
R

∫
R
s(t) s(u) dt du

]1/2
=

[∫
R

∫
R
e−επ(t

2+u2) dt du

]1/2
polar coordinates

=

[∫ ∞
0

∫ 2π

0
e−εr

2

rdθ dr

]1/2
=

[∫ ∞
0

2πr e−επr
2

dr

]1/2
=

1√
ε
.

Easy to remember: ŝ = s, when s(t) = e−πt
2

.
8 / 58



Fourier inverse transform!

For any s ∈ S (R), we �nd

s(t) = lim
0<ε→0

∫
R
s(u)

1√
ε
e−π(u−t)

2/ε du

previous example
= lim

0<ε→0

∫
R
s(u)

∫
R
e−i2π(u−t)·ν e−επν

2

dν du

= lim
0<ε→0

∫
R
e−επν

2

e+i2πt·ν
∫
R
s(u) e−i2πu·ν du dν

=

∫
R
e+i2πt·ν ŝ(ν) dν.

Remark! We just proved the Fourier inverse formula

s(t) =

∫
R
e+i2πt·ν ŝ(ν) dν. (8)

Thus the Fourier transform (s 7→ ŝ) : S (R)→ S (R) is bijective!

Notice that ̂̂s(t) = s(−t), and that
̂̂̂̂
s = s.
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Fourier transform preserves energy

Inner product 〈r , s〉 :=
∫
R
r(t) s(t) dt ∈ C between signals

r , s ∈ S (R) is preserved by Fourier transform, because

〈r̂ , ŝ〉 =

∫
R
r̂(ν) ŝ(ν) dν

=

∫
R
r̂(ν)

∫
R
e−i2πt·ν s(t) dt dν

=

∫
R

∫
R
e+i2πt·ν r̂(ν) dν s(t) dt

=

∫
R
r(t) s(t) dt = 〈r , s〉.

Putting r = s, we see that Fourier transform preserves total energy
‖s‖2 := 〈s, s〉 =

∫
R |s(t)|

2 dt of signal s ∈ S (R):

‖ŝ‖2 = ‖s‖2. (9)

10 / 58



Interpreting Fourier transform

We can think that the Fourier inverse formula

s(t) =

∫
R
ŝ(ν) ei2πt·ν dν

describes signal s as an �in�nite linear combination� of simple waves

t 7→ ei2πt·ν = cos(2πt · ν) + i sin(2πt · ν).

Such a wave has frequency ν ∈ R (which can also be negative!),
and this wave has �weight� ŝ(ν) ∈ C.

During the time interval [a, b] ⊂ R the signal s has energy∫ b

a

|s(t)|2 dt,

and within the frequency band [α, β] ⊂ R the amount of energy is∫ β

α
|̂s(ν)|2 dν.
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Convolution

Convolution of r , s ∈ L1(R) is signal r ∗ s : R→ C such that

r ∗ s(t) = (r ∗ s)(t) :=
∫
R
r(t − u) s(u) du. (10)

The reader may then verify the absolute integrability of r ∗ s:

‖r ∗ s‖L1 ≤ ‖r‖L1 ‖s‖L1 <∞.

�Convolution in time� is �multiplication in frequency�:

r̂ ∗ s = r̂ ŝ. (11)

This is useful in signal processing! Moreover,

(r ∗ s)′ = r ′ ∗ s, (12)

if also r ′ is absolutely integrable: hence convolution makes signal s
smoother! Furthermore, r ∗ s ∈ S (R) when r , s ∈ S (R).
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Symmetries of time and frequency

Time translation of signal s ∈ S (R) by time-lag b ∈ R is signal
Tbs ∈ S (R), where

Tbs(t) := s(t − b). (13)

Frequency modulation of s ∈ S (R) by frequency-lag α ∈ R is
signal Mαs ∈ S (R), where

Mαs(t) := e+i2πt·αs(t). (14)

After Fourier transforms: M̂αs = Tαŝ and T̂bs = M−b ŝ, that is

M̂αs(ν) = Tαŝ(ν),

T̂bs(ν) = M−b ŝ(ν).
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Integral operators

We want to transform input signal s ∈ S (R)
to output signal As = A(s) ∈ S (R).
Suppose A is linear, i.e.

A(r + s) = A(r) + A(s) and

A(λs) = λ A(s)

for all signals r , s ∈ S (R) and constants λ ∈ C.
Linear transform A presented as an integral operator:

As(t) =

∫
R
KA(t, u) s(u) du, (15)

where KA is the kernel of A.
Remark: integral operator A has �essentially unique� kernel KA

(provided that s 7→ As is �naturally continuous� � precise
statement in so-called Schwartz kernels theorem).
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Time-invariant operators

Let operator A be time-invariant: TbA = ATb for all b ∈ R, i.e.

TbAs(t) = ATbs(t) (16)

for all signals s : R→ C and for all t, b ∈ R;
in other words, A = T−bATb, which means∫

R
KA(t, u) s(u) du = As(t) = T−bATbs(t) = ATbs(t + b)

=

∫
R
KA(t + b, u) Tbs(u) du

=

∫
R
KA(t + b, u) s(u − b) du

=

∫
R
KA(t + b, u + b) s(u) du.

