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Direct Trajectory Optimization Using Nonlinear 
Programming and Collocation 

C.R. Hargraves* and S.W. Paris* 
Boeing Aerospace Company, Seattle, Washington 

An algorithm for the direct numerical solution of an optimal control problem is given. The method employs 
cubic polynomials to represent state variables, linearly interpolates control variables, and uses collocation to 
satisfy the differential equations. This representation transforms the optimal control problem to a mathematical 
programming problem which is solved by sequential quadratic programming. The method is easy to program for 
a very general trajectory optimization problem and is shown to be very efficient for several sample problems. 
Results are compared with solutions obtained with other methods. 

Introduction 
DIRECT trajectory optimization method that represents As tate and control variables by piecewise polynomials is 

described in this paper. An implicit integration scheme based 

number of details are different (e.g., different order splines 
are used, the collocation points are different, the independent 
variables were spline coefficients, etc.). 

on Hermite interpoiation is used to convert the optimal con- 
trol problem to a nonlinear programming problem. The 
primary advantage of this method is that it is much easier to 
extend to general problems involving path constraints, discon- 
tinuous states, and control inequalities. 

Numerous approaches are possible for direct trajectory op- 
timization. The authors have described in earlier papers a 
method employing piecewise Chebyshev polynomials. Penalty 
functions were used to convert optimal control problems to 
unconstrained parameter optimization problems which were 
solved with a full second-order modified Newton 

The basic ideas used in this approach were 
described earlier by Johnson4 and Hahn and J o h n s ~ n . ~  A 
similar approach was described by Balakrishnan.6 Additional 
direct approaches were described by Kelley,’ Rader and Hull,* 
and Brauer et aL9 

Birkbff and de Boorlo hae shown that  piecewise 
polynomials have many desirable properties for representing 
smooth curves. de Boor” and Russell and Shampine’, 
described implicit methods for the solution of boundary value 
problems in ordinary differential equations using piecewise 
polynomials. Dickmanns and Wells13 and D i c k m a n n ~ ~ ~ , ~ ~  ap- 
plied the maximum principal to reduce the optimal control 
problem to a boundary value problem which they solved using 
a collocation method; the method employed Hermite inter- 
polation and collocation. l6 

The solution of optimal control problems using nonlinear 
programming has been demonstrated for a number of distinc- 
tive methods. Betts et al.” described a procedure in which a 
problem is divided into a series of subproblems which are 
solved by an indirect method. Boundary conditions on the 
subproblems are solved by nonlinear programming. Kraft1* 
parameterized the control variables and integrated explicitly 
the equations. A direct and an indirect method were utilized 
and compared. Evtushenkolg used nonlinear programming to 
define a variety of optimal control algorithms. Renes*O pro- 
posed a procedure which is similar to that described in the next 
section. Renes did not give any numerical results and a 
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Mathematical Method 
Statement of the Problem 

Trajectory optimization problems that can be described by a 
sequence of vehiclelflight stages are considered. The control 
functions u ( t ) ,  the time points delimiting the various stages 
(E,, called events), and the vehicle design parameters ( w )  are 
sought which minimize a given performance index 

The ith stage is assumed to be a dynamical system subject to 
the differential constraint 

x’ =f’(x,u,w,t) (2) 

on the interval t e [E i ,E i+ , ] ,  where x is a vector of states 
governed by first-order differential equations, u a vector of 
controls (e.g., pitch angle, and w a vector of design param- 
eters (e.g., planform area, rocket nozzle diameter, etc.). 
The prime denotes differentiation with respect to time. At 
each event Ei, nonlinear boundary conditions may be imposed 
of the form 

(3) 

where e,, is the vector lower-limit on the boundary conditions 
and U B E  is the upper-limit. Equality constraints are possible 
by setting the appropriate elements of e,, and U B E  equal to 
each other. Path constraints of the form 

may also be imposed on the system. Denote the collection of 
events by E T =  (E1,E2, ..., E N + , ) ,  where N is the number of 
stages. 

