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Abstract 
We describe two discretization methods, direct collocation and a scheme based on dif­
ferential inclusion, that enable the solution of optimal control problems by nonlinear 
programming. We apply the methods in calculating optimal trajectories for a modern 
fighter aircraft. Unlike collocation, the differential inclusion scheme converges robustly 
even in the presence of singular controls. 
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1 INTRODUCTION 

Aircraft trajectory optimization problems constitute a challenging class of optimal control 
problems. A six degrees of freedom aircraft model consists of 12 first order differential 
equations. In trajectory optimization the equations of rotation can be neglected, but the 
remaining model still includes six nonlinear first order equations of motion (see, e.g. , 
Miele (1962)). 

The optimal control is usually solved either by indirect or direct methods. Indirect 
methods solve the multipoint boundary value problem arising from the necessary con­
ditions for optimality. The methods provide accurate results but require a good initial 
guess. This stems mainly from the nonlinear and unstable nature of the boundary value 
problem and Newton-type solution methods. 

Infinite dimensional direct methods attempt to overcome these difficulties. They im­
prove a given nominal solution by a gradient search in a function space. A larger conver­
gence domain is often achieved, but other difficulties, like the treatment of constraints, 
arise. 

In many cases the accuracy of the solution is not as important as is the convergence of 
the solution method. The convergence could be improved by replacing the original infinite­
dimensional problem with a finite-dimensional approximation, in which the differential 
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equation constraint is satisfied only pointwise. Restricting to a finite dimension also allows 
the use of ordinary nonlinear optimization. 

The discretization of the problem can be carried out in a number of ways. Hargraves et 
al. (1981) present the state trajectories with high-order patched polynomials, whose coeffi­
cients are the decision variables. Betts and Huffman (1993) discuss trapetzoidal, Hermite­
Simpson and Runge-Kutta discretization. In the following we describe two schemes, di­
rect collocation and a recently proposed method based on differential inclusions Seywald 
(1994). In the former approach the states and controls are approximated by piecewisely 
defined low-order polynomials. The latter scheme makes use of differential inclusion (see, 
e.g. ,Aubin and Frankowska (1989)) and the concept of attainability. We demonstrate and 
compare the performance of these methods and the accuracy of the results. The numerical 
examples involve also singular controls. 

2 AIRCRAFT MODEL 

The dynamics of a point mass aircraft can be described by the following system of equa­
tions (see, e.g. , Miele (1962)): 
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The state variables x, y, h, v, , and X are the x and the y coordinates, altitude, velocity, 
flight path angle and heading angle of the aircraft, respectively. The acceleration due to 
gravity, g, is assumed constant. Tmax(h, M(h, v)) denotes the maximum available thrust 
force, u the throttle setting, DC) the drag force and M(·) the Mach number. For short 
flight times the mass of the aircraft can be assumed constant. 

The normal acceleration of the aircraft is controlled with the normal load factor nand 
the tangential acceleration with the throttle setting u E [0,1]. To produce a horizontal 
turn, the normal load factor can be directed away from the vertical plane with the bank 
angle fl E [-1l',1l'[. 

The load factor n cannot be chosen freely. At low velocities, a large load factor requires 
a large angle of attack which results in loss of lift force and stall. At higher velocities, the 
magnitude of the load factor is constrained by the largest acceleration that the pilot and 
the aircraft withstand. Here the smallest allowed load factor is set to zero to ensure the 
uniqueness of the control variable combinations. 

The aircraft drag is assumed to obey a shifted quadratic polar emerging from the 
actively controlled aircraft wing Ehtamo et al. (1994): 

CD(M(h, v), n) = CDo(M(h, v)) + K(M(h, v))(CLC) - a?, a> O. 
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Here CD (·), CDoO and K(·) denote the total, zero-lift and induced drag coefficients, 
respectively. The drag force becomes 

D(h, v, M(h, v), n) = CD(M(h, v), n)Sq(h, v) = 

nmg 2 1 2 
(CDo(M(h, v)) + K(M(h, v))( Sq(h, v) - a) )Sq(h, v), q(h, v) = "2{!(h)v . 

