5

The Variational Approach to
Optimal Control Problems

In this chapter we shall apply variational methods to optimal control prob-
lems. We shall first derive necessary conditions for optimal control
assuming that the admissible controls are not bounded. These necessary
conditions are then employed to find the optimal control law for the impor-
tant linear regulator problem. Next, Pontryagin's minimum principie is
introduced heuristically as a generalization of the fundamental theorem of
the calculus of variations, and problems with bounded control and state
variables are discussed. The three concluding sections of the chapter are
devoted to time-optimal problems, minimum control-effort systems, and
problems involving singular intervals.

5.1 NECESSARY CONDITIONS FOR
OPTIMAL CONTROL

Let us now employ the techniques introduced in Chapter 4 to determine
necessary conditions for optimal control. As stated in Chapter 1, the problem
is to find an admissible control u* that causes the system

x(r) = a(x(®), u(z), 1) (5.1-1)

to follow an admissible trajectory x* that minimizes the performance
measure

184
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I = hex(ep), 1) + [ gx(e), w(e), 1) dt (5.1:2)

We shall initially assume that the admissible state and control regions are
not bounded, and that the initial conditions x(¢,) = X, and the initial time
t, are specified. As usual, x is the n X 1 state vector and uis the m X 1 vector
of control inputs.

In the terminology of Chapter 4, we have a problem involving n 4+ m
functions which must satisfy the » differential equation constraints (5.1-1).
The m control inputs are the independent functions.

The only difference between Eq. (5.1-2) and the functionals considered
in Chapter 4 is the term involving the final states and final time. However,
assuming that 4 is a differentiable function, we can write

W), 1) = [ Thx(o), O] de + hx(e) 1), (513)
so that the performance measure can be expressed as
20) = [ {g0xe), w), 1 + 20 [Hx), O]}t + Bxce), 1), (51:4)

Since x(7,) and ¢, are fixed, the minimization does not affect the A(x(z,), £,)
term, so we need consider only the functional

1w = [ {gexo, w, ) + 5 o, 0]} ar (5.1-5)
Using the chain rule of differentiation, we find that this becomes
Ju) = f {g(x(t), u(e), 1) + [g—f‘( (o), t)]T)'((t) + g—f(x(t), t)} dr. (5.1-6)

To include the differential equation constraints, we form the augmented
functional
tr T
| a0 = [ oo wo, o + [Fsw, 0] 30 + Fex, o
+ PR, ), ) — X1} di (5.17)

by introducing the Lagrange multipliers p,(?), . . ., p.(¢). Let us define

1 In general, the functional J depends on x(#o), 7o, X, u, the target set .S, and 7,. However,
here it is assumed that x(¢y) and ¢, are specified; hence, x is determined by u and we write
J(u)—the dependence of J on S and 7, will not be explicitly indicated.
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£06(0), X(0), 0(2), DO, 1) & B0, 0D, D) + PO, ut), ) — %(0)]
+ [P, 0] 10 + Gexn

so that

s
T = [ {80, %(0), uCe), pC0), 03} (5.1-8)
We shall assume that the end points at ¢ = ¢, can be specified or free. To
determine the variation of J,, we introduce the variations dx, 0%, du, dp, and

0t;. From Problem 4a in the preceding chapter this gives {see Eq. (4.3-16)],
on an extremal,

83,(0%) = 0 = | %Bn(er(e,), X720, wep), 0¥Cep) 1) 6%,
+ [xr e, 52, w3, 0¥, 1)
— [Setxr ), 270, W), 10, 1] K7 o1,
+ [ [, 20, v v, 0] (519)
— & [ Feeer@, x40, w0, 2, 0] ] 8x00)
+ [%‘;—“(x*(t), 1), w(0), (), t)]r du(r)
+ [ B0, 520, w0, 020, 0 om0} .
Notice that the above result is obtained because (1) and p(r) do ot appear
in g,

Next, let us consider only those terms inside the integral which involve
the function 4; these terms contain

T T
[, o] 20 + G, 0] - 4 {5 [ oo, o] 20)]}-
(5.1-10)
Writing out the indicated partial derivatives gives

[, o]0 + [ 20, 0] — & [P, 0] 611

or, if we apply the chain rule to the last term,
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|G, 0 i) + [0, 0] - [ J 60, 0] %0
[ gxgt(x*(t), } (5.1-12)

If it is assumed that the second partial derivatives are continuous, the order
of differentiation can be interchanged, and these terms add to zero. In the
integral term we have, then,

[ {[[ S0 o, o] + 2 [ FEeer, w0
-2 [__p*r(t)]] ox(t) + [[%(x*(’): u (0), t)}
1 () ]:%(x*(t), u*(2), t)ﬂ ou(®)+ [[a(x*(t), uk(s), ,)_,-(*(,)]T] (51,(,)} dr.