The functionsf, ai, and h k  are assumed to be smooth (class 
C, or better) within a given stage. However, no continuity 
restrictions are imposed at events. Specifically, discontinuities 
of the form 

x ( E , + ) = x ( E ~ ) + ~ ~  ( 5 )  

are allowed at the events. The ai’s may be fixed quantities or 
may be included in the design parameter set W .  Equations (5) 
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account for physical events such as weight jettisons and im- 
pulsive velocity changes, 

Method of Solution 
The approach is to reduce the optimal control problem 

stated in the previous section to a nonlinear programming 
problem. To do this, the functions x(t) and u ( t )  are 
represented by piecewise polynomials and collocation is used 
to satisfy Eq. (2). 

The length of each state is defined as T, =Elcl -E, ,  as 
shown in Fig. 1 .  For each stage, the interval [E,,Ei+ ] is sub- 
divided into N, segments. Let the ratio of the length of thejth 
segment to Tsi be denoted as T,,. Thus, the length of the j th  
segment in the ith stage is rj,TSi. Using Hermite interpolation, 
cubic polynomials are defined for each state on each segment 
using values of the states at the nodes (the boundaries at the 
segments) and the state time derivatives, as defined by the 
equations, at the nodes. The values of the states are then 
selected (by nonlinear programming) to force the interpolated 
derivatives to agree with the differential equations at the 
center of the segment. This procedure is illustrated in Fig. 2. 

The basic procedure can be derived as follows. Let the states 
x be represented on each segment by cubics of the form 

x = co + c, s + c2sz + c3s3 (6) 

where to simplify the argument, the segment length S is 
transformed such that &[O, 1 1 .  Let x(0)=xl, x(l)=x2, 
dx/ds(O) = XI, dx/ds(l) = X2. Differentiating Eq. (6)  and 
evaluating at 0 and 1 gives 

Inverting the 4 x 4 matrix gives 

1 0  0 0 

0 1 0 0  

- 3  - 2  3 - 1  

2 1 - 2  1 

Now using Eq. (8), evaluating Eq. (6) at S= 1/2, and trans- 
forming to segment length T=rJ,, T,, we see that the inter- 
polated value of x at the center of the segment is 

(9) 

where f, is Eq. (2) evaluated at x, (the superscript denoting the 
stage was dropped for simplicity). (Note XI = Tf [x,, u( t , ) ,  ti, 
w] .) In the same way, the slope 

x,= (XI + ~ 2 ) / 2 +  TCfi -f2)/8 

x ~ = - ~ ( x I - x ~ ) / ~ T - C ~ I  +fz)/4 (10) 

is obtained. Evaluating Eq. (2) at x, givesf,. Define the defect 
at the center of the segment as 

A=f,-xf 

=fc+3(Xl-X2)/2T+ Cfl +f2)/4 (1 1) 

x1 and x2 are varied to drive A = 0. 
If the cubic polynomial is capable of representing the solu- 

tion on the given segment, then selecting x1 and x2 to drive A 
to zero will produce an accurate approximation to the solution 
of Eq. (2). 

The defects for each state evaluated at the center of each 
segment constitute a set of nonlinear algebraic equations 
which are a function of the states and controls at each node, 
the events E, and the design parameters w. Linear interpola- 
tion is used to obtain the controls at the segment centers. In- 
itial experiments with cubic polynomial controls did not work 
well. Also, quintic polynomials for the solution of second- 
order differential equations (without reduction to the first 
order) were tried. This approach did not work as well as the 
cubics. The boundary conditions [Eq. (3)] and the constraints 
[Eq. (4)] evaluated at both the nodes and centers of the 
segments provide additional equations (constraints) to be 
satisfied. Equations (9, connecting the segments constitute 
additional linear equations to be satisfied. Now, collect all of 
the independent variables into a single vector P defined by 