Thus KA(t, u) = KA(t + b, u + b) for all b, t, u ∈ R, especially
KA(t, u) = KA(t − u, 0) = r(t − u) for some signal r : R→ C...
... Hey, As = r ∗ s is a convolution!!!
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Extending Fourier analysis

Test signals s ∈ S (R) are �tame�; we shall extend Fourier analysis
to �wilder� signals! �Size� of signal s : R→ C is measured by norms

‖s‖Lp
1≤p<∞
:=

[∫
R
|s(t)|p dt

]1/p
,

‖s‖L∞ := ess supt∈R|s(t)|
If s continuous

= sup
t∈R
|s(t)| = lim

p→∞
‖s‖Lp .

We denote s ∈ Lp(R), if ‖s‖Lp <∞.
Spaces Lp(R) are so-called Lebesgue spaces.

s ∈ L1(R) is absolutely integrable:
∫
R |s(t)| dt = ‖s‖L1 .

s ∈ L2(R) has �nite energy: ‖s‖2 =
∫
R |s(t)|

2 dt = [‖s‖L2 ]2.
s ∈ L∞(R) is essentially bounded: |s(t)| ≤ ‖s‖L∞ for almost all t.

Write r = s if ‖r − s‖Lp = 0 for r , s ∈ Lp(R)
(which happens if r(t) = s(t) for almost every t ∈ R).
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Here S (R) ⊂ Lp(R) for all p ∈ [1,∞]. Functions s ∈ Lp(R)
certainly can be discontinuous. Nevertheless, if s ∈ L1(R) and

r(t) :=

∫ t

0
s(u) du

then r ∈ L∞(R) (satisfying ‖r‖L∞ ≤ ‖s‖L1 clearly),
and r ′ = s in sense that r ′(t) = s(t) for almost all t ∈ R
(this is so-called Lebesgue di�erentiation theorem).

If 1 < p <∞ and s ∈ Lp(R) then s = s1 + s∞,
where s1 ∈ L1(R) and s∞ ∈ L∞(R). Why? Simply de�ne

s∞(t) :=

{
s(t) when |s(t)| ≤ 1,

0 otherwise.

Thus, if we want to �nd Fourier transform ŝ for signal s ∈ Lp(R),
we need to understand the special cases p = 1 and p =∞.
For p = 1, we already have the nice Fourier integrals.
Case p =∞ leads naturally to so-called distributions

(which are a generalization of ordinary functions).
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Density of S (R) in Lp(R), when 1 ≤ p <∞

Let us try to approximate s ∈ Lp(R) by test functions sk ∈ S (R).
If g , r ∈ S (R), then g ∗ (rs) ∈ S (R): smoothing by convolution!
For k ∈ Z+, de�ne gk , rk ∈ S (R) by

rk(ν) = ĝk(ν) := e−π(ν/k)
2

,

so that sk := gk ∗ (rk s) ∈ S (R). Now, if 1 ≤ p <∞ then

lim
k→∞

‖s − sk‖Lp = 0, in other words s = lim
k→∞

sk in Lp(R).

This means that S (R) is dense in Lp(R), when 1 ≤ p <∞.

S (R) is not dense in L∞(R): for instance, think of the constant
function 1 ∈ L∞(R), for which ‖s − 1‖L∞ ≥ 1 for every s ∈ S (R).
Thereby we cannot de�ne Fourier transform for s ∈ L∞(R) by
bounded linear extension of (s 7→ ŝ) : S (R)→ S (R). However,
there is another method, which we later shall learn.
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Extending Fourier transform to L2(R)
We have the linear energy-preserving Fourier integral transform

(s 7→ ŝ) : S (R)→ S (R), ‖ŝ‖2 = ‖s‖2.
If s ∈ L2(R), by density of S (R) ⊂ L2(R), take sk ∈ S (R) so that

lim
k→∞

‖s − sk‖ = 0, i.e. s = lim
k→∞

sk in L2(R).

No matter which approximations sk we choose,
the energy-preservation guarantees the uniqueness of the limit

ŝ := lim
k→∞

ŝk ∈ L2(R).

This de�nes the linear energy-preserving Fourier transform

(s 7→ ŝ) : L2(R)→ L2(R), ‖ŝ‖2 = ‖s‖2. (17)

This is automatically a bijection, and also unitary, which means
〈r̂ , ŝ〉 = 〈r , s〉 for all r , s ∈ L2(R), where the inner product is

〈r , s〉 :=
∫
R
r(t) s(t)∗ dt.

19 / 58



Integrals ŝ(ν) :=

∫
R
e−i2πt·ν s(t) dt de�ne the Fourier transform for

s ∈ L1(R). However, such integrals do not converge absolutely if
s 6∈ L1(R). For s ∈ L2(R) and ψ ∈ S (R) we have

〈̂̂s, ̂̂ψ〉 = 〈ŝ, ψ̂〉 = 〈s, ψ〉

=

∫
R
s(t)ψ(t)∗dt =

∫
R
s(t)

̂̂
ψ(−t)∗dt =

∫
R
s(−t)̂̂ψ(t)∗dt :

thus ̂̂s(t) = s(−t) for almost every t ∈ R.