Sand q(h, v) stand for the reference wing area and the dynamic pressure. The coeffi­
cients CDo(M(·)) and K(M(·)) are approximated by rational polynomials on the basis of 
realistic tabular data. The maximum thrust data is approximated by a two-dimensional 
polynomial. The air density and the speed of the sound are taken from the standard ISA 
atmosphere. 

3 THE DISCRETIZATION METHODS 

Direct collocation 
In direct collocation the state trajectories and admissible controls are constrained to lie 
in the space of piecewise polynomials of time with given degree. The polynomials must 
satisfy the state equation in a finite number of points at each interval. In this paper the 
state trajectories are interpolated by Hermite interpolation and cubic polynomials. The 
controls are approximated piecewise linearly. The slope of the approximating polynomial 
must coincide with the state equation value at the middle of each discretization interval. 
The optimal values of the control and state variables in the discretization points are 
selected through nonlinear optimization to minimize the cost function. The method or its 
variants have been applied to various trajectory optimization tasks (see, e.g. , Hargraves 
and Paris (1987)) but also to facilitate the solving of complex pursuit-evasion games by 
providing an initial guess for the solution Lachner et al. (1994). 

Differential inclusion scheme 
Another way to discretize the problem is to require that each subsequent state can be 
attained from the preceding state. Given to, an initial state vector x(to) = Xo and t l , 

the set of attainability K(xo, to, t l ) is defined as the collection of the states that can be 
reached from Xo in [to, tIl using admissible controls u(t), t E [to, hl (Lee and Markus, 
1986). In general, this set cannot be expressed explicitly. To approximate it we use the 
set of attainable state rates at state x(t) defined by 

H(x(t)) = {x(t) ERn I x(t) = f(x(t),u(t)), u(t) admissible}. 

Here f (.) refers to the RHS of the state equations. In the following, we drop the argument 
t for clarity. The set H(x) is sometimes called the hodograph of the system (e.g. Seywald 
(1994)). We next assume that u can be eliminated from the definition of H(x). That is, 
there exist smooth functions p : Rn x Rn 1-+ RP and q : Rn x Rn 1-+ Rq such that H(x) 
can be expressed as 

H(x) = {x E Rn I p(x,x) = O,q(x,x)::::; O}. 
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The existence of p and q depends on the problem considered. In practice, they are derived 
by eliminating the controls from the state equations and then using the control constraints. 

The first order approximation of the set of attainability is 

K(x, t, t + ~t) = {y E W I y = x + ~t ·H(x)} 

where ~t ·H(x) = {~t·:i; I :i; E H(xn. The condition that takes the system dynamics 
into account is that each subsequent discretized state must lie in the approximated set of 
attainability of its predecessor. 

Two remarks are to be made. First, in this form the differential inclusion scheme is 
merely a first order discretization of the system. Nevertheless, the elimination of the 
control variables is expected to be computationally beneficial, especially in optimization 
problems that include singular controls. Second, the system equations must be invertible 
with respect to the control variables. 

4 NUMERICAL EXAMPLES 

In the first numerical example the task is to find a minimum time trajectory from the 
initial conditions 

x(O) = 0 m, yeO) = 0 m, h(O) = 2,000 m, 
v(O) = 200 mis, {'(D) = 0 rad, x(O) = 0 rad 

to the point (x(T) = 10,000 m, yeT) = 15,000 m, h(T) = 7,000 m), final heading X(T) = 
0.35 rad and to level flight, {'(T) = 0 rad. The mass of the aircraft was set to 10,000 kg. 
The problem was solved using Sequential Quadratic Programming and 5, 10, 15 and 20 
equidistant discretization points. A representative solution of both methods, together with 
a reference solution obtained by multiple shooting, is presented in fig. 1. The iteration 
results are summarized in table l. 