(5.1-13)

This integral must vanish on an extremal regardless of the boundary con-
ditions. We first observe that the constraints

XX(1) = a(x*(2), u*(r), 1) (5.1-14a)

must be satisfied by an extremal so that the coefficient of dp(¢) is zero. The
Lagrange multipliers are arbitrary, so let us select them to make the coeffi-
cient of dx(¢) equal to zero, that is,

k() — 98 % * - 0g (yx *
P = — | &0, w0, 0| PHO) — G2 (FO), wr (), 1) (5.1-14b)
We shall henceforth call (5.1-14b) the costate equations and p(¢) the costate.

The remaining variation du(?) is independent, so its coefficient must be
zero; thus,

0— "g(x*(z) w0), 1) + [ (), wH (D), t)} PQ).  (5.1-140)

Equations (5.1-14) are important equations; we shall be using them through-
out the remainder of this chapter. We shall find that even when the admis-
sible controls are bounded, only Eq. (5.1-14c) is modified.

There are still the terms outside the integral to deal with; since the varia-
tion must be zero, we have

G20 19— 0| 0%, + [865 0, ) 1) + e 1)

+ p¥T() [aGA(E ), W), z,)]] 5t, = 0. (5.1-15)
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In writing (5.1-15), we have used the fact that x*(¢,) = a(x*(¢;), u*(¢;), ).
Equation (5.1-15) admits a variety of situations, which we shall discuss
shortly.

Equations (5.1-14) are the necessary conditions we set out to determine.
Notice that these necessary conditions consist of a set of 2n, first-order
differential equations—the state and costate equations (5.1-14a) and (5.1~
14b)—and a set of m algebraic relations—(5.1-14c)—which must be satisfied
throughout the interval [#,, ¢,]. The solution of the state and costate equations
will contain 2n constants of integration. To evaluate these constants we use
the n equations x*(¢,) = X, and an additional set of n or (n + 1) relationships
—depending on whether or not ¢, is specified—from Eq. (5.1-15). Notice
that, as expected, we are again confronted by a two-point boundary-value
problem.

In the following we shall find it convenient to use the function J#, called
the Hamiltonian, defined as

Hx(1), u(t), p(r), 1) & g(x(t), u(®), H) + pT(O[ax(?), u(®), H]. (5.1-16)

Using this notation, we can write the necessary conditions (5.1-14) through
(5.1-15) as follows:

x*(1) = ‘%(X*(t), u*(1), p*(t), 1) (5.1-17a)
) = — 92 (o), w0, 240, 1 f°;a[1,'o g | G
0 = 9 ex(), wh(e), 140, 1) (5.1-17¢)
and
| G260, 1)—9%) | Sx 4 [ A ), W), 9
ax X () 1)—P*(tg) | 0%, | (), WXt ), PH(2)s 1))
(5.1-18)

+ ‘;—};(x*(t,), t,):‘ ot, = 0.

Let us now consider the boundary conditions that may occur.
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Boundary Conditions

In a particular problem either g or h may be missing; in this case, we
simply strike out the terms involving the missing function. To determine the
boundary conditions is a matter of making the appropriate substitutions
in Eq. (5.1-18). In all cases it will be assumed that we have the n equations
x*(t,) = X,.

Problems with Fixed Final Time. If the final time ¢, is specified, x(¢,) may be
specified, free, or required to lie on some surface in the state space.

CASE 1. Final state specified. Since x(t;) and ¢, are specified, we substitute
0x, = 0 and J¢; = 0 in (5.1-18). The required n equations are

x*(t;) = x,. (5.1-19)
CASE Il. Final state free. We substitute d¢, =0 in Eq. (5.1-18); since

0x, is arbitrary, the n equations

kvt ) — pe) = ot (5.1-20)
must be satisfied.

