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Learning Outcomes

After this lecture and exercises you will be able to:
▶ Draw relevant block diagrams of the DC motor
▶ Derive transfer functions based on the block diagram
▶ Interpret the most essential properties of second-order systems
▶ Explain the concept of time-scale separation
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Introduction

▶ Open-loop (plant) model of the DC motor
▶ Combination of the electrical and mechanical models
▶ Plant model is the starting point in the control design

▶ Brief recap on control theory tools in the context of the DC motor
▶ Block diagram, transfer function, 2nd-order system, state-variable form
▶ Basic knowledge of these tools is needed in the field of electric drives

(and in many other fields as well)
▶ Transient response in open loop (speed and current)
▶ Time-scale separation (electrical and mechanical subsystems)

Note: Controllers will not be considered today
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Example: Connection of a DC Voltage Source to the Terminals

i LR

uUdc e=kfωM

▶ Assume that a DC voltage source is connected to the motor terminals
▶ How will the speed ωM and the current i behave?
▶ How to model and analyse transient response in more general cases?
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Outline

Dynamic Model of the DC Motor
Model Equations
Block Diagrams
Transfer Functions and Their Properties
Nice-to-Know: State-Variable Form

Simulation Examples

Time-Scale Separation
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DC Motor Model

▶ Voltage equation

L
di

dt
= u−Ri− e

where e = kfωM is the back emf
▶ Motion equation

J
dωM

dt
= τM − τL

where τM = kfi is the electromagnetic torque
▶ For simplicity, the flux factor kf is assumed to be

constant in the following

i

e

LR

u
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Electrical and Mechanical Dynamics Are Coupled

i LR

u

ωM

τL

τM = kf i

e=kfωM
DC motor

Physical model

u

τL

i

ωM

Block diagram

⇒
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Electrical Dynamics in the Time Domain

▶ Differential equation

L
di

dt
= u− e−Ri

▶ u and e are the inputs
▶ i is the output
▶ Integration of both sides gives

i =

∫
1

L
(u− e−Ri) dt

u 1

L

R

e

i1

s

di

dt
Integrator

▶ In the time domain, s = d/dt refers to
the differential operator

In some textbooks, the symbol p = d/dt is used for the differential operator in the time domain.
8 / 26



Electrical Dynamics in the Laplace Domain

▶ Laplace transform: d/dt→ s

▶ Current can be solved

i(s) =
1

sL+R
[u(s)− e(s)]

▶ Transfer function (admittance)

Y (s) =
1

sL+R
=

1/R

1 + Ts

where T = L/R e

u 1

L

R

e

i1

s

u i1

sL+R

In the Laplace domain, s = σ + jω is a complex variable. However, the differential operator and the Laplace variable can be used
interchangeably in many cases.
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Useful Block Diagram Algebra

y(s)

r(s)
=

G1(s)G2(s)

1 +G1(s)G2(s)H(s)

y(s)

d(s)
=

G2(s)

1 +G1(s)G2(s)H(s)

r
G1(s)

H(s)

G2(s)

d

y
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Block Diagram of the DC Motor

L
di

dt
= −Ri− kfωM + u

J
dωM

dt
= kf i− τL

u 1

L

R

e

i1

s
kf

1

J

1

s

τL

τM ωM

kf

▶ Flux factor kf couples the electrical and mechanical dynamics
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Block Diagram of the DC Motor

u

e

i
kf

1

sJ

τL

τM ωM

kf

1

sL+R

▶ Armature current depends on the armature voltage and the load torque

i(s) = Giu(s)u(s) +Giτ (s)τL(s)

▶ Speed depends on the armature voltage and the load torque

ωM(s) = Gωu(s)u(s) +Gωτ (s)τL(s)

▶ Could you derive the transfer functions based on the block diagram?
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Transfer Function From u(s) to ωM(s)

▶ Transfer function from the voltage u(s) to the speed ωM(s)

Gωu(s) =

kf
JL

s2 +
R

L
s+

k2f
JL

=
Kω2

0

s2 + 2ζω0s+ ω2
0

▶ Last form is a typical generic form of 2nd-order systems
▶ Undamped angular frequency, damping ratio, and DC gain

ω0 =
kf√
JL

ζ =
R

2kf

√
J

L
K =

1

kf

You don’t need to remember these more complex transfer functions, but practise deriving them based on the block diagram instead. However, you
should remember the generic form used above.

