Global Flexible Hull Girder Loads on Intact and Damaged Ships

by

Ahmed Yosri Hassan Design Engineer at 🔶

Supervisor: Prof. (Assoc.) Spyros Hirdaris Advisor: Dr. Sasan Tavakoli

Outline

- Marine accidents the role of hydroelasticity
- Literature review and thesis objectives
- Methodology
- Four study cases
- Conclusions

Marine accidents – the role of hydroelasticity

Marine accidents:

- MOL COMFORT 2013 (Whipping)
- MSC Napoli 2007 (Whipping)
- Elastic body response: **Springing** and whipping (60% of fatigue damage).

Literature review

- Elastic responses (springing and whipping) of practical importance for long slender ships and multi-hulls.
- **3D hydroelasticity** using **BEM** is usually employed.
- Flexible responses of damaged and grounded ships are not studied.
- The use of **acoustic** element methods is **rarely** considered.

Thesis objectives

- Critical **review** (identify literature gaps)
- Study of the **sensitivity** of elastic responses to **loading conditions**
- Gain overview of the impact of damages and grounding on global responses using commercial codes.
- Evaluate the effects of resonances on intact and damaged ships using BEM and the Acoustic Element Method (AEM).

Methodology (I)

3D Hydroelasticity theory

- Dry analysis (Block Lanczos):
 - Dry eigenmodes: FEM
 - $\circ \quad [\widehat{\boldsymbol{M}}][\widehat{\boldsymbol{\xi}}] + [\widehat{\boldsymbol{K}}][\widehat{\boldsymbol{\xi}}] = 0 \quad , [\ddot{\boldsymbol{\xi}}] = \omega_i^2 [\widehat{\boldsymbol{\xi}}_i]$

- Wet analysis (BEM):
 - linear potential flow theory in frequency domain

 \widehat{M} mass matrix, \widehat{K} stiffness matrix, $\widehat{\xi}$ eigenvector or mode shape, i natural mode number, ω_i eigen angular frequency

 $\hat{\boldsymbol{\xi}}$ motion vector, φ total potential, φ_I Incident potential, φ_D diffraction potential, φ_{Rj} radiation potential, \boldsymbol{m} modal structural mass, \boldsymbol{A} hydrodynamic added mass, \boldsymbol{B} hydrodynamic damping, \boldsymbol{b} structural damping, \boldsymbol{k} structural stiffness, C hydrostatic restoring.

Methodology (II)

Acoustic Element Method (AEM)

- Simpler and faster than BEM
- Acoustic modal analysis solver in ANSYS

Aalto-yliopisto Insinööritieteiden korkeakoulu

Fully coupled FFSI

Dynamic equation of motion (structure model) $[M_S]\{\ddot{u}_e\} + [C_S]\{\dot{u}_e\} + [K_S]\{u_e\} - [R]\{p_e\} = \{f_S\}$

Wave equation (Fluid domain) $[M_F]\{\dot{p}_e\} + [C_F]\{\dot{p}_e\} + [K_F]\{p_e\} + \bar{\rho}_0[R]^T\{\ddot{u}_{e,F}\} = \{f_F\}$ Incompressible fluid $\begin{bmatrix} [M_S] & 0\\ \bar{\rho}_0[R]^T & [M_F] \end{bmatrix} \{\{\ddot{u}_e\}\} + \begin{bmatrix} [C_S] & 0\\ 0 & [C_F] \end{bmatrix} \{\{\dot{u}_e\}\} \\ + \begin{bmatrix} [K_S] & -[R]\\ 0 & [K_F] \end{bmatrix} \{\{u_e\}\} = \{0\}$

 $[M_S]$, $[C_S]$, $[K_S]$: structure mass, damping, and stiffness matrices respectively, $\{f_S\}$: external force vector in the structure, [R]: coupled matrix represents the coupling conditions on FS interface, $[M_F]$, $[C_F]$, $[K_F]$: acoustic fluid mass, damping and stiffness matrix, $\{f_F\}$: acoustic fluid load vector, P_e nodal pressure vector, $\{u(t)\}$ nodal displacement vector

Case study I (Intact Container barge)

Finite Element Model

- Restricted service slender container barge
- FEM elements:

nsinööritieteiden korkeakoulu

- Mass points (weights)
- **Rigid body** elements.
- SHELL(181) elements.
- Contact elements.