With differential inclusion the errors decrease rapidly when the amount of discretization 
points is increased. In collocation, the situation is opposite: in our case five nodes provided 
the best result. The reason is probably that with short discretization intervals the best 
approximation approaches a line segment, which turns the collocation constraints more 
linearly dependent. 

The dynamic pressure constraint q(h, v) - qmax S 0 in minimum time problems is 
known to lead to first order singularity on the controls (see, e.g. , Seywald et al. (1994)). 
To compare the convergence properties of the methods when singular controls arise, a 
minimum time descent was computed from the initial conditions 

x(O) = 0 m, yeO) = 0 m, h(O) = 5,000 m, 
v(O) = 300 mis, {'(D) = 0 rad, x(O) = 0 rad 

to the point xeT) = 20,000 m, yeT) = 10,000 m and h(T) = 1,000 m, with free final 
flight path angle and heading with the condition 

q(h, v) S 80,000N/m2. 



Aircraft trajectory optimization using nonlinear programming 439 

Direct collocation Differential inclusion 
No. of nodes 5 10 15 20 5 10 15 20 

Final time 59.6 61.6 60.3 61.2 60.0 59.2 59.3 59.4 
(Tret == 60.2 s) 
Dimension 41 81 121 161 31 61 91 121 
Simple bounds 15 30 45 60 5 10 15 20 
Constraints 35 65 95 125 45 85 125 165 
Major iterations 30 19 18 21 18 31 45 55 
Minor iterations 83 74 51 60 53 158 296 1099 

Table 1 Summary of the iteration characteristics. 'Simple bounds' means the amount of 
decision variable bounds, whereas 'constraints' refers to the number of true constraints. 
'Major iterations' means the amount of QP problems solved and 'minor iterations' the 
cumulative amount of iterations needed to solve them. 
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Figure 1 The solution obtained with (a) direct collocation and 5 nodes and (b) differ­
ential inclusion and 15 nodes. The stripe describes the bank angle of the aircraft. The 
dashed projections represent the reference solution obtained with multiple shooting. 

In an unconstrained solution the maximum pressure would be over 120,000 N/m2 , which 
is untolerable for most aircraft. 

Six nodes were employed in the collocation and 15 nodes in the differential inclusion. The 
solution trajectories are presented in fig. 2. The state and control variables are presented 
in fig. 3. The pressure constraint becomes active at t ~ 27s. After that the controls 
turn singular. The constraint remains active for the rest of the trajectory. Note that the 
singularity of the controls cannot be deduced without some additional knowledge on the 
problem. 

Singular controls shrunk the convergence domain of collocation for convergence was 
obtained only after numerous attempts with different initial guesses. The differential in­
clusion scheme did not exhibit such convergence problems, as expected. 
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Figure 2 The descent trajectories obtained with ( a) collocation and 6 nodes and (b) 
differential inclusion and 15 nodes. Both methods predicted a final time of approximately 
58 s. 
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Figure 3 The state and control variable histories of the descent. '+' corresponds to 
collocation and '0' to differential inclusion. The dashed line indicates the unconstrained 
solution. The control variables corresponding to the differential inclusion solutions have 
been calculated afterwards. 

5 CONCLUSIONS 

We have described two discretization schemes for direct trajectory optimization. The 
presented numerical examples suggest that both methods are capable of approximating 
optimal trajectories. The equidistant discretization scheme used in the examples is sim­
ple to implement but by no means the most efficient one. The accuracy can be further 
improved by adaptively redistributing the discretization nodes. 

Both schemes converge robustly in the case of regular controls. Singular controls affect 
the convergence of the collocation method, but do not considerably influence the perfor­
mance of the differential inclusion scheme. This is consistent with previous results (see 
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Seywald (1994)). In addition, the differential inclusion scheme describes the system with 
smaller number of decision variables and constraints than collocation. 

It should be noted that the methods do not provide any explicit information on the 
structure of the solution. The activity of state and control constraints can be deduced from 
the solution data, but singular control intervals cannot be identified without deriving the 
necessary conditions. On the other hand, these approaches do not require the optimal 
switching structure in advance, which is the case with indirect methods. 
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