PT = [ZT,ET,wT] (12) 

where 

Collecting all of the nonlinear equations into a single vector 
equation gives 

where 

AT= (AI1,A12 ,..., Av. . . )  
AiJ =defect for ith state at j th node 
BN = collection of all nonlinear relationships from Eq. (3) 
HN =collection of all nonlinear relationships from Eq. (4) 

It is now noted that our payoff function J is a function of P 
only. The trajectory optimization problem stated above can be 
expressed as 

minimize 4 ( P )  

subject to P 

!<[ AP ] < u  (14) 

C ( P )  

where N p  is the dimension of P, AP is composed of all the 
linear relationships from Eqs. (3-5), !and u are the upper and 
lower bounds. For equality constraints f, = u,, and inequality 
constraints are handled by ti = - ~0 or u, = 03. Equation (14) 
constitutes a nonlinear programming problem. 

A large amount of literature in recent years has been 
devoted to the solution of nonlinear programming problems. 
Recent treatments of the subject are presented by Gill et a1.,21 
Evtushenko,22 and ReklaitkZ3 These books contain long lists 
of references on earlier work in this field. 

Programming Considerations 
The computer code implementing the aforementioned pro- 

cedure is called Nonlinear Programming for Direct Optimiza- 
tion of Trajectories (NPDOT). NPDOT uses a nonlinear pro- 
gramming package called NPSOL which was developed by the 
Systems Optimization Laboratory at Stanford Unive r~ i ty .~~  
NPSOL uses sequential quadratic programming (SQP). SQP 
methods were popularized by B i g g ~ , ~ ~  Han,z6 and 

NPSOL requires as inputs the matrix A and an initial guess 
for P. Subroutines must be provided which evaluate + ( P ) ,  
C ( P ) ,  and their first derivatives with respect to P.  In the 
method described here, these derivatives are computed by 
finite difference. This task is greatly simplified by the fact that 
the defects depend on states at adjacent nodes only and only 
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on the time length of the stage in which it occurs. The Jaco- 
bian has the banded structure shown in Fig. 3. 

To obtain accurate solutions to realistic problems, some 
refinements must be added to the procedure. The key 
refinements involve problem scaling, partial derivative com- 
putation, data smoothing, node selection, and node refine- 
ment. A discussion of equation scaling as applied to optimiza- 
tion problems may be found in Ref. 28. As a minimum, the 
independent variables should be scaled so that they have 
similar mangitudes. The following scaling procedure worked 
well. (No systematic comparison with other approaches was 
attempted.) States and controls were scaled by 

xs ( t )  = [ x ( t )  -xN(t) 1 /Sx(-f)  

where X, is the nominal trajectory and Sx is an estimate of an 
upper bound for x-x,. Times were scaled by 

T, = T/S,  

where ST is the estimated upper bound for T. 
For realistic trajectory problems, the computation of 

analytical derivatives can be a formidable task. It is usually 
preferable to compute derivatives directly by finite difference. 
Partial derivatives must be accurate to obtain convergence of 
the nonlinear programming algorithm. An algorithm for selec- 
ting the finite-difference perturbation size is given in Ref. 28 
(pp. 341-345). The code described here uses this algorithm in- 
itially and retains the perturbation step sizes for subsequent 
iterations. 

If tabular data are used, it is important that they be smooth. 
Smoothing data without changing the physical meaning can be 
a difficult problem. Good results were obtained with splines 
[see Ref. 29)] for tables with one independent variable. A 
satisfactory solution for multivariable tables has not yet been 
found. 

The smoothness of data is closely related to node spacing 
since, in general, rapid changes in tabular functions will be ac- 
ceptable only if there are sufficient nodes in the region of 
rapid change. This can be difficult to accomplish since the 
nodes are distributed in thie whereas tabular data may be 
functions of other variables such as Mach number of altitude. 
Regions where large changes occur as a function of Mach 
number for the nominal and optimal solution may be very dif- 
ferent regions in time. An initial node selection can be made 
based on the nominal. Unless a nominal that is close to 
opitimal is known, an adaptive procedure is requried. 