Length overall (L_{OA})	100.2m
Breadth molded (B)	11.2m
Depth (D)	3m
Design draught (T_f)	2.2m
Containers	92 TEU

Case study I : Dry analysis

Loading conditions

- **Fully** loaded condition (**containers**)
- Fully loaded by grains •
- **Ballast** condition
- Lightship weight

VBM

Ship Length x (m)

Insinööritieteiden korkeakoulu

Case study I: wet analysis

Fully loaded condition

- First mode resonance is smaller in Fully loaded condition.
 - The most critical mode
- Ballast condition has smaller resonance of higher modes

Aalto-yliopisto Insinööritieteiden korkeakoulu

Ballast condition

Mode number	FL wet Hz	B. Wet Hz	FL wet/ B. wet
7	0.61	0.78	79%
8	1.37	1.12	123%
9	2.31	1.57	147%
10	2.70	2.34	115%
11	3.02	2.38	127%

Case study I: Modal internal loads

Fully loaded condition

- Higher elastic moment and shear force
- Smaller resonance frequencies

Aalto-yliopisto Insinööritieteiden korkeakoulu

Ballast condition

- Smaller elastic moment and shear force
- Shifted peaks towards high frequencies

Total modal internal loads at amidship

Case study I: Elastic moments and stresses

Fully loaded condition

- Rigid response:
 - Max moment amidship when
 - $L_w/L_{pp} = 1$
- Elastic response:
 - $\blacktriangleright \quad \text{Mode 7: } L_w = 3 m$
 - > Mode 8: $L_w = 0.8 m$

-109 Normal stress response/m of resonance mode 7

Case study II: grounded condition

Grounded condition:

- Plastic deformation amidship.
- Moment less than ultimate BM.

Nonlinear analysis:

- Used to obtain the UBM and Elastic limit.
- Geometrical nonlinearity
- Material nonlinearity

Case study II: Dry analysis

- Prestressed analysis displays same modal shapes of an intact ship.
 - Linear modal analysis
- Small changes in modal values.
- Boundary condition influences the dynamic response

Case study II: Wet analysis

- Wet analysis without Prestresses
- Grounding VBM RAOs are a function of grounding reactions.
- The variation of grounding reaction for small wave amplitudes is 3% of the static reaction.

korkeakoulu

Case study III (Damaged elastic analysis, BEM)

- Three damages scenarios
 - Sagging Deformation
 - Crack at side shell penetrates the side longitudinal
 - Collision
- No changes in the dry and wet eigen modes

#	Intact/Deformed	Intact/Cracked	Intact/Collided
7	100%	102%	100%
8	101%	100%	100%
9	101%	100%	100%
10	100%	100%	101%
11	102%	100%	102%

alto-yliopisto nsinööritieteiden orkeakoulu

Case study IV (Damaged elastic analysis, AEM)

- Validation against BEM.
 - Same mode shapes
 - Conservative resonance frequency of elastic mode 1

Wet Acoustic Hz	0.19	0.27	0.37	0.53
Wet BEM Hz	0.25	0.27	0.37	0.55
Ratio AEM/BEM	76%	100%	100%	96%

- Damaged AEM (Crack)
 - Same observation to BEM
 - Damage does not affect the global dry and wet eigen modes of the ship structure.

Conclusions

to-vliopisto

- Loading conditions cause high variation of dry eigenfrequencies and wet resonances.
- Fully loaded condition has the smallest resonance frequency and the highest internal modal elastic loads.
- **Grounding** boundary conditions remarkably **change** the **dynamic** response.
- Effect of **prestress** on the dry analysis seem to be **negligible** (Assuming **linear modal** analysis)
- The **AEM** gives similar results to the **BEM**.
- **BEM** and **AEM** show **no** impact of **damages** on the **global** eigen modes.

Thanks for your attention! Questions?

Yosri.hassan@aalto.fi spyros.hirdaris@aalto.fi