Example. Let s(t) = 1 for |t| < 1/2, and s(t) = 0 otherwise.
Then s ∈ L1(R), and ŝ = sinc ∈ L∞(R) is the cardinal sine, where

sinc(ν) :=

{
sin(πν)
πν for ν 6= 0,

1 for ν = 0.

Now sinc ∈ L2(R) but sinc 6∈ L1(R). However,
ŝinc(t) = ̂̂s(t) = s(−t) = s(+t) for almost every t ∈ R, so that
ŝinc = s ∈ L2(R).
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Extending Fourier transform beyond Lp-spaces

For s ∈ L∞(R), m ∈ N, polynomial r : R→ C and ψ ∈ S (R), let

〈r s(m), ψ〉 := (−1)m
∫
R
s(t) (ψ∗ r)(m)(t) dt (18)

(where the mth derivative s(m) makes classically sense if s ∈ S (R)
� formula (18) is just inspired from formal integration by parts).
Here s(m) is called the mth distribution derivative of s ∈ L∞(R).
If r1, · · · , rn : R→ C are polynomials and s1, · · · , sn ∈ L∞(R), then

s =
n∑

m=0

rm s
(m)
m (19)

is called a Schwartz tempered distribution s ∈ S ′(R).
The Fourier transform ŝ ∈ S ′(R) is then de�ned by

〈ŝ, ψ̂〉 := 〈s, ψ〉 =
n∑

m=1

〈rm s
(m)
m , ψ〉 (20)

(which is again classically justi�ed if s ∈ S (R)).
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Now we have obtained the bijective Fourier transform

(s 7→ ŝ) : S ′(R)→ S ′(R). (21)

The space S ′(R) of tempered distributions is rather large:

Example. Lp(R) ⊂ S ′(R) for every p ∈ [1,∞]. If s ∈ S ′(R) then
the distribution derivatives s(m) ∈ S ′(R) for every m ∈ N.

Example. Let s(t) = eβ(t) := ei2πt·β . Then eβ ∈ L∞(R), and

〈êβ, ψ̂〉 := 〈eβ, ψ〉 =
∫
R
e+i2πt·βψ(t)∗dt = ψ̂(β)∗ =:

∫
R
δβ(ν)ψ̂(ν)

∗dν,

where δβ := êβ 6∈ Lp(R) is the Dirac delta distribution at β ∈ R.

Think δb ∈ S ′(R) as a unit mass (or a unit impulse) at t = b.
Roughly, δb(t) = 0 if t 6= b, but beware: δb is not a function,
because if s is a function such that s(t) = 0 for almost every t ∈ R
then

∫
R s(t)ψ(t)

∗ dt = 0 for all ψ ∈ S (R). No function
s : R→ C satis�es

∫
R s(t)ψ(t)

∗ dt = ψ(b)∗ for all ψ ∈ S (R).
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Example. Dirac delta δb 6∈ Lp(R) for any p ∈ [1,∞]. Yet here

〈δ̂b, ψ̂〉 := 〈δb, ψ〉 = ψ(b)∗ =

∫
R
e−i2πb·ν ψ̂(ν)∗ dν = 〈e−b, ψ̂〉,

giving δ̂b = e−b ∈ L∞(R). An alternative, informal computation is

δ̂b(ν) =

∫
R
δb(t) e

−i2πt·ν dt = e−i2πb·ν = e−b(ν).

Example. Signum function sgn ∈ L∞(R) is de�ned by sgn(0) = 0
and sgn(t) := t/|t| otherwise. Notice that the derivative

sgn′(t) := lim
h→0

sgn(t + h)− sgn(t)

h
∈ R

exists if and only if t 6= 0. For distribution derivative sgn′ = sgn(1),

〈sgn′, ψ〉 := −〈sgn, ψ′〉 = −
∫
R
sgn(t)ψ′(t)∗ dt

=

∫ 0

−∞
ψ′(t)∗ dt −

∫ ∞
0

ψ′(t)∗ dt = ψ(0)∗ + ψ(0)∗.

Hence the distribution derivative is sgn′ = 2 δ0 ∈ S ′(R).
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Example. For ε > 0, let us de�ne sε ∈ L1(R) by
sε(t) := e−ε|t| sgn(t). Then ‖sε − sgn‖L∞ 6→ 0 as ε→ 0+, yet

lim
ε→0+

sε(t) = sgn(t),

and for ν 6= 0 we have

ŝgn(ν) = lim
ε→0+

ŝε(ν) = . . . =
1

iπν
.

Thus if r(u) := 1
πu for u 6= 0, then r̂(ν) = +i sgn(−ν) = −i sgn(ν)

formally. This suggests that the Hilbert transform
H = (s 7→ Hs) : L2(R)→ L2(R), for which

Ĥs(ν) = −i sgn(ν) ŝ(ν),

should satisfy convolution-type singular integral formula

Hs(t) =

∫
R

s(t − u)

πu
du := lim

ε→0+

(∫ −ε
−∞

s(t − u)

πu
du +

∫ ∞
ε

s(t − u)

πu
du

)
.
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Friendly interpretation of Fourier integrals

For the absolute convergence of Fourier integrals

s(t) =

∫
R
e+i2πt·ν ŝ(ν) dν =

∫
R
e+i2πt·ν

∫
R
e−i2πu·ν s(u) du dν,

we must have s, ŝ ∈ L1(R), and then s, ŝ are also continuous and
belong to all Lp-spaces: this is true certainly if s, s ′, s ′′ ∈ L1(R)
(or more generally if s, s ′ ∈ L1(R) and s ′ ∈ L2(R)).

