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Thickness optimization of
insulating glass unit in cruise
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Motivation and objective

. Cruise ships have many features to attract passengers
. Ship architecture = windows

. Trend is to increase the immersion with the environment
. Cabins, restaurants, lounges, domes etc....
. Glass domes can have A > 2000 m? alone
. The total area of windows reaches thousands of m2

. Problem: ships have lightweight requirement
. Density of glass 2500 kg/m3 (more than concrete)
. Large portion of windows located on the upper decks
. Accumulated weight and decreased stability

. Solution:
. Area and density fixed - reduce thickness -
lightweight structure
. Objective of this presentation:
. Ship windows
. Current thickness determination
. Is there room for improvement — if so, why?
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Introduction to insulating glass units

Insulating glass unit (IGU) separate indoor and outdoor; thermal insulation due to the
cavity (Figure)
. The cavity is created by the two glass panes and the spacer
. Glasses can be monolithic glasses or laminated glasses

e —

Present study: IGU consisting of monolithic panes

Future study: IGU consisting of laminated glasses (omitted for now)

Insulating glass unit Monolithic glass Laminated glass

Laminated Glass

PVB Interlayer film
(Polyvinyle Butyral)

Tempered Glass Tempered Glass

Glass

https://W\N\N_g|astory_net/insu|ating_g|ass_types/ https://WWW.fabgIassandmirror.com/laminated



Thickness determination of the glass panes

. The Classification Societies provide easy-to-use equations

DNV, Lloyd’s Register, and Bureau Veritas - practically identical

For example, rectangular monolithic glass pane: t = 31.6s ? (Bureau

Veritas, July 2022) y

>

y

X
Yy

a

This equation is based on linear plate theory (strictly valid for w < t/2)
For IGUs, the pane exposed to the load is calculated using the equation
There is no equation for the unexposed pane. Hence, we assume t; = t,

. Is this feasible for modern cruise ships with large windows?
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s: shorter side length

B: aspect ratio factor

p: design load

S: safety factor, 4

R,,: flexural strength (160 MPa
for fully tempered glass)

Example:
» 2.5 kPa design load
* 3mx2m(axb)

0474 x4 x 2.5
t=316x%x2

160

t =10.8 mm
Max.principal stress 40 MPa




L d h - p = pressure, V = volume, N = amount of substance,
O a S a.r I n g R = ideal gas constant, T = temperature
pV = NRT
—_— >
o ; Initial i Deflecti

«  Structurally, the IGUs exhibit load sharing due nra Deflection Volume Pressure enection

. state of pane 1 change change of pane 2

to the sealed cavity ==

b1

. Analytical, numerical and experimental
studies exists of load sharing

. Implemented in building standards

Pane 1
Pane 2

. Faulty sealing - moisture - fog inside surface
- repair

. Load sharing is significant for IGUs with
compliant (large and thin) glass panes po ’

. Can be equal loading of the panes

Vo ?
. Similar deflections and stresses

. The stresses are reduced

. Maximum stress criterion = reduced
thickness
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Geometric nonlinearity

. Linear behavior

. Relationship between applied load F and measured
deflection w is linear (linear plate theory).

. . Load-deflection curve of fully tempered glass pane
. Nonlinear behavior y p g p

« At large deflections, this relationship does not hold 60 i i ' ' g
o i in r A  Experimental data
The midplane gf the plate elon_gates - in-plane forces 50l (Norville ot al., 1991) o j
*  The forces resist the deformation i Non-linear model predictions | l/ ]
«  Pronounced in thin-walled structures 40 -|_~ =~ Linear model predictions _ frnnen .
«  von Karman strains (w/t) S w0l
@)
s L |
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oax o 2\ ax dx? I
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w==—"+ = - Z—
T Gy 2( ay) 3y 0
_Lfou ov_ owow 5., tw Lateral displacement (mm)
£y = 3 dy dx  ox dy  odxay |

M. Haldimann, A. Luible and M. Overend, Structural Use
. of Glass, Zurich, Switzerland: IABSE-AIPC-IVBH, 2008
. Reduced stress - reduced thickness