CASE 1ll. Final state lying on the surface defined by m(x(t)) = 0. Since
this is a new situation, let us consider an introductory example. Suppose
that the final state of a second-order system is required to lie on the circle

mx(t)) = [%,(t) — 3] + [x,(8) — 4P — 4 =0 (5.1-21)

shown in Fig. 5-1. Notice that admissible changes in x(¢,) are (to first-order)
tangent to the circle at the point (x*(z), ;). The tangent line is normal to
the gradient vector

dm _ [2[x%(,) — 3]
X)) = [2[)6? ) — 4]} (5.1-22)
at the point (x*(t;), ¢;). Thus, dx(¢,) must be normal to the gradient (5.1-22),
so that
[‘;—’:(x*(t,))]r 0x(t,) = 2[x%(t,) — 3] 0x,(t,) + 2[x§(t,) — 4] Ox,(¢;) = 0.
(5.1-:23)

t Since the final time is fixed, 4 will not depend on #;.
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x,(t)
)

Xg

Sxf = SX(I/)

xp ()

Figure 5-1 An extremal and a comparison curve that terminate on
the curve [x((f) — 312 + [x2(f) — 4]2 — 4 = 0 at the specified final
time, 75

Solving for dx,(t,) gives

—[x*@¢,) — 3
Ox,(t,) = ——E,{EZ—*;—:E% 6x,(,)s (5.1-24)

which, when substituted in Eq. (5.1-18), gives

1
[%’:(X*(t,)) — p*(t,)} —[x%(¢t,) —3]| =0 (5.1-25)
[x3¢,) — 4]

since d¢; = 0 and dx,(¢) is arbitrary. The second required equation at the
final time is

mx*(t ) = [x5(t) — 3] + [xi¢t) — 4P —4=0.  (5.1:26)

In the general situation there are n state variables and 1 <k <n-—1
relationships that the states must satisfy at # = #,. In this case we write
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m, (x(1))
m(x(¢)) = :
m(x(9)

I
=

(5.1-27)

and each component of m represents a hypersurface in the n-dimensional
state space. Thus, the final state lies on the intersection of these k hypersur-
faces, and Ox(f;) is tangent to each of the hypersurfaces at the point
(x*(t,), t;). This means that dx(t;) is normal to each of the gradient vectors

I, vt I, (5.1-28)

which are assumed to be linearly independent. From Eq. (5.1-18) we have,
since d¢, = 0,

d

[‘7’—’:()(*(:,)) ~ p*(t,)]T Sx(t,) 2 v 8x(1,) = 0. (5.1-29)

It can be shown that this equation is satisfied if and only if the vector vis a
linear combination of the gradient vectors in Eq. (5.1-28), that is,

T e) — 1) = 4, [FReee| + -+ di[Freer)]-
(5.1-30)

To determine the 2n constants of integration in the solution of the state-
costate equations, and d,, ..., d;, we have the n equations x*(¢,) = x,,
the n equations (5.1-30), and the k equations

m(x*(t;)) = 0. (5.1-31)

Let us show that Eqgs. (5.1-30) and (5.1-31) lead to the results obtained
in our introductory example. The constraining relation is

mx(e)) = [x,(6) — 3] + [x,06) — 4] — 4 = 0. (5.1-21)

From Eq. (5.1-30) we obtain the two equations

OBy wy e — g] 26T =3 )
X)) —p (")_d[z[x;*(z,)_ 4]] (5.1-32)
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and (5.1-31) gives
m(x*(t,)) = [x¥(ty) — 3]* + [x5(t) —4]* —4=0. (5.1-33)

By solving the second of Eqs. (5.1-32) for 4 and substituting this into the
first equation of (5.1-32), Eq. (5.1-25) is obtained.

Problems with Free Final Time. If the final time is free, there are several
situations that may occur.