However, we have been able to extend our Fourier interpretations
beyound Lp-spaces to tempered distributions. Thus, it is not
harmful to write such Fourier integral formulas for signals outside
L1(R), too! For s ∈ S ′(R), in sense of distributions,∫

R
e+i2πt·ν ŝ(ν) dν =

∫
R
e+i2πt·ν

∫
R
e−i2πu·ν s(u) du dν

=

∫
R

∫
R
ei2π(t−u)·ν dν s(u) du =

∫
R
δ0(t − u) s(u) du = s(t).
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Fourier bijections

So, we have the bijective time-to-frequency Fourier transforms

S (R) ⊂ L2(R) ⊂ S ′(R)
↓ ↓ ↓

S (R) ⊂ L2(R) ⊂ S ′(R).

S (R) contains all the smooth rapidly decaying signals.
L2(R) contains all the �nite energy signals.
S ′(R) contains �nearly all the signals we ever meet�.

With these Fourier bijections, we may present the signal
either in time or in frequency,
whatever is convenient for manipulation.

At the end of this course, we shall learn how to operate
both in time and in frequency, simultaneously!
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Fourier integral in dimension d ∈ Z+ = {1, 2, 3, 4, 5, · · · }
Fourier transform ŝ : Rd → C for signal s : Rd → C is given by

ŝ(ν) :=

∫
Rd

e−i2πt·ν s(t) dt, (22)

where t = (t1, · · · , td ) ∈ Rd , ν = (ν1, · · · , νd ) ∈ Rd ,
t · ν =

∑d
k=1 tk · νk = t1 ν1 + · · ·+ td νd ∈ R,∫

Rd
· · · dt =

∫
R
· · ·
∫
R
· · · dt1 · · · dtd .

Energy ‖s‖2 :=
∫
Rd |s(t)|

2 dt, and for example

s(t) =

∫
Rd

e+i2πt·ν ŝ(ν) dν,

‖s‖2 = ‖ŝ‖2,

r ∗ s(t) :=

∫
Rd

r(t − u) s(u) du,

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).
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Analog periodic world (A1)

Signal s : R→ C is P-periodic if TPs = s, meaning
s(t − P) = s(t) for all t ∈ R: in this case, we denote
s : R/PZ→ C. Without losing generality, we deal with 1-periodic
signals

s : R/Z→ C

for which s(t − 1) = s(t) for all t ∈ R; then the Fourier
coe�cient transform FR/Zs = ŝ : Z→ C is de�ned by

ŝ(ν) :=

∫
R/Z

e−i2πt·ν s(t) dt =

∫ 1

0
e−i2πt·ν s(t) dt. (23)

Exercise: show that ŝ(ν) = cν ∈ C, when s : R/Z→ C is given by

s(t) :=
∑
k∈Z

ck e
i2πt·k =

∞∑
k=−∞

ck e
i2πt·k

(naturally, provided that signal s is �nice enough�).
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For periodic signal s : R/Z→ C, Fourier coe�cients

ŝ(ν) =

∫
R/Z

e−i2πt·νs(t) dt ∈ C.

It turns out that �nice enough� s : R/Z→ C can be recovered from
its Fourier coe�cients by Fourier series

s(t) =
∑
ν∈Z

e+i2πt·ν ŝ(ν) =
+∞∑

ν=−∞
e+i2πt·ν ŝ(ν). (24)

Thus periodic analog signal s : R/Z→ C has the same
information content as non-periodic digital signal ŝ : Z→ C;
using the signal classi�cation presented in the beginning of the
course, this means that classes (A1) and (D0) are dual to each
other by Fourier transform, so that properties in (A1) have
corresponding �mirrored� properties in (D0), and vice versa.
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(A1) Where do Fourier series come from?

Poisson kernel ϕr , for which 0 < ϕr (t) <∞ and

∫ 1

0
ϕr (t) dt = 1:

ϕr (t) :=
∑
ν∈Z

r |ν| ei2πt·ν =
1− r2

1+ r2 − 2r cos(2πt)
, (25)

where 0 < r < 1. Then for smooth s : R/Z→ C we have

s(t) = lim
r→1−

∫ 1

0
s(u) ϕr (t − u) du

= lim
r→1−

∫ 1

0
s(u)

∑
ν∈Z

r |ν| ei2π(t−u)·ν du

= lim
r→1−

∑
ν∈Z

ŝ(ν) r |ν| ei2πt·ν

=
∑
ν∈Z

ŝ(ν) ei2πt·ν .
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Energy conservation in Fourier coe�cients and series

Let r , s : R/Z→ C, so that r̂ , ŝ : Z→ C. Then

〈r̂ , ŝ〉 :=
∑
ν∈Z

r̂(ν) ŝ(ν)

=
∑
ν∈Z

r̂(ν)

∫
R/Z

e−i2πt·ν s(t) dt

=

∫
R/Z

∑
ν∈Z

e+i2πt·ν r̂(ν) s(t) dt

=

∫
R/Z

r(t) s(t) dt =: 〈r , s〉.