The node selection can then be updated after initial con- 
vergence or when optimizer behavior indicates possible prob- 
lems due to the polynomial distribution. Dickmanns14 has 
described several methods for refining node selection. The 
basic idea is to represent each segment by a higher-order 
method (polynomial, numerical integration, etc.) and add 
nodes when disagreement is found. After several refinement 
cycles, the adequacy of the total representation can be treated 
by explicit numerical integration of the trajectory using the 
polynomial control function and comparing the results with 
the polynomial representation of the trajectory. 

The following problems have been solved using NPDOT: 1) 
Van der Pohl (Ref. 31 and 32), 2) Brachistochrone (Ref. 33), 
3) minimum time interceptor (Ref. 34), 4) advanced booster. 
The results of NPDOT agreed with the previously published 
results for problems 1-3. A comparison of the solution times 
between NPDOT and CTOP is given in Fig. 4. The times 
shown in Fig. 4 are adjusted to be comparable for the Cray X- 
MP/24. (For approximate comparison with other computers, 
the X-MP has a clock cycle time of 9 ns.) Discussions of prob- 

7 8 9 10 11 12 Nodcr 1 2 3 4 5 6 
Event. El E2 Time - E3 E4 

’ Fig. 1 Piecewise polynomial representation. 

Fig. 2 Implicit integration illustration. 

Fig. 3 Jacobian structure. 

Simple Airplane 

Numerical Examples 
Several test problems that have been solved with the new 

technique are described in this section. The problems range 
from simple analytical problems to contemporary aerospace 
performance-prediction problems. A stepped approach was 
used to validate NPDOT against known results, to gain ex- 
perience before attempting new unknown solutions, and to 
demonstrate the method’s inherent flexibility. The Chebyshev 
Trajectory Optimization Program (CTOP), described in Ref. 
1, served as the performance reference and “truth” model for 
NPDOT. The academic problems were also compared to solu- 
tions using the maximum principle.30 

CTOP NPDOT msT NPDOT 
CTOP NPDOT Mod I 1  

CTOP NPDOT 
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Fig. 5 Supersonic interceptor minimum-time climb trajectories. 
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Fig. 6 Supersonic interceptor control function and velocity profile. 

lems 3 and 4 follow to provide some insight into the method as 
applied to typical aerospace flight mechanics problems. 

Supesonic Interceptor Minimum-Time Climb 
This problem involves finding the pitch function O ( t )  to 

take a supersonic interceptor from sea level, Mach = 0.38, to 
an altitude of 20 km, Mach= 1.0, in minimum time. The in- 
itial weight was 42,000 lbs. This problem was proposed and 
solved by Bryson.% The equations of motion were those for 
planar flight above a flat Earth. The aerodynamic coefficients 
were functions of Mach number. The thrust was a function of 
Mach number and altitude. The specific fuel consumption was 
constant. The values for the defining aerodynamic and pro- 
pulsion data were taken from Ref. 35. The atmospheric dens- 
ity and speed of sound were taken from the NACA-1962 at- 
mosphere model. The initial-state values were obtained by 
linear interpolation between the initial and final values; the 
control (pitch) was set to 0.18 rad. The initial estimate of the 
free variables was as follows: final range equal to 360,000 ft 
and the final mass set to 1204 slugs. 

A sequence of solutions is shown on Fig. 5 .  A preliminary 
solution, shown by short dashes, was obtained with 16 equal 
segments. One can observe that this trajectory exploits the 
discretization to meet the constraints at the nodes and centers 
while violating such things as the altitude constraint in be- 
tween. To counter this activity, an eight-segment solution with 
a Chebyshev node distribution was generated. This provided 
the trajectory, shown by long dashes, which had a time to 
climb of 325.2 s. This was not as good as the previous CTOP’ 
results, so a solution was obtained with 15 segments. To ob- 
tain the node distribution, the absolute value of the difference 
between the time derivatives produced by the equations of mo- 

Great circle range, nmi 

Fig. 7 Advanced booster trajectory. 

