Problem 1: Space-vector components from line-to-line voltages

Line-to-line voltages u_{ab} and u_{bc} are known. Calculate u_{α} and u_{β} .

Problem 2: Inverse transformation

The inverse space-vector transformations are

$$u_{\rm a} = {\rm Re} \{ \boldsymbol{u}_{\rm s}^{\rm s} \}$$
 $u_{\rm b} = {\rm Re} \{ \boldsymbol{u}_{\rm s}^{\rm s} {\rm e}^{-{\rm j}2\pi/3} \}$ $u_{\rm c} = {\rm Re} \{ \boldsymbol{u}_{\rm s}^{\rm s} {\rm e}^{-{\rm j}4\pi/3} \}$

Let us consider the phase b as an example here. Show that the above expression for the phase voltage $u_{\rm b}$ holds.

Problem 3: Field weakening

Consider a three-phase four-pole permanent-magnet synchronous motor. The stator inductance is $L_{\rm s} = 0.035$ H and the stator resistance can be assumed to be zero. The permanent magnets induce the rated voltage of 400 V at the rotational speed of 1500 r/min. The rated current is 7.3 A.

- (a) The control principle $i_d = 0$ is used. The motor is operated at the rated voltage and current. Calculate the rotational speed, torque, and mechanical power.
- (b) The motor is driven in the field-weakening region at the rated voltage and current. The speed is increased until the absolute values of $i_{\rm d}$ and $i_{\rm q}$ are equal. Calculate the rotational speed, torque, and mechanical power.

Draw also the vector diagrams.