We see that Fourier coe�cient/series transform preserves energy

‖s‖2 := 〈s, s〉 = 〈ŝ, ŝ〉 =: ‖ŝ‖2. (26)
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(A1) Convolution of periodic signals

Convolution r ∗ s : R/Z→ C of periodic signals r , s : R/Z→ C is
de�ned by

r ∗ s(t) :=
∫
R/Z

r(t − u) s(u) du. (27)

By easy computation, we see that r̂ ∗ s = r̂ ŝ:

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).

Naturally, periodic convolution has smoothing properties:

(r ∗ s)′(t) = r ′ ∗ s(t).

Thus, convolution works in similar manner for both periodic and
non-periodic signals!
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Periodization and Poisson summation formula

Periodization of signal s : R→ C is Ps : R/Z→ C, where

Ps(t) :=
∑
k∈Z

s(t − k).

Their Fourier transforms ŝ : R→ C and P̂s : Z→ C satisfy

P̂s(ν) =

∫ 1

0
e−i2πt·ν

∑
k∈Z

s(t − k) dt

=
∑
k∈Z

∫ 1

0
e−i2π(t−k)·ν s(t − k) dt

=

∫ +∞

−∞
e−i2πt·ν s(t) dt = ŝ(ν).

Result P̂s(ν) = ŝ(ν) together with
∑

ν P̂s(ν) = Ps(0) yields
Poisson summation formula∑

ν∈Z
ŝ(ν) =

∑
k∈Z

s(k). (28)
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Digital non-periodic world (D0), or DTFT

Fourier transform of digital signal s : Z→ C is periodic signal
FZ(s) = ŝ : R/Z→ C de�ned by

ŝ(ν) :=
∑
t∈Z

e−i2πt·ν s(t). (29)

This is called Discrete Time Fourier Transform (DTFT).
Remark: this is essentially similar to the previous Fourier series
case (apart from the sign of the imaginary unit i).
For digital signals r , s : Z→ C, we de�ne the convolution
r ∗ s : Z→ C by

r ∗ s(t) :=
∑
u∈Z

r(t − u) s(u). (30)

The reader may check that r̂ ∗ s = r̂ ŝ, that is

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).
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Inverse transform to DTFT

For s : Z→ C we have DTFT ŝ : R/Z→ C, where

ŝ(ν) :=
∑
t∈Z

e−i2πt·ν s(t).

The inverse transform is veri�ed by a direct calculation:∫
R/Z

e+i2πt·ν ŝ(ν) dν =

∫
R/Z

e+i2πt·ν
∑
u∈Z

e−i2πu·νs(u) dν

=
∑
u∈Z

s(u)

∫ 1

0
ei2π(t−u)·ν dν

= s(t).

Well, no wonder: this is just because signal classes (A0) and (D1)
are dual to each other by Fourier transform! Thus, no need to
check conservation of energy again.
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From Poisson summation to sampling

Poisson summation formula
∑
ν∈Z

ŝ(ν) =
∑
k∈Z

s(k) is equivalent to

∑
α∈Z

ŝ(ν − α) =
∑
k∈Z

s(k) e−i2πk·ν . (31)

Now suppose that ŝ1(ν) = 0 whenever |ν| ≥ 1/2: then

ŝ1(ν) = 1]−1/2,+1/2[(ν)
∑
α∈Z

ŝ1(ν − α)

(31)
= 1]−1/2,+1/2[(ν)

∑
k∈Z

s1(k) e
−i2πk·ν

=
∑
k∈Z

s1(k) e
−i2πk·ν 1]−1/2,+1/2[(ν),

leading to normalized Whittaker�Shannon sampling formula

s1(t) =
∑
k∈Z

s1(k) sinc(t − k). (32)
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Nyquist�Shannon sampling theorem

... From this, we get Whittaker�Shannon sampling formula

s(t) =
∑
k∈Z

s(
k

2B
) sinc(2Bt − k), (33)

which is valid if ŝ(ν) = 0 whenever |ν| ≥ B .
Related to this formula, Nyquist�Shannon sampling theorem
says: If analog signal s : R→ C is band-limited (meaning
ŝ(ν) = 0 whenever |ν| ≥ B), then we are able to reconstruct it
from its equispaced sampled values, i.e. from the corresponding
digital signal r : Z→ C, where

r(k) := s(k/(2B)).

In other words, Whittaker�Shannon formula builds a bridge between
non-periodic analog signals and non-periodic digital signals!
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Digital periodic world (D1), or DFT

N-periodic digital signal s : Z→ C satis�es s(t − N) = s(t) for all
t ∈ Z: then we denote

s : Z/NZ→ C. (34)

Its discrete Fourier transform (DFT) ŝ : Z/NZ→ C is de�ned by

ŝ(ν) :=
N∑
t=1

e−i2πt·ν/N s(t). (35)

Notice that in the exponential we have t · ν/N instead of t · ν.
Exercise: show that the inverse ŝ 7→ s of DFT is given by

s(t) =
1

N

N∑
ν=1

e+i2πt·ν/N ŝ(ν). (36)

Notice the factor 1
N

in this formula!
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Energy and convolution

Exercise: de�ning here energy ‖s‖2 :=
N∑
t=1

|s(t)|2, �nd constant

cN such that for all signals s : Z/NZ→ C

‖s‖2 = cN ‖ŝ‖2. (37)

Hence �energy is conserved up to a constant�.
For digital signals r , s : Z/NZ→ C, we de�ne the discrete
convolution r ∗ s : Z/NZ→ C by

r ∗ s(t) :=
N∑

u=1

r(t − u) s(u). (38)

The reader may check that r̂ ∗ s = r̂ ŝ, that is

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).
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DFT related to DTFT (D1 vs. D0)

For �nice� non-periodic s : Z→ C, de�ne sN : Z/NZ→ C by

sN(t) :=
∑
k∈Z

s(t − kN).

