

MEC-E1004 Principles of Naval Architecture

Lecture 3 – Main dimensions

Learning points !

- After the lecture, you will be able to:
 - List and define terminology related to a ship's main dimensions
 - You will become familiar with (and be able to apply) approaches to determine a ship's main dimensions

Assignment 3 – Main dimensions

- Determine your ship's main dimensions considering her mission & operational profile
 - Identify size constraints set by the route and ports, and discuss how they affect the design
 - Make use of statistics and empirical formulae
 - ✓ Feel confident on possible deviations from your reference ship
 - Define whether your ship is limited by weight, volume and/or main dimensions

TANKER STATISTICS											
Name	Launch	DWT	Lee	B	THE	D	Po	Va	Engine Speed	Engine Design	Liquid Cargo
	date	ton	m	m	170	m	kW	kn	rpm		Capacity m ³
ISOLA VERDE	01.01.93	32 500	169	28,0	10,9	14,9	7 098	. 14		6RTA52	
DA GING 73	01.07.93	34 000	186	27,5	10,0	15,0	5 852	14		SL50MC	
ACTINIA	01.03.92	34 204	169	32,0	11,2	15,1	7 829	14	117	5L60MC	479
DA GING 71	01.04.94	34 630	186	27,5	10,0		5 852	10	141	SL50MC	
JO SPRUCE	01.04.93	35 000	176	32.0	10,6	14,0	10 415		117	6L60MC	
TASMAN	01.02.90	35 367	176	26,8	11,6	15,9	8 679	15	117	5L80MC	
IBNU	01.04.93	35 601	170	28.0	10.8	17.0	7 648			SLEOMC	
BANDAR AYU	01.03.93	38 345	172	28.0	11.0	16.6	7 855	15	123	6L50MC	4190
TANDJUNG AYU	01.01.93	36 362	172	28.0	11.0	18.6	7 068	15	123	6S50MC	457
DURGANDINI	01.11.92	36 406	172	28.0	11,0	16.6	7.655	15	123	6L50MC	4572
CAMPODOLA		36 522	192	26.5	10.7	14.0	10 738	15	134	7K74EF	3094
JO CEDAR	01.11.93	36 800	176	32.0	10.6	14.0	10 415		117	6L6OMC	
PANCA SAMUDRA	01.02.93	37 087	166	30.5	10.9	16,9	7 355	15	113	GRTA52	4293
PERGIWO	01.11.92	37 087	166	30.5	10.9	16.9	7 355	15	113	6RTA52	4293
SAD SAMUDRA	01.05.93	37 087	166	30.5	10,9	16.9	7 355	15	113	6RTA52	4297
AKATSUKI MARU	01.04.92	37 999	172	31,0	12,2	18,2	7 090	14	96	6L60MC	5090
DIAMANT	01.12.92	39 768		28.0	12,0	16,8	8 421	15		K6SZ70/150	
RUBIN	01.12.93	39 768		28,0	12,0	16,8	8 421	15		K6SZ70/150	
TOMIS NORTH	01.10.92	39 768	180	28.0	12.0	16,7	8 421	14	114	6DKRN60/195-10	4454
TOPAZ	01.02.94	39 768		28.0	12.0	16.8	8.421	15		K6SZ70/150	
FOLEGANDROS	01.03.92	39 900	174	32.2	11.0	19,0	6 767	14	141	6S50MC	5640
CAPTAIN ANN	01,11,91	40 000	168	32.2	10.9	17.0	7 279	14	100	SUECCOLS	
IVER EXPLORER	01.05.90	40 077	169	32.0	11,2	15,1	8 679	14	117	SL60MC	4508
MOSOR SAILOR	01.06.91	40 490	169	32.0	10.0	15,1	7 649	14	117	5L60MC	
HALIA	01.06.93	40.549	174	32.2	12.2	18,0	7 457	14	117	6S50MC	5288
BRITISH ADMIRAL	01.02.90	41 100		30.6	10.0		5 149	14	120	6UEC52LS	4500
NAVIX ERICA	01.11.91	41 430	172	30.0	11,7	18,4	7 134	. 14	80	5960MC	5,249
MELODIA	01.01.92	41 450	172	30.0	11,7	18,4	7 134	14	78	5S60MC	5245
MINAS LEO	01.04.92	41 476	172	30.0	11,7	18,4	7 134	14	78	5S60MC	5245
BELLUS	01.08.91	41 490	172	30,0	11.7	18,4	7 134	14	78	5\$80MC	5245
EMERALD RIVER	01.04.91	41 502	172	30,0	11,7	18,4	7 134	14	78	5S60MC	5245
ANTONIO D'ALESIO	01.09.90	42 085	170	29.5	12.3	16.6	7 988	14	154	6RTA52	4802
BRIGHT EXPRESS	01.09.92	42 235	171	31.3	11.5	17.8	9 378	14	102	5S60MC	4846
DYNAMIC EXPRESS	01.12.92	42 253	171	31.3	11.5	17.8	9 378	14	102	5\$60MC	4547
VANO VIIN	01 10 91	43 404	182	32.1	11.5	15.9	9.267		1	7BTA72	

Selection of main dimensions

Question: Why is the selection of a ship's main dimensions important?

