EPSY Energy Self-sufficient Sailing Yacht Ekin Ege Altintas, Timon Behrendt, Topi Hartikka & Knuutti Karsikas

Team Members

<u>Knuutti Karsikas</u> Sailing Yachts and Industrial design Team Leader

<u>Ekin Altintas</u> Maritime Engineering

<u>Timon Behrendt</u> Mechanical Engineering Product development

<u>Topi Hartikka</u> Mechanical Engineering

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. Power and Machinery
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

Mission and Objectives

- 45 meters Luxury Sailing Yacht
- Relaxed Sailing Experience, minimized heel angle
- Minimum one week of Energy Self– Sufficiency
- Zero-Emission and Energy Production
- I2 Guest and 7 crew
- Sailing Speed: 6–12+ knots

Operational Area

- Mediterranean Sea
- Main route: Athens Thessaloniki
- Operational time: April-September

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. Power and Machinery
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

General Characteristics and Hull Lines

EPSY Characteristics			
2			

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. Power and Machinery
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

General Arrangement and Compartments

- Lounge areas, saloon and the pool on the upper deck
- Tender garage, crew compartment, machinery compartment, guest compartment and forepeak on the lower deck

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. Power and Machinery
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

Material Selection and Structural Design

- Selected Material: Aluminum NV 5083
 O Temper
 - Good strength to weight ratio
 - 5000 series -> Marine grade
- Mixed Framing System:
 - Distance between Frames= 0.5 m
 Distance between Web Frames: 2.5 m
- Minimum plate thickness:
 8.5 mm in keel plating
 - -6.5 mm in shell plating

Rig and Wave Bending Moments

- Highest global loads from combined wave and rig sagging
- Calculated maximum bending moment 31 MNm
- Important for both structural integrity and sailing performance

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. **Power and Machinery**
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

Total Resistance in Upright and No Leeway Angle Condition

Vessel and Propeller Efficiency

Propeller Characteristics				
Propeller Model	Wageningen B Series			
BAR Area	0.7	-		
Diameter	1.15	m		
Number of Blades	3	-		
Open Water Efficiency	0.50	-		
Total Efficiency	0.49	-		

Rig and Sails

- For upwind conditions:
 - Sail area main + jib 680 m²
- For downwind conditions
 - Code-0 and gennakers

Baltic yachts

Keel, rudder and DSS-foil

Upwind Sailing Scenario

- AWA	27°
 Windspeed 	5 m/s
 Leeway angle 	4°
 Rudder angle 	5°
 Heel 	10°

Resulting velocity 8 knots

Energy Production

- Solar Panels
 - Roof
 - Sails
 - Total of around 800kWh a day
- Hydrogeneration
 - Total 120 kwh per day with 8 hours sailing
- Average sailing day at sea
 - More energy production than consumption

Batteries

Depending on the Worst Case

Road: Round trip from Athens to Thessaloniki in 14 days, 8 hours motoring with 6 knot per day.
 1 night staying in a port in Thessaloniki.

- Limited sun light based on meteorological data
- No wind
- Athens -> 7 days, 6knots for 8 hours per day -> 1 night Thessaloniki -> back to Athens
- With safety factor 1.5, up to 470 batteries, 3384kwh, 25t

Machinery

- 400 kW Electric Drive Pod
- Retractable Bow Thruster
- 2 x 100 kw Emergency Diesel Generator with 2 x 1000 liters Biodiesel tank.
- 33 hours of Emergency energy production

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. Power and Machinery
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

Weight Estimation

- Lightweight 171 tons
 - Hull Weight 54 tons
 - Keel 55 tons
 - Battery 25 tons
- Sailing condition displacement 179 tons
 - Deadweight 8 tons

GZ Curve and Stability Assessment

- KG = 0.34
- GZ_{MAX} = 2.8 meters
- GM= 7.0 meters
- Positive stability 123°

- 1. Mission and Objectives
- 2. Hull Lines and General Characteristics
- 3. General Arrangement
- 4. Structural Design
- 5. Power and Machinery
- 6. Weight Calculations and Stability Assessment
- 7. Economic Assessment
- 8. Summary of the Concept Design

Economic Assessment

- 40 Million € Initial Investment
- 270 000 € Operational Costs Per Year
- 5.4 Million € Revenue per Year
- 5.1 Million € Profit per Year

Economical Assessment

Initial Investment	40,000,000.00 €
6 Months Battery Charging Costs	9,240.00 €
Annual Maintenance Cost	100,000.00 €
6 Months Crew Salary	126,000.00€
Mooring Fees	31,590.00 €
Total Cost Annually	266,830.00 €
Charter Price / Week	225,000.00 €
Operating Time	24 Weeks / Year
Revenue / year	5,400,000.00€
Profit / year	5,133,170.00 €

EPSY

Energy self-sufficient
zero emission luxury sailing
experience for
12 guests in the Mediterranean Sea

Thank you!

Contact Info: Knuutti Karsikas knuutti.karsikas@aalto.fi

https://www.osterlund.co.uk/wp-content/uploads/2020/03/016-200215-Canova-121-JE.jpg