Then ŝN : Z/NZ→ C is naturally related to ŝ : R/Z→ C:

ŝN(ν) =
N∑
t=1

e−i2πt·ν/N sN(t)

=
N∑
t=1

e−i2πt·ν/N
∑
k∈Z

s(t − kN)

=
∑
u∈Z

e−i2πu·ν/N s(u) = ŝ(ν/N).

Hence ŝN(ν) = ŝ(ν/N) for all ν.
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DFT related to Fourier series/coe�cients (D1 vs. A1)

For �nice� periodic s : R/Z→ C, de�ne sN : Z/NZ→ C by

sN(t) := s(t/N).

Then ŝN : Z/NZ→ C is naturally related to ŝ : Z→ C:

ŝN(ν) =
N∑
t=1

e−i2πt·ν/N s(t/N)

=
N∑
t=1

e−i2πt·ν/N
∑
α∈Z

ŝ(α) e+i2π(t/N)·α

=
∑
α∈Z

ŝ(α)
N∑
t=1

ei2πt·(α−ν)/N = N
∑
k∈Z

ŝ(ν − kN).

Hence ŝN(ν) = N
∑
k∈Z

ŝ(ν − kN) for all ν ∈ Z.
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FFT (Fast Fourier Transform)...

FFT (Fast Fourier Transform) is a fast method for computing DFT.
It is a divide-and-conquer algorithm, one of the most important
tools in engineering and applied mathematics. Idea: Given signal
s : Z/NZ→ C, we want to �nd FNs = ŝ : Z/NZ→ C, where
N = 2k . Split computation into two smaller size DFTs:

FNs(ν) =
N∑
t=1

e−i2πt·ν/N s(t)

=
∑

t∈{1,3,5,··· ,N−1}

e−i2πt·ν/N s(t) +
∑

t∈{2,4,6,··· ,N}

e−i2πt·ν/N s(t)

=

N/2∑
t=1

e−i2π(2t−1)·ν/Ns(2t − 1) +

N/2∑
t=1

e−i2π(2t)·ν/Ns(2t)

= e+i2πν/N FN/2sOdd(ν) + FN/2sEven(ν).

Hence we just need to calculate FN/2sOdd and FN/2sEven...
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Why FFT requires only about N log(N) time units?

We say that the complexity of algorithm FN is the �essential
number� MN of multiplications needed in computation. Obviously

FNs(ν) =
N∑
t=1

e−i2πt·ν/N s(t)

yields M1 = 1 and MN ≤ N2. However,

FNs(ν) = e+i2πν/N FN/2sOdd(ν) + FN/2sEven(ν) (39)

implies recursively

MN

(39)

≤ N + 2MN/2

(39)

≤ N + 2(N/2+ 2MN/4) = 2N + 4MN/4

(39)

≤ 2N + 4(N/4+ 2MN/8) = 3N + 8MN/8

· · ·
(39)

≤ log2(N)N + N MN/N = N log(N) + N ≈ N log(N).
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Fast convolution via FFT

Direct calculation of discrete convolution r ∗ s : Z/NZ→ C of
signals r , s : Z/NZ→ C would require N2 multiplications, as

r ∗ s(t) =
N∑

u=1

r(t − u) s(u).

However,
r̂ ∗ s(ν) = r̂(ν) ŝ(ν),

where �nding r̂ ŝ takes only N multiplications. Computing each of

r 7→ r̂ , s 7→ ŝ, r̂ ŝ 7→ r ∗ s

takes only about N log(N) multiplications by FFT. Thus,
computation (r , s) 7→ r ∗ s has essential complexity N log(N), too!
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Matlab computing FFT

Matlab command fft (Fast Fourier Transform) works as follows:
vector X = fft(x) for vector x = [x(1) x(2) . . . x(N)] is given by

X(m) =
N∑

k=1

e−i2π(k−1)(m−1)/N x(k), (40)

instead of our more natural de�nition

x̂(m) :=
N∑

k=1

e−i2πk·m/N x(k). (41)

That is, Matlab shifts both time and frequency by 1 always, and
such a weird de�nition does not match well e.g. with convolution!
So, you have been warned!!!
Otherwise, Matlab is �ne for computational Fourier analysis.
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Time-frequency analysis

(Remark! A course on time-frequency analysis starts in April,
2017: more information on the last page!)