CASE 1. Final state fixed. The appropriate substitution in Eq. (5.1-18) is
0x, = 0. Jt, is arbitrary, so the (2n + 1)st relationship is

HEE), W) ), 1)+ T, 1) =0, (5.134)

CASE II. Final state free. 6x, and §t, are arbitrary and independent;
therefore, their coefficients must be zero; that is,

p*(t;) = g-’—}:(x*(t,), ty) (n equations) (5.1-35)

HOHE), W), ) 1) + PR, 1) =0 (1 equation),

(5.1-36)

Notice thatif 4 = 0
pX(t;) =0 (5.1-37)
H(X(t,), W¥(t,), p*(t)), ;) = O. (5.1-38)

CASE TI1. x(t,) lies on the moving point 6(t). Here dx, and ¢, are related by
ox, = [‘?11’?01‘)} oty
making this substitution in Eq. (5.1-18) yields the equation
x*(t;), w¥(¢;), p*(2p), 1) + gt—(x (t5), t7) + (9_x(x (o), 1) — p*(ty)
do
X [‘—1;(:,)} —o. (5.1-39)

This gives one equation; the remaining n required relationships are

X¥(1,) = 6().



Sec. 5.1 Variational Approach to Optimal Control Problems 193

CASE 1V. Final state lying on the surface defined by m(x(t)) = 0. As an
example of this type of end point constraint, suppose that the final state is
required to lie on the curve

mx(D) = [x,(£) — 3] + [x,() — 4> — 4 =0. (5.1-40)

Since the final time is free, the admissible end points lie on the cylindrical
surface shown in Fig. 5-2. Notice that

1. To first-order, the change in x(f,) must be in the plane tangent to the
cylindrical surface at the point (x*(¢;), ¢,).
2. The change in x(¢;) is independent of d¢,.

xz(f)

x*,)
'
oty

> !

Xl(f)

Figure 5-2 An extremal and a comparison curve that terminate on
the surface [x;(¢) — 312 + [x2(1) — 4]2 — 4 =0

Since dx, is independent of dt,, the coefficient of d¢, must be zero, and
a
At ), W), DR, 1) + P, 1) = . (5.1-41)

The plane that is tangent to the cylinder at the point (x*(¢,), ¢,) is described
by its normal vector or gradient; that is, every vector in the plane is normal
to the vector

Om v v _ [2xEt) — 3]
X)) = [Z[xf(r; ) 4]} (5.1-42)
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This means that
[‘i”(x*(t ))]Trsx = 2[x¥(t,) — 3] 6y, + 2[xk(t,) — 4] x5, = O
ox X Uy s = 4xi(ty i+ 2[x%(t;) — 4] 0x,, = 0. (5.1-43)

Solving for dx,, gives

—[x¥(t,) — 3]
[xf(ff) —4]

Substituting this for dx,, in Eq. (5.1-18) gives

0xy, = x4, (5.1-44)

1
(G2t 19 — %0 | | ety — 3] |62, = 0. (5.1:45)
[x3(,) — 4]

Since dx,, is arbitrary, its coefficient must be zero. Equations (5.1-41) and
(5.1-45) give two relationships; the third is the constraint

mx*(e,)) = [x5(t,) — 3 + [x5(t) — 4P —4 =0.  (5.1-46)

In the general situation we have n state variables, and there may be
1 <k <n—1 relationships that the states are required to satisfy at the
terminal time. In this case we write

m, (x(5))

i
)

m(x(t)) = (5.1-47)

m(x(1))

and each component of m describes a hypersurface in the n#-dimensional
state space. This means that the final state lies on the intersection of the
hypersurfaces defined by m, and that dx; is (to first order) tangent to each
of the hypersurfaces at the point (x*(¢,), t;). Thus, dx, is normal to each
of the gradient vectors

O, (e, - T, (5.1-48)

which we assume to be linearly independent. It is left as an exercise for the
reader to show that the reasoning used in Case III with fixed final time also
applies in the present situation and leads to the (2n + k - 1) equations



Sec. 5.1 Variational Approach to Optimal Control Problems 198
X*(to) = X,
Zhe 1) — () = dy [ SO )| + o+ T,
m(x*(z;)) =0
A, W), B, 1) + (), 1) = 0 (5.1-49)
involving the 2n constants of integration, the variables d,, ..., d;, and ¢,.

It is also easily shown that Eqgs. (5.1-49) give Egs. (5.1-41), (5.1-45), and
(5.1-46) in the preceding example.

