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Learning Outcomes

After this lecture and exercises you will be able to:
» Draw relevant block diagrams of the DC motor
» Derive transfer functions based on the block diagram
» Interpret the most essential properties of second-order systems
» Explain the concept of time-scale separation
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Introduction

» Open-loop (plant) model of the DC motor

» Combination of the electrical and mechanical models
» Plant model is the starting point in the control design

» Brief recap on control theory tools in the context of the DC motor

» Block diagram, transfer function, 2nd-order system, state-variable form
» Basic knowledge of these tools is needed in the field of electric drives
(and in many other fields as well)

» Transient response in open loop (speed and current)
» Time-scale separation (electrical and mechanical subsystems)

Note: Controllers will not be considered today

3/26



Example: Connection of a DC Voltage Source to the Terminals

Ujge U e=kewn

» Assume that a DC voltage source is connected to the motor terminals
» How will the speed wy; and the current ¢ behave?
» How to model and analyse transient response in more general cases?
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Outline

Dynamic Model of the DC Motor
Model Equations
Block Diagrams
Transfer Functions and Their Properties
Nice-to-Know: State-Variable Form
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DC Motor Model

» Voltage equation

L%:ufRife

where e = kwy is the back emf
» Motion equation

d
J% =TM — 7L
where Ty = k¢i is the electromagnetic torque

» For simplicity, the flux factor &; is assumed to be
constant in the following

(o]
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Electrical and Mechanical Dynamics Are Coupled

Physical model
Block diagram

TM = /CfZ
7

u
TL — >

e = kwn E) g@ = o DC motor ot
E— >

UJM
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Electrical Dynamics in the Time Domain

» Differential equation di Integrator
dt /
di .
L—=u—e—Ri U o4+ 1 \ 1 i
dt e >
L ]

» w« and e are the inputs

» i is the output R
» Integration of both sides gives
) 1 ) » In the time domain, s = d/dt refers to
‘= / 7 (w—e— Rt the differential operator

In some textbooks, the symbol p = d/dt is used for the differential operator in the time domain.
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Electrical Dynamics in the Laplace Domain

» Laplace transform: d/dt — s 1 i
» Current can be solved s -
. 1
i(s) = ———[u(s) ~ e(s)]

» Transfer function (admittance)

1 1/R

Y(s) = = u 4 1
sL+R 1+Ts 4'_?_'5L+R_’
where T = L/R e

In the Laplace domain, s = o + jw is a complex variable. However, the differential operator and the Laplace variable can be used
interchangeably in many cases.
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Useful Block Diagram Algebra

d
B G1(s)Ga(s) T4 +%" Yy
—1 + G1(s)Ga(s)H(s) G1(s) Ga(s)
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Block Diagram of the DC Motor

de

L— =—Ri—kiwy +u
dt fWM
dwnm
JEM _ i —
dt f L
TL
U 4~ + 1 1 ? ™ X 1 1 WM
— - = ke — ] - >
_ _ L S + J s

ke

» Flux factor k¢ couples the electrical and mechanical dynamics
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Block Diagram of the DC Motor

sL+ R

ke

-

ke

™

L

» Armature current depends on the armature voltage and the load torque

i(s) = Giu(s)u(s) + Gir(s)11(s)

» Speed depends on the armature voltage and the load torque

wM(8) = Guu(s)u(s) + Gur(s)mL(s)

» Could you derive the transfer functions based on the block diagram?
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Transfer Function From u(s) to wy(s)

» Transfer function from the voltage u(s) to the speed wy(s)

e )
G (8): JL —_ KwO
e 2 R N k2 82+ 2(wos 4w
TTILT UL

» Last form is a typical generic form of 2nd-order systems
» Undamped angular frequency, damping ratio, and DC gain

ke ¢ R /J % 1
wn = = — —_ = —
T VIL 2ke V L k¢

You don'’t need to remember these more complex transfer functions, but practise deriving them based on the block diagram instead. However, you

should remember the generic form used above.
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2nd-Order System in the Time Domain: Step Response

» 2nd-order system

2
Kuwj

T 82 + 2Cwos + wi

» Response y(t) to the
step input u(t) is shown

» No overshootif { > 1

y/K

2 4

1.5+

0.5 4

¢=0
=0
=07
‘=1
L (=2
0 pa o 37 4

wot (rad)

Step responses can be easily plotted using numerical simulation tools. If needed, an analytical solution could be obtained using the inverse

Laplace transformation.
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2nd-Order System in the Frequency Domain