Next we try to understand behavior of signals simultaneously in
both time and frequency. Applications of such time-frequency
analysis include audio signal processing (phonetics, treating speech
defects, speech synthesis, analyzing animal sounds, music), medical
visualizations of EEG and ECG (ElectroEncephaloGraphy and
ElectroCardioGraphy), sonar and radar imaging, seismology,
quantum physics etc.
A time-frequency distribution for signal s : R→ C is typically

Cs : R× R→ C,

where Cs(t, ν) is �energy density of s at time-frequency (t, ν)�.
There are many di�erent time-frequency distributions to choose
from, notably members of Leon Cohen's class, which includes e.g.
all spectrograms and so-called Born�Jordan distribution.
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Windowed Fourier Transform
(STFT, Short-Time Fourier Transform)

For signals s,w : R→ C, w-windowed Fourier transform
(STFT, Short-Time Fourier Transform) F (s,w) : R× R→ C is

F (s,w)(t, ν) := ŝ wt(ν), (42)

where wt(u) = w(u − t). That is,

F (s,w)(t, ν) =

∫
R
s(u) w(u − t) e−i2πu·ν du.

Idea: Fourier transform ŝ(ν) measures �content� of s at frequency
ν ∈ R over all times. F (s,w)(t, ν) measures �content� of s at
time-frequency (t, ν) ∈ R×R (when viewing s through window w).
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Spectrogram (Sonogram)

Spectrogram related to the w -windowed Fourier transform is

|F (s,w)|2 : R× R→ R+. (43)

Idea: |F (s,w)(t, ν)|2 ≥ 0 is the �energy density� of signal
s : R→ C at time-frequency (t, ν) ∈ R× R
(when viewing s through window w).
For signal s : R→ C, choosing window w in�uences heavily
the corresponding w -STFT and w -spectrogram!
In Matlab, try experimenting:

help spectrogram

Or, program your own spectrogram as in Exercises, implementing

|F (s,w)(t, ν)|2 =
∣∣∣∣∫

R
s(u) w(u − t) e−i2πu·ν du

∣∣∣∣2 .
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Born�Jordan time-frequency distribution

For signals r , s : R→ C, the Born�Jordan transform
Q(r , s) : R× R→ C is de�ned by

Q(r , s)(t, ν) :=

∫
R
e−i2πu·ν

1

u

∫ t+u/2

t−u/2
r(z + u/2) s(z − u/2) dz du

=

∫
R
e−i2πu·ν

1

u

∫ t+u

t

r(z) s(z − u) dz du.

The Born�Jordan distribution of s : R→ C is

Qs = Q(s) := Q(s, s) : R× R→ R. (44)

Interpretation: Qs(t, ν) ∈ R is the �energy density� of s : R→ C at
time-frequency (t, ν) ∈ R× R. Warning: Qs(t, ν) can be negative,
but remember, that single points (t, ν) in time-frequency plane do
not carry a physical meaning! Averaging Qs over larger areas yields
positive values.
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Properties of Born�Jordan distribution

Marginals:

∫
R
Qs(t, ν) dt = |̂s(ν)|2,

∫
R
Qs(t, ν) dν = |s(t)|2.

Thus energy

∫
R

∫
R
Qs(t, ν) dt dν = ‖s‖2.

Natural Fourier symmetries: Qŝ(ν, t) = Qs(−t, ν).
If r(t) := s(t − t0) and q(t) := ei2πt·ν0 s(t) then

Qr(t, ν) = Qs(t − t0, ν),

Qq(t, ν) = Qs(t, ν − ν0).

Qδt0(t, ν) = δt0(t).
Qeν0(t, ν) = δν0(ν), where eν0(t) := ei2πt·ν0 .
For α < β: Q(λeα + µeβ)(t, ν) =

|λ|2δα(ν) + |µ|2δβ(ν) + 2 Re (λµ eα−β(t))
1[α,β](ν)

β − α
.
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Born�Jordan �lter design...

A time-frequency symbol is function σ : R× R→ C. Now we
design an integral operator Aσ such that we get a �best possible
Born�Jordan approximation�

Q(Aσs)(t, ν) ≈ σ(t, ν)Qs(t, ν)

for all signals s : R→ C and for all (t, ν) ∈ R× R. Namely,

〈r ,Aσs〉 = 〈Q(r , s), σ〉 (45)

for all signals r , s : R→ C: here 〈r ,Aσs〉 = 〈Q(r , s), σ〉 =

=

∫
R

∫
R
Q(r , s)(z , ν) σ(z , ν) dz dν

=

∫
R

∫
R

∫
R
e−i2πw ·ν

1

w

∫ z+w
2

z−w
2

r(t̃ +
w

2
)s(t̃ − w

2
) dt̃ dw σ(z , ν) dz dν

=

∫
R
r(t)

[∫
R

∫
R
ei2π(t−u)·νs(u)

1

u − t

∫ u

t

σ(z , ν) dz du dν

]∗
dt.
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... Born�Jordan �lter design

... Hence

Aσs(t) =

∫
R

∫
R
ei2π(t−u)·νs(u) a(t, u, ν) du dν, (46)

where a(t, t, ν) = σ(t, ν), and for t 6= u we have amplitude

a(t, u, ν) =
1

u − t

∫ u

t

σ(z , ν) dz . (47)

We obtained

Aσs(t) =

∫
R
KAσ(t, u) s(u) du,

where kernel KAσ : R× R→ C of integral operator Aσ is given by

KAσ(t, t) =

∫
R
σ(t, ν) dν, and for t 6= u by

KAσ(t, u) =
1

u − t

∫ u

t

∫
R
ei2π(t−u)·ν σ(z , ν) dν dz . (48)
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Filtering examples

On previous page, suppose time-invariance σ(t, ν) = ψ̂(ν) for all
(t, ν) ∈ R× R. Naturally, then Aσs = ψ ∗ s, because

Aσs(t) =

∫
R

∫
R
ei2π(t−u)·ν s(u)

1

u − t

∫ u

t

ψ̂(ν) dz du dν

=

∫
R

∫
R
ei2π(t−u)·ν s(u) ψ̂(ν) du dν

=

∫
R
ei2πt·ν ŝ(ν) ψ̂(ν) dν = ψ ∗ s(t).