9 Aalto University
School of Engineering
| |



The IGU FE Model

. Glass/spacers:
. 4-node structural SHELL181 elements
(First order shear deformation theory)
. Gas:
. 5-node hydrostatic fluid element (ideal
gas law)
. Boundary conditions:
. All8 edges UZ =0

. Central nodes UX = UY =0 (prevent
rigid body motion)

|¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢~H

A B Maximum
- deflection

' [ Maximum in-
plane translation
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The Model Validation

. Nonlinear  Finite  element results  vs. 8 S W —
experimental results by McMahon et al. (2018) v P /,
7 H e Experimental panel 7~
. Good agreement g“ ——Ansys nonlinear pane 2 /. .
. Slightly conservative b 6 1« Experimental pane 2 /, 7
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Implication of considering the effects

* Results published in Journal paper: On the thickness determination of rectangular glass panes in insulating glass

units considering the load sharing and geometrically nonlinear bending.

Case study

IGU
a = 1500 mm

Design method

Classification rules

| (linear plate theory)

Difference between

Required thickness class and most

b = 1500 mm
s=20mm
p = 2.5kPa
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Linear plate theory
and load sharing

A 4

Nonlinear plate
theory

A 4

Nonlinear plate
theory and load
sharing

Criterion (t; = tp) “favorable” design

o =40 MPa method

» t =6.30mm (2.5 kPa)
o =40 MPa

» t =4.40mm (2.5 kPa) v

49 %
A

o =40 MPa

» t =4.50mm (2.5 kPa)
o =40 MPa

\ 4

t =3.20 mm (2.5 kPa)




Response of the optimized thickness

Maximum principal stress of
exposed pane

IGU
a = 1500 mm
b =1500mm

s =20mm
p =2.5kPa
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Nonlinear plate
theory and load
sharing

o =40 MPa

-.003365

4.33333

8.67003

13.0067

17.3434

21.6801

26.0168

30.3535

34.6902

Response
oy = 39 MPa
0, = 38 MPa

wy = 22mm
wy = 21.5mm
LS =49 %

39.0269

A

\ 4

t=3.20mm (2.5 kPa)




https://www.mornglass.com/factors-that-caused-glass-curtain-wall-visual-distortion.html

Large deflections

Presented method + stress criterion - large deflections
. Visual distortion
. Potential feeling of unsafe
. Harm integrity of the sealing systems

. Introduce deflection limit b /k
. What should k be?
. No class rules

. We choose k =175 and k = 100

. Find minimum thickness under multiple design constraints -
Particle Swarm Optimization (PSO)

. Question: how sensitive are the thickness to the deflection
limit?
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Case study

Square IGU a/b =1
. b =2000/3000/4000/5000
Rectangular IGU a/b =3

. a=2100/3000/4200/5100 (longer side)
. b =700/1000/1400/1700 (shorter side)

Design load 2.5 kPa

Design constraints
. Maximum deflection — oo & b/100 & b/175 (3 cases)
. Maximum principal stress — 40 MPa
. Maximum in-plane translation — 2 mm

Weight: a X b X t X 2 X 2500

Repeat PSO until optimum thickness is found
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Generate initial population

POOLOOD e

FE analysis

I

Check criteria

I

Calculate

Calculate weight particle
positions
Update global best
) Mo
Is the optimization
converged?




Results - the optimized thickness with different criteria

*  Without deflection limit

Size (a X b) [mm]  topqss[mm] tp e [mm) Saving [%] Size (a x b) telass|mm| tg e |mm)| Saving [%] .

2000 X 2000 8.4 ) 50 2100 % 700 7 35 3 50 % to 53 % thinner
3000 x 3000 12.6 6.2 51 3000 x 1000 6.7 32 52 ——— | than class rules

4000 x 4000 16.8 8.2 51 4200 x 1400 9.3 4.4 53

5000 x 5000 21.0 10.3 51 5100 x 1700 11.4 5.3 53 suggest

*  With b/100 deflection limit

Size (a X b) [mm] tolass M) tF e [mm] Saving [%] Size (a x b) telass | mom] tr e [mm] Saving [%]

2000 % 2000 8.4 65 2 3100 % 700 37 a4 6 .