tion and time deriatives of the polynomials were integrated to 
acquire an error estimate. This was done over the eight- 
segment trajectory. Five nodes were added to the center of the 
segments which were producing the majority of the error. A 
solution was generated for this 13-segment distribution and 
another error estimate was produced. Two additional nodes 
were added to yield a 15-unequal-segment distribution. This 
distribution yielded a time to climb of 317.3 s and produced a 
trajectory, shown as a solid line in Fig. 5 ,  which matched our 
previously obtained CTOP result and published energy state 
results.35 The control function and velocity profile are shown 
in Fig. 6. The airplane accelerates to a high subsonic speed, 
then climbs at a constant Mach number followed by a dive 
through Mach one and beyond, finishing up by a zoom climb 
to the final altitude. In the initial attempts for a solution, sim- 
ple piecewise linear and piecewise cubit interpolation for the 
aero/propulsion data were used. This did not work well. The 
program could not reduce the defects or obtain a small gra- 
dient. This is consistent with previous trajectory optimization 
experience. These problems were resolved by using the taut 
spline and tensor spline packages as defined and coded by 
de Boor.36 

Advanced Booster 
This problem involves maximizing the final weight that can 

be injected into low Earth orbit by an advanced booster which 
utilizes airbreathing propulsion. The propulsion system has 
several discrete phases which depend on the vehicle’s Mach 
number. The first phase spans from Mach 0-2. The thrust and 
specific impulse were modeled as tabular functions of Mach 
number. The second propulsion phase goes from Mach 2-20. 
The thrust was modeled as a thrust coefficient multiplied by 
dynamic pressure. The thrust coefficient was a function of 
Mach number and angle of attack. The specific impulse is a 
function of Mach number. The final propulsion phase, Mach 
numbers greater than 20, was a rocket in which both the thrust 
and specific impulse were constant. 

The equations of motion were for three-dimensional flight 
above a spherical nonrotating Earth. Limits were imposed on 
dynamic pressure, altitude, and angle of attack. The second 
propulsion phase being proportional to dynamic pressure 
tended to drive the trejectory solutions to very high dynamic 
pressure values. The aerodynamics for this vehicle were done 
in body axis form, CA and CN = CNa -a. CA and CNa were 
functions of Mach number. 

Initial attempts to generate trajectories using a conventional 
explicit integrating program for this class of vehicle required 
intensive “man-in-the-loop” interactions. The strategy 
employed was to accelerate the vehicle to a dynamic pressure 
q,  limit and fly that limit until a predetermined velocity was 
reached. At that time, a rocket burn is performed which 
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allows the vehicle to coast in a transfer orbit with the ap- 
propriate apogee. A single apogee burn is then used to cir- 
cularize the orbit. All attempts to optimize this trajectory with 
an explicit integrating parameter-optimization program failed. 
The best results were achieved by using standard trade studies. 
Attempts to use CTOP on this problem resulted in very slowly 
converging trajectories. When NPDOT was applied to this 
problem, only the initial airbreathing portions and rocket 
burn were optimized. This results in the problem of maximiz- 
ing the weight injected into a predefined transfer orbit. The 
transfer orbit is defined by a fixed velocity and flight path 
angle at a given altitude. This was done to benchmark 
NPDOT with the existing solution. A coverged NPDOT tra- 
jectory was obtained using 22 segments and resulted in a 10% 
gain in weight over the baseline trajectory. The trajectory, 
pitch profile, and dynamic pressure as a function of time are 
shown in Fig. 7. It is interesting to note that the optimum tra- 
jectory does not stay on the dynamic pressure constraint but 
rather initially rides it and then gets off. To maximize ac- 
celeration, the vehicle wants to fly at maximum q; however, 
the vehicle’s final conditions are orbital, and drag losses are 
largest at maximum q so there is a balance between the two. 

Conclusions 
A trajectory optimization method which uses an embedded 

collocation scheme in conjunction with mathematical pro- 
gramming has been described. The method has been used to 
solve a wide variety of test cases and found to be superior to 
other procedures in terms of cost and robustness. 
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