13 / 26



2nd-Order System in the Time Domain: Step Response

▶ 2nd-order system

G(s) =
y(s)

u(s)

=
Kω2

0

s2 + 2ζω0s+ ω2
0

▶ Response y(t) to the
step input u(t) is shown

▶ No overshoot if ζ ≥ 1

y/K
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0
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Step responses can be easily plotted using numerical simulation tools. If needed, an analytical solution could be obtained using the inverse
Laplace transformation.
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2nd-Order System in the Frequency Domain
▶ 2nd-order system

G(s) =
Kω2

0

s2 + 2ζω0s+ ω2
0

▶ Consider a sinusoidal input

u(t) = U sin(ωt)

▶ For ζ > 0, the output in
steady state is

y(t) = AU sin(ωt+ ϕ)

where

A = |G(jω)| ϕ = G(jω)

|G(jω)|
K

0
ω/ω0
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2
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Transfer Function From u(s) to i(s)

▶ Transfer function from the voltage u(s) to the current i(s)

Giu(s) =
s/L

s2 +
R

L
s+

k2f
JL

▶ Characteristic polynomial remains the same
(holds also for other transfer functions of the system)

▶ Zero at s = 0 in this transfer function
▶ If J → ∞ (i.e. ωM is constant)

Giu(s) =
1

sL+R
= Y (s)
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State-Variable Form

▶ State-variable model consists of coupled 1st-order differential equations
▶ Derivatives dx/dt depend on the states x and the system input u

dx

dt
= Ax+Bu

y = Cx

▶ States x depend on the history, but not on the present values of the inputs
▶ Output y depends only on the states (in physical systems)
▶ State variables are typically associated with the energy storage

▶ Current i of an inductor (or its flux linkage ψ = Li)
▶ Voltage u of a capacitor (or its charge q = Cu)
▶ Speed v of a mass (or its momentum p = mv)

▶ Choice of state variables is not unique (as shown in the parenthesis above)
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State-Variable Form of the DC Motor

d

dt

[
i
ωM

]
︸ ︷︷ ︸

x

=

[
−R

L −kf
L

kf
J 0

]
︸ ︷︷ ︸

A

[
i
ωM

]
+

[
1
L
0

]
︸︷︷︸
Bu

u+

[
0
− 1

J

]
︸ ︷︷ ︸
Bτ

τL

i =
[
1 0

]︸ ︷︷ ︸
Ci

x ωM =
[
0 1

]︸ ︷︷ ︸
Cω

x

▶ Transfer function from u(s) to ωM(s) as an example

Gωu(s) = Cω(sI −A)−1Bu

▶ Transfer functions of the system are unique, i.e. the state-variable form leads
to the previous transfer functions

▶ Poles of the transfer function are eigenvalues of the system matrix A
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Outline

Dynamic Model of the DC Motor

Simulation Examples

Time-Scale Separation
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Time-Domain Simulation Examples

Rated values of a small PM DC motor
▶ Voltage uN = 110 V
▶ Current iN = 10 A
▶ Rotation speed nN = 1200 r/min

▶ Angular speed

ωN = 2πnN

= 2π · 1200 r/min
60 s/min

= 125.7 rad/s

Electrical parameters
▶ R = 0.5 Ω

▶ L = 1 mH
▶ kf = 0.836 Vs

Two inertia values
▶ Case 1: J = 0.05 kgm2

(ζ = 2.11, ω0 = 118 rad/s)
▶ Case 2: J = 0.005 kgm2

(ζ = 0.67, ω0 = 374 rad/s)
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Voltage-Step Response

▶ Terminals are connected to the
rated voltage

▶ Load torque is zero
▶ Current rises quickly and then

decreases as the back-emf
e = kfωM increases

▶ Very large current peak is
undesirable
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Load-Torque-Step Response

▶ Armature voltage is constant
(rated)

▶ Initially no-load condition
▶ Rated load torque is applied at
t = 0.01 s

t (s)
0

i (A)
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Time-Scale Separation

▶ When considering the slow mechanical dynamics, the quickly converging
electrical dynamics may be approximated with the DC gain

u

e

i
kf

1

sJ

τL

τM ωM

kf

1

R

▶ When considering the fast electrical dynamics, the slowly varying rotor speed
may be assumed to be constant

e = constant

u i1

sL+R
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Reduced-Order Model for Slow Mechanical Dynamics

▶ Response to the rated
voltage step

▶ Electrical dynamics are
approximated with the
steady-state gain

▶ Response of the
reduced-order model is
close to the full-order model
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Reduced-Order Model for Fast Electrical Dynamics

▶ Response to the rated
voltage step

▶ Speed is assumed to be
constant

▶ Fast electrical transient is
well modelled using the
first-order model Y (s)

▶ Notice a different scale of
the time axes compared to
the previous case
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