3000 % 3000 12,6 9.7 23 3000 x 1000 6.7 6.3 6 — 5 | 6% to 23 % thinner
4000 x 4000 16.8 13.0 23 4200 % 1400 9.3 8.8 6

5000 % 5000 21.0 16.2 23 5100 x 1700 1.4 10.6 6

*  With b/175 deflection limit

Size (@ X b) [mm]  t.iass[mm]  trear[mm]  Saving [%] Size (a x b) telass(mm]  trear[mm|  Saving [%]

2000 x 2000 84 98 17 2100 x 700 47 54 -16 -14 % to -17 % (class
3000 x 3000 12.6 14.7 -17 3000 x 1000 6.7 7.7 -15 > i i

4000 x 4000 16.8 19.6 -17 4200 x 1400 9.3 10.7 -14 rUIeS_ provide thinner
5000 x 5000 21.0 24.4 -16 5100 x 1700 11.4 13.0 -14 solution)
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Results - activation of the criteria - n = response/criterion

With b/175

Without deflection limit

With b/100

(Wiax= 59.8 mm,

W vl £=82mm) N7 I oS g
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2000 3000 4000 5000 2000 3000 4000 5000 2000 3000 4000 5000
Charasteric lenght, a [mm] Charasteric lenght, a [mm] Charasteric lenght, a [mm]
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— = Square, deflection

— — Rectangle, deflection

Square, stress

Rectangle, stress

==+se00x Square, in-plane translation

--------- Rectangle, in-plane translation




Conclusion and future work

+ Conclusions:
* Increased usage of IGUs require more advanced design methods
«  Stress criterion may not be sufficient
* The thickness results are sensitive to the chosen deflection limit

* Thickness savings of 6 % to 23 % (b/100) still desirable considering total area of
IGUs in ships

*  Future work:
* Release assumptions (under journal review)
. Expand optimization to other shapes (circular, triangular)
. Use unequal thicknesses
*  Perform experimental work on IGUs consisting of laminated glasses
. Influence of large deflection on IGU behavior

. Further validate FE model
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 Chalmers University of Technology — Sweden, Gothenburg

Aalto University
School of Engineering
]



Thank you



Appendix: Particle Swarm Optimization (PSO)

* PSO introduced in 1995 [1] for nonlinear optimization problems.
» Metaheuristic algorithm based on social behavior of animals
 Trial and error of the objective function (no gradient)

 Suitable for variety of engineering problems

+ Easy to implement

« At each new iteration, a new position for the particle is calculated:

https://figmentums.com/2016/09/12/swarm-stupidity-in-humans/

X(t+1)=%0) +7,(t+1) (E1) Personal best
Pi(t)
* The new velocity vector is calculated:
D
/rSr”/,’
- - =4 - - N : :
Bi(t +1) = wiy(6) + ricy (Pi(0) = %(0) + 126, (9(0) = %(D)  (E2) o Partile new location
’,’I T; (t + 1)
Particle O__ﬂﬁ'—ll/@ Global best
() SN T o(t)

g(t) — ;e
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[1] Kennedy J., Eberhart R., (1995) Particle Swarm Optimization 2@



The IGU FE Model

. Glass/spacers:

_________ 5
. 4-node structural SHELL181 elements — TTTTTTTRTTTTYY
(First order shear deformation theory) A“y 5
+ Gas: Ve al
. 5-node hydrostatic fluid element (ideal : ;"
gas law) b | :'
. Boundary conditions:
- Al8edgesUZ =0 L l"
. Central nodes UX = UY =0 (prevent 5 e S >
a

rigid body motion)

Shell >
element

Q (pressure node)

Hydrostatic
fluid element

J

HSFLD242

Glass pane