CASE V. Final state lying on the moving surface defined by m(x(¢), t) = 0.
Suppose that the final state must lie on the surface

mx(t), 1) = [%,() — 3P +[x,() —4— 12 —4=0  (5.1-50)

shown in Fig. 5-3. Notice that d¢, does influence the admissible values of
0x,; that is, to remain on the surface m(x(t), r) = 0 the value of dx, depends
on J¢;. The vector with components dx,,, dx,,, 0, must be contained in a
plane tangent to the surface at the point (x*(¢/), ¢,). This means that the
normal to this tangent plane is the vector

x2(8)

ﬁ}

X X*(tf)

8Xf

x(8)

Figure 5-3 An extremal and a comparison curve that terminate on
the surface [x;(t) — 312 + [x2(t) —4 — ]2 —4=0
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dm
97 (ke 1)
G M), 1)

g—x’?(x*(tf), )| Al ————— (5.1-51)
2 Im, 4

om W(x @) ty)

W(X*(tf)$ ty)

in the three-dimensional space. Thus, admissible variations must be normal
to the vector (5.1-51), so

l:g“z?;(x*(tf), !f):l ox,, + {g%(x*(t,), t,)] O0x,, + [QL:'(X*(Q), t’):l 5t, = 0.
(5.1-52)

For the surface specified we have

2[x¥(t;) — 3] 0xy, + 2xi(t;) — 4 — t;]6x,, — 2[x¥(t;) — 4 —t,] 61, = 0.
(5.1-53)

Solving for dt, gives

[xt@) — 3]

5’f = [—xm Jxl, + 6x2,. (5.1"54)

Substituting in Eq. (5.1-18) and collecting terms, we obtain
dh * * H(x* * *
a}“’(x () ty) — i) + (x (tf)’ u*(t,), p*(¢,), tf)

+ %I(X*(tf)’ ’f)} [%3—”]] 5)‘1/

Bt 1) — PHE) + A W) 20, 1)
+ ‘;—f(x*(t,), z,)] 0x,, = 0. (5.1-55)

Since there is one constraint involving the three variables (dx,,, 0x,,, dt,),
0x,, and dx,, can be varied independently; therefore, the coefficients of
0x,, and dx,, must be zero. This gives two equations; the third equation is

mx*(1,), t;) = 0. (5.1-56)

In general, we may have 1 <{ k < » relationships
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m, (x(?), ¥)

m(x(6), 1) = | - =0, (5.1-57)
m,(x(2), t)

which must be satisfied by the (n + 1) variables x(z,) and ?,. Reasoning as

in the situation where m is not dependent on time, we deduce that the admis-
sible values of the (n + 1) vector

are normal to each of the gradient vectors

W y] [ 1)
______ e, (5.1-58)
0%, (x*(1,), 1) I (1), 1)

which are assumed to be linearly independent. Writing Eq. (5.1-18) as

Ok x * 3
&(X (7). t;) — P*(p) ox, X,
_________________ —_—— = 0 é vT ———
), W) W) 1) + P e || o 5t
(5.1-59)

and again using the result that v must be a linear combination of the gradient
vectors in (5.1-58), we obtain

I 1), 1) W oe¥(1,), 1)

D81 (¥t 1) e (1), 1)
or

BH) 1) — 2 = 4, [ G e 1)

R [%ﬂx’s(x*(tf), tf)]
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and
FHX*(t ), wi(ty), P*(ty), ty) + %’?(x*(tf)’ ty) =d, [%"#(x*(t,), tf):l
a1 G

Equations (5.1-61), the k equations
m(x*(t,), t;) = 0, (5.1-62)

and the n equations x*(#,) = x, comprise a set of (2n 4 k 4 1) equations
in the 2n constants of integration, the variables d,, d, ..., d;, and #,. It is
left as an exercise for the reader to verify that (5.1-62) and (5.1-61) yield
Eqgs. (5.1-55) and (5.1-56).

The boundary conditions which we have discussed are summarized in
Table 5-1. Of course, mixed situations can arise, but these can be handled
by returning to Eq. (5.1-18) and applying the ideas introduced in the preced-
ing discussion.

Although the boundary condition relationships may look foreboding,
setting up the equations is not difficult; obtaining solutions is another matter.
This should not surprise us, however, for we already suspect that numerical
techniques are required to solve most problems of practical interest. Let us
now illustrate the determination of the boundary-condition equations by
considering several examples.

