

Lecture 5: Open-Loop Dynamics of a DC Motor ELEC-E8405 Electric Drives

Marko Hinkkanen Autumn 2022

Learning Outcomes

After this lecture and exercises you will be able to:

- Draw relevant block diagrams of the DC motor
- Derive transfer functions based on the block diagram
- Interpret the most essential properties of second-order systems
- ► Explain the concept of time-scale separation

Introduction

- Open-loop (plant) model of the DC motor
 - Combination of the electrical and mechanical models
 - ► Plant model is the starting point in the control design
- Brief recap on control theory tools in the context of the DC motor
 - ▶ Block diagram, transfer function, 2nd-order system, state-variable form
 - Basic knowledge of these tools is needed in the field of electric drives (and in many other fields as well)
- Transient response in open loop (speed and current)
- ► Time-scale separation (electrical and mechanical subsystems)

Note: Controllers will not be considered today

Example: Connection of a DC Voltage Source to the Terminals

- Assume that a DC voltage source is connected to the motor terminals
- ▶ How will the speed $\omega_{\rm M}$ and the current i behave?
- ► How to model and analyse transient response in more general cases?

Outline

Dynamic Model of the DC Motor

Model Equations
Block Diagrams
Transfer Functions and Their Properties
Nice-to-Know: State-Variable Form

Simulation Examples

Time-Scale Separation

DC Motor Model

Voltage equation

$$L\frac{\mathrm{d}i}{\mathrm{d}t} = u - Ri - e$$

where $e=k_{\mathrm{f}}\omega_{\mathrm{M}}$ is the back emf

Motion equation

$$J\frac{\mathrm{d}\omega_{\mathrm{M}}}{\mathrm{d}t} = \tau_{\mathrm{M}} - \tau_{\mathrm{L}}$$

where $au_{
m M}=k_{
m f}i$ is the electromagnetic torque

For simplicity, the flux factor $k_{\rm f}$ is assumed to be constant in the following

Electrical and Mechanical Dynamics Are Coupled

Electrical Dynamics in the Time Domain

Differential equation

$$L\frac{\mathrm{d}i}{\mathrm{d}t} = u - e - Ri$$

- ightharpoonup u and e are the inputs
- ► *i* is the output
- ► Integration of both sides gives

$$i = \int \frac{1}{L} (u - e - Ri) \, \mathrm{d}t$$

 \blacktriangleright In the time domain, $s=\mathrm{d}/\mathrm{d}t$ refers to the differential operator

Electrical Dynamics in the Laplace Domain

- ► Laplace transform: $d/dt \rightarrow s$
- ► Current can be solved

$$i(s) = \frac{1}{sL + R}[u(s) - e(s)]$$

► Transfer function (admittance)

$$Y(s) = \frac{1}{sL + R} = \frac{1/R}{1 + Ts}$$

where T = L/R

In the Laplace domain, $s=\sigma+\mathrm{j}\omega$ is a complex variable. However, the differential operator and the Laplace variable can be used interchangeably in many cases.

Useful Block Diagram Algebra

$$\frac{y(s)}{r(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$
$$\frac{y(s)}{d(s)} = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

Block Diagram of the DC Motor

ightharpoonup Flux factor $k_{
m f}$ couples the electrical and mechanical dynamics

Block Diagram of the DC Motor

Armature current depends on the armature voltage and the load torque

$$i(s) = G_{iu}(s)u(s) + G_{i\tau}(s)\tau_{L}(s)$$

Speed depends on the armature voltage and the load torque

$$\omega_{\rm M}(s) = G_{\omega u}(s)u(s) + G_{\omega \tau}(s)\tau_{\rm L}(s)$$

Could you derive the transfer functions based on the block diagram?

Transfer Function From u(s) to $\omega_{\rm M}(s)$

▶ Transfer function from the voltage u(s) to the speed $\omega_{\rm M}(s)$

$$G_{\omega u}(s) = \frac{\frac{k_{\rm f}}{JL}}{s^2 + \frac{R}{L}s + \frac{k_{\rm f}^2}{JL}} = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

- ▶ Last form is a typical generic form of 2nd-order systems
- Undamped angular frequency, damping ratio, and DC gain

$$\omega_0 = \frac{k_{\mathrm{f}}}{\sqrt{JL}}$$
 $\zeta = \frac{R}{2k_{\mathrm{f}}}\sqrt{\frac{J}{L}}$ $K = \frac{1}{k_{\mathrm{f}}}$

You don't need to remember these more complex transfer functions, but practise deriving them based on the block diagram instead. However, you should remember the generic form used above.

2nd-Order System in the Time Domain: Step Response

▶ 2nd-order system

$$G(s) = \frac{y(s)}{u(s)}$$
$$= \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

- ► Response y(t) to the step input u(t) is shown
- ▶ No overshoot if $\zeta \ge 1$

Step responses can be easily plotted using numerical simulation tools. If needed, an analytical solution could be obtained using the inverse Laplace transformation.