On previous page, suppose frequency-invariance σ(t, ν) = ϕ(t) for
all (t, ν) ∈ R× R. Then a(t, u, ν) = b(t, u) so that Aσs = ϕ s:

Aσs(t) =

∫
R

∫
R
ei2π(t−u)·ν s(u) b(t, u) du dν

= s(t) b(t, t) = ϕ(t) s(t).
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Time-limited signal which is band-limited, too?

Let ‖s‖2 <∞, where s : R→ C is limited in time-frequency:

s(t) = 0 = ŝ(ν)

whenever |t| > M and |ν| > M for some constant M <∞.
Then de�ne analytic function h : C→ C by

h(z) :=

∫ M

−M
e−i2πt·z s(t) dt.

Due to analyticity, for any a ∈ C we have power series

h(z) =
∞∑
k=0

1

k!
h(k)(a) (z − a)k .

If M < a ∈ R then h(a) = ŝ(a) = 0, yielding h(z) ≡ 0 for all z ∈ C.
But here ŝ(ν) = h(ν) ≡ 0 for all ν ∈ R, so s(t) ≡ 0 for all t ∈ R.
[Remark: Schwartz test functions s ∈ S (R) ⊂ C∞(R)
(e.g. Gaussian signals) are �almost time- and frequency-limited�,
because s(t), ŝ(t)→ 0 rapidly as |t| → ∞.]
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Heat �ow: historical origin of Fourier analysis

Let u : R× R+ → R satisfy so-called heat equation

∂

∂t
u(x , t) = α

(
∂

∂x

)2

u(x , t), (49)

with initial condition u(x , 0) = f (x), where α > 0 is the thermal
di�usivity constant. Here ut(x) = u(x , t) is �temperature at point
x at time t�. Taking Fourier transform in the x-variable, we get

∂

∂t
ût(ξ) = −(2πξ)2α ût(ξ) and û0(ξ) = f̂ (ξ),

so that

ût(ξ) = e−(2πξ)
2αt f̂ (ξ),

u(x , t) =

∫
R

ei2πx ·ξ e−(2πξ)
2αt f̂ (ξ) dξ.

Fourier found this reasoning for periodic x case in 1807, but already
Daniel Bernoulli and Leonhard Euler considered vibrating strings as
trigonometric series in 1753; and Gauss invented FFT in 1805.

55 / 58



Review: how are di�erent Fourier transforms related?

Time space G (continuous R and R/Z; discrete Z and Z/NZ).
Frequency space Ĝ is dual to the time space G .
Signal s : G → C has Fourier transform ŝ : Ĝ → C,

ŝ(ν) =

∫
G

e−i〈t,ν〉 s(t) dt,

s(t) =

∫
Ĝ

e+i〈t,ν〉 ŝ(ν) dν,

�energy conservation� ‖ŝ‖2 = ‖s‖2 (except for DFT), where

‖s‖2 =
∫
G

|s(t)|2 dt

(for DFT, energy conservation needed a constant...).
Convolution r ∗ s : G → C of signals r , s : G → C,

r ∗ s(t) =
∫
G

r(t − u) s(u) du,

which can be in �nite case computed e�ciently by FFT.
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Review problems and questions

In your �eld of science/engineering, �nd examples of signals

s : R→ C, s : R/Z→ C,
s : Z→ C, s : Z/NZ→ C.

In each of these cases:

I How is Fourier transform de�ned? Which kind of signal is it?

I How is energy de�ned? Interpretation of energy?

I How does the inverse Fourier transform look like?

I How is convolution de�ned? Applications to signal processing?

How are these di�erent Fourier transforms related to each other?
Why is FFT fast?
What do time-frequency distributions tell us?
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Advertisement: follow-up course for Fourier analysis!

MS-E1993 Time-Frequency Analysis (5 credits)
in period V of Spring 2017: starts on April 11 (or April 12).

Learning outcomes: We shall learn modern methods for analyzing
and processing signals. Time-frequency analysis is a sub�eld of
Fourier analysis, studying simultaneously WHEN and HOW OFTEN
something happens in a signal. With sharp time-frequency
localizations we can apply sharp time-frequency operations to
signals. The course is meant for students in all �elds of
engineering, science and mathematics.
Content: Symmetries of time and frequency, Heisenberg group.
Uncertainty principle in Fourier analysis. Short-time Fourier
transform and spectrograms. Quadratic time-frequency transforms.
Time-frequency localization and time-varying �lters. Discretization
and computation.
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