Example 5.1-1. The system

x1(1) = x,(1)

5.1-63
x(8) = —x(0) + u(®) ( )

is to be controlled so that its control effort is conserved; that is, the
performance measure

16 = [ ey dr (5.1-64)
to
is to be minimized. The admissible states and controls are not bounded.

Find necessary conditions that must be satisfied for optimal control.
The first step is to form the Hamiltonian

Hx(1), ut), p(1)) = 3uP(t) + p1(Ox2(t) — p2)x2(t) + p2(Du(e). (5.1-65)

From Egs. (5.1-17b) and (5.1-17¢) necessary conditions for optimality are
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9

) = — F 0
o (5.1-66)
pr) = — o —p¥®) + p¥(@),
and
0= ‘Z—f = u(0) + prQ). (5.1-67)

If Eq. (5.1-67) is solved for #*(¢) and substituted into the state equations
(5.1-63), we have

() = x5

5.1-68
() = — x§®) — pfO. ¢ )

Equations (5.1-68) and (5.1-66)—the state and costate equations—are a
set of 2 linear first-order, homogeneous, constant-coefficient differential
equations. Solving these equations gives

¥ =cy + e[l — €1+ cs[—t — € + f€)
+ell — €t —fel
x5() = €7 + c3[—1 + 3¢ + €] + cul3€™ — 361 (5.1-69)
p¥(@®) = c;
PE(t) = c;3[1 — €] + cu€.

Now let us consider several possible sets of boundary conditions.

a. Suppose x(0) =0 and x(2) =[5 2J. From x(0) =0 we obtain
¢; = ¢; = 0; the remaining two equations to be solved are

5= esl—2 — 4672 + 4€2] + el — je — j€7]

(5.1-70)
2 = e3[—1 + J€7% + 3€7] + cyl3€72 — 3€7).
Solving these linear algebraic equations gives ¢; = —7.289 and
¢, = —6.103, so the optimal trajectory is
x¥(1) = 7.289t — 6.103 + 6.696¢~* — 0.593¢*
(5.1-71)

x¥(r) = 7.289 — 6.696¢~* — 0.593¢.

b. Let x(0) = 0 and x(2) be unspecified; consider the performance measure

J@) = 3x:2) — S| + xa(® — 22 + 4 f : w@ydt.  (G.1-72)
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202 The Calculus of Variations and Pontryagin‘s Minimum Principle Sec. 5.1

The modified performance measure affects only the boundary condi-
tions at ¢ == 2, From entry 2 of Table 5-1 we have

P2 ==x¥(2) — 5
PFQ) = x$(@2) — 2. (5.1-73)
¢, and ¢, are again zero because x*(0) = 0. Putting ¢ = 2 in Eq.

(5.1-69) and substituting in (5.1-73), we obtain the linear algebraic
equations

[0.627 ~2.762} [03}2[5]. (5.1-74)
9.151 —11.016] L4 2

Solving these equations, we find that c¢; = —2.697, ¢, = —2.422;
hence,

x¥(t) = 2.697t — 2.422 + 2.5606~* — 0.137¢*

(5.1-75)
x¥(1) = 2.697 — 2.560¢~* — 0.137¢.

¢. Next, suppose that the system is to be transferred from x(0) = 0 to
the line

x1(t) + Sx,(1) = 15 (5.1-76)

while the original performance measure (5.1-64) is minimized. As
before, the solution of the state and costate equations is given by
Eq. (5.1-69), and ¢, == ¢, = 0. The boundary conditions at t =2
are, from entry 3 of Table 5-1,

x¥(2) + 5x%(2) = 15
—p¥Q2) = d (5.177)
—p¥(2) = 5d.

Eliminating d and substituting ¢t = 2 in (5.1-69), we obtain the equations
{15.437 —20.897:} !:c;} _ [15} (5.1-78)
11.389  —7.389] Lc4 0
which have the solution c¢; = —0.894, ¢, = —1.379. The optimal
trajectory is then

x¥(t) = 0.894¢ — 1.379 + 1.136€~* +- 0.242¢’

5.1-79
x¥(1) = 0.894 — 1.1366~* + 0.242¢". ( )
Example 5.1-2. The space vehicle shown in Fig. 5-4 is in the gravity field
of the moon. Assume that the motion is planar, that aerodynamic forces
are negligible, and that the thrust magnitude T is constant. The control