» 2nd-order system

K
82+ 2Cwos + Wi

G(s)
» Consider a sinusoidal input
u(t) = U sin(wt)

» For ¢ > 0, the output in
steady state is

y(t) = AU sin(wt + ¢)

where w/wo

A=G(w)  ¢=/G(jw)
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Transfer Function From «(s) to i(s)

» Transfer function from the voltage u(s) to the current i(s)

s/L
Giu(s) = /—2
s? + Es + L
L JL
» Characteristic polynomial remains the same

(holds also for other transfer functions of the system)
» Zero at s = 0 in this transfer function
» If J — oo (i.e. wy is constant)
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State-Variable Form

» State-variable model consists of coupled 1st-order differential equations

» Derivatives da/dt depend on the states « and the system input «
d
d—:: = Ax + Bu
y=Czx

» States x depend on the history, but not on the present values of the inputs

Output y depends only on the states (in physical systems)
» State variables are typically associated with the energy storage

» Current ¢ of an inductor (or its flux linkage v = Li)
» \oltage u of a capacitor (or its charge ¢ = Cu)
» Speed v of a mass (or its momentum p = mv)

» Choice of state variables is not unique (as shown in the parenthesis above)

v
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State-Variable Form of the DC Motor

d | s Rk i 1 0

_ — L L L

dt LM] { B } [wM} N {0] “r {—}] m
~—— ~— ~—

N—_————
r A By B,
i=[1 0z wu=[0 1]z
—— S~——
C; (o

» Transfer function from u(s) to wn(s) as an example
Guu(s) = Cu(sI — A)"'B,

» Transfer functions of the system are unique, i.e. the state-variable form leads
to the previous transfer functions

» Poles of the transfer function are eigenvalues of the system matrix A
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Outline

Simulation Examples
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Time-Domain Simulation Examples

Rated values of a small PM DC motor

> Voltage uy = 110 V Electrical parameters

» Current iy =10 A > =050
» Rotation speed ny = 1200 r/min > L=1mH
» k= 0.836 Vs
» Angular speed Two inertia values
» Case 1:J = 0.05 kgm?
W = 27N _ (¢ = 2.1, w = 118 rad/s)
_ 9. 1200 7/min > Case 2: J = 0.005 kgm?
60 s/min (¢ = 0.67, wo — 374 rad/s)

= 125.7 rad/s
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Voltage-Step Response

» Terminals are connected to the
rated voltage

» Load torque is zero

» Current rises quickly and then
decreases as the back-emf
e = krwyp increases

» Very large current peak is
undesirable
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Load-Torque-Step Response

» Armature voltage is constant
(rated)

» Initially no-load condition

» Rated load torque is applied at
t=0.01ls

wwm (rad/s)

135 1
130 1
125 ¢

/f ————————————————————
/
/
/
L~ t t t t
0 002 004 006 008 01 t(s)
— J = 0.05 kgm?
M
L \ ______________________
J = 0.005 kgm?
0 002 004 006 008 0.1 ¢(s)
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Outline

Time-Scale Separation
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Time-Scale Separation

» When considering the slow mechanical dynamics, the quickly converging
electrical dynamics may be approximated with the DC gain
TL

U + 1 7 I ™ X 1 Wl\/{
? R S sJ
e ke

» When considering the fast electrical dynamics, the slowly varying rotor speed
may be assumed to be constant

1 1

U+
—>
_% sL+ R
e = constant
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Reduced-Order Model for Slow Mechanical Dynamics

- First-order approximate model

200 N\c.
150 1/ N Full-order model
» Response to the rated ol
voltage step f
50

» Electrical dynamics are

approximated with the 0 002 004 006 008 0.1 ¢#(s)
steady-state gain

ww (rad/s)
» Response of the 150 -
reduced-order model is 100
close to the full-order model 0
0

0 0.02 0.04 0.06 008 0.1 ¢(s)
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Reduced-Order Model for Fast Electrical Dynamics

i (A)} First-order approximate model

» Response to the rated 200 1 e
voltage step 150 L = Full-order model

» Speed is assumed to be 100 1
constant 50 1

» Fast electrical transient is 0 ; : ; : ;
well modelled using the 0 0.002 0.004 0.006 0.008 0.01 t(s)
first-order model Y (s) ww (rad/s)

150 1

» Notice a different scale of 100 1
the time axes compared to 50 +
the previous case 0 oo

0 0.002 0.004 0.006 0.008 0.01 ¢(s)
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