2nd-Order System in the Frequency Domain

► 2nd-order system

$$G(s) = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

► Consider a sinusoidal input

$$u(t) = U\sin(\omega t)$$

For $\zeta > 0$, the output in steady state is

$$y(t) = AU\sin(\omega t + \phi)$$

where

$$A = |G(j\omega)|$$
 $\phi = \underline{/G(j\omega)}$

Transfer Function From u(s) to i(s)

lacktriangle Transfer function from the voltage u(s) to the current i(s)

$$G_{iu}(s) = \frac{s/L}{s^2 + \frac{R}{L}s + \frac{k_{\rm f}^2}{JL}}$$

- Characteristic polynomial remains the same (holds also for other transfer functions of the system)
- ightharpoonup Zero at s=0 in this transfer function
- ▶ If $J \to \infty$ (i.e. $\omega_{\rm M}$ is constant)

$$G_{iu}(s) = \frac{1}{sL + R} = Y(s)$$

State-Variable Form

- State-variable model consists of coupled 1st-order differential equations
- lacktriangle Derivatives $\mathrm{d} oldsymbol{x}/\mathrm{d} t$ depend on the states $oldsymbol{x}$ and the system input u

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}$$
$$\boldsymbol{y} = \boldsymbol{C}\boldsymbol{x}$$

- ightharpoonup States x depend on the history, but not on the present values of the inputs
- Output y depends only on the states (in physical systems)
- ► State variables are typically associated with the energy storage
 - Current *i* of an inductor (or its flux linkage $\psi = Li$)
 - ▶ Voltage u of a capacitor (or its charge q = Cu)
 - ▶ Speed v of a mass (or its momentum p = mv)
- ► Choice of state variables is not unique (as shown in the parenthesis above)

State-Variable Form of the DC Motor

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\begin{bmatrix} i \\ \omega_{\mathrm{M}} \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} -\frac{R}{L} & -\frac{k_{\mathrm{f}}}{L} \\ \frac{k_{\mathrm{f}}}{J} & 0 \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} i \\ \omega_{\mathrm{M}} \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{1}{L}}{0} \end{bmatrix}}_{\mathbf{B}_{u}} u + \underbrace{\begin{bmatrix} 0 \\ -\frac{1}{J} \end{bmatrix}}_{\mathbf{B}_{\tau}} \tau_{\mathrm{L}}$$

$$i = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\mathbf{C}_{i}} \mathbf{x} \qquad \omega_{\mathrm{M}} = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{\mathbf{C}_{\omega}} \mathbf{x}$$

▶ Transfer function from u(s) to $\omega_{M}(s)$ as an example

$$G_{\omega u}(s) = \boldsymbol{C}_{\omega}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B}_{u}$$

- ► Transfer functions of the system are unique, i.e. the state-variable form leads to the previous transfer functions
- lacktriangle Poles of the transfer function are eigenvalues of the system matrix A

Outline

Dynamic Model of the DC Motor

Simulation Examples

Time-Scale Separation

Time-Domain Simulation Examples

Rated values of a small PM DC motor

- ► Voltage $u_{\rm N} =$ 110 V
- ightharpoonup Current $i_{
 m N}=$ 10 A
- lacktriangle Rotation speed $n_{
 m N}=$ 1200 r/min
- Angular speed

$$\begin{split} \omega_{\mathrm{N}} &= 2\pi n_{\mathrm{N}} \\ &= 2\pi \cdot \frac{1200 \text{ r/min}}{60 \text{ s/min}} \\ &= 125.7 \text{ rad/s} \end{split}$$

Electrical parameters

- $ightharpoonup R = 0.5 \Omega$
- ightharpoonup L = 1 mH
- ► $k_{\rm f} = 0.836 \ {
 m Vs}$

Two inertia values

- Case 1: $J = 0.05 \text{ kgm}^2$ ($\zeta = 2.11, \omega_0 = 118 \text{ rad/s}$)
- ► Case 2: $J = 0.005 \text{ kgm}^2$ ($\zeta = 0.67$, $\omega_0 = 374 \text{ rad/s}$)

Voltage-Step Response

- ► Terminals are connected to the rated voltage
- ► Load torque is zero
- ► Current rises quickly and then decreases as the back-emf $e = k_{\rm f} \omega_{\rm M}$ increases
- Very large current peak is undesirable

Load-Torque-Step Response

- Armature voltage is constant (rated)
- ► Initially no-load condition
- ► Rated load torque is applied at t = 0.01 s

Outline

Dynamic Model of the DC Motor

Simulation Examples

Time-Scale Separation

Time-Scale Separation

► When considering the slow mechanical dynamics, the quickly converging electrical dynamics may be approximated with the DC gain

► When considering the fast electrical dynamics, the slowly varying rotor speed may be assumed to be constant

Reduced-Order Model for Slow Mechanical Dynamics

- Response to the rated voltage step
- Electrical dynamics are approximated with the steady-state gain
- Response of the reduced-order model is close to the full-order model

Reduced-Order Model for Fast Electrical Dynamics

- Response to the rated voltage step
- Speed is assumed to be constant
- ► Fast electrical transient is well modelled using the first-order model Y(s)
- Notice a different scale of the time axes compared to the previous case