Why the selection of main dimensions is key?

- They define to large extent a ship's technical and economical performance
 - Set constraints for ship's usage
- Mistakes done in the selection of a ship's main dimensions are very costly (or impossible) to correct in subsequent design/building phases

Image credit J-P Rodrigue

Why the selection of main dimensions is key ? (Examples)

Trend towards larger ships to achieve higher cost-efficiency

Why the selection of main dimensions is key ? (Examples)

- Load carrying capability (buoyancy)
- Hull resistance in still and deep water and in waves
- Stability (safety)
- Seaworthiness
 - the motions, the accelerations and the loads from water in rough seas are to be as small as possible
- Longitudinal Strength
- Cost efficiency
 - Scale efficiency → Generally, for fully utilized ships, the costefficiency (e.g. cost per passenger or cargo unit) increases by size

Image credit J-P Rodrigue

Selection of main dimensions – Length (L)

Determined considering

- Required cargo capacity
 - L is a general factor of size
- Hull resistance
 - Calm water resistance is sensitive to hull length
 - The Length-breadth ratio L/B is typically 4 10
- Longitudinal strength
 - The length-depth ratio affects the strength of the hull girder
 - $L/D \approx 10 18$
- Physical constraints set by
 - Shipyard facilities (e.g. Meyer Turku's building dock is 365 m long)
 - Channel docks
 - Port facilities
 - Fairways
 - ...

Image credit Meyer Werft

Selection of main dimensions – Drought (T)

- Also referred to as draft
- T is dependent on the Archimedes law
 - T increases until the weight of the displaced water equals the weight of the ship
 - Several load condition specific definitions within the maximum and minimum allowed T values
- Generally T should be as large as possible to
 - Enable a large propeller diameter for high energy efficiency
 - To minimize slamming in rough seas
 - Draft-length ratio T/L (\approx 0,035 0,05) affects the bow slamming in rough seas
- Often limited by physical constraints (shallow water)
 - Restrictions set by ports and the associated waterways are found in port catalogues

Selection of main dimensions – Breadth (B)

- A general factor of size
- Determined considering
 - Cargo carrying capacity (e.g. the number of lanes on a RORO ship, or the number of side-by-side containers on a cargo ship)

Image credit Finnlines

- Transverse stability
 - Increase in $B \rightarrow$ additional stability
 - Both the Breadth-Draft ratio B/T ($\approx 2,3 4,5$) and the Breadth-Depth ratio B/D (≈ 1.75 -3), affects the transversal stability of a ship
- Hull resistance
 - Added resistance (e.g. wave resistance) is sensitive to B, calm water resistance not so much
- Physical constraints (e.g. set by channels, docks, etc.)

Image credit mjolnershipping.com

Selection of main dimensions Depth (D) and Freeboard (F)

Depth (D)

- A general volume factor
- A strength factor

Freeboard (F)

Sufficient freeboard is essential for stability. If the deck edge goes under the water when the vessel heels, the danger of capsizing is great.

Sufficient freeboard

Overloaded vessel \rightarrow Too low freeboard

Image credit Transport Canada

Selection methods for main dimensions

- Based on a reference ship
 - The main dimensions are determined based on a reference ship
 - The dimensions can be modified using the Normand's number approach
- Based on statistical data
 - The main dimensions are selected based on statistically determined regression curves
 - The statistics should be comprehensive including tens of delivered ships
- Based on direct calculations
 - The main dimensions and displacement equilibrium are determined based on direct calculations

Regardless of method, the selection of the main dimension is an iterative process

TANKER STATISTICS

Name	Launch	DWT	Lpp	В	TWL	D	Pa	Vs	Engine Speed	Engine Design	Liquid Ca	rgo
	date	ton	m	m	m	m	kW	kn	rpm		Capacity	m ³
ISOLA VERDE	01.01.93	32 500	169	28.0	10.9	14.9	7 098	14		5RTA52		
DA QING 73	01,07,93	34 000	186	27,5	10.0	15,0	5 852	14		5L50MC		
ACTINIA	01.03.92	34 204	169	32.0	11.2	15.1	7 829	14	117	5L60MC		47962
DA QING 71	01.04.94	34 630	186	27.5	10.0		5 852	10	141	5L50MC		
JO SPRUCE	01.04.93	35 000	176	32.0	10.6	14.0	10 415		117	6L60MC		
TASMAN	01.02.90	35 367	176	26.8	11,6	15,9	8 679	15	117	5L60MC		
IBNU	01.04.93	35 601	170	28.0	10.8	17.0	7 648			5L60MC		
BANDAR AYU	01,03,93	38 345	172	28,0	11,0	16,6	7 855	15	123	6L50MC		41954
TANDJUNG AYU	01.01.93	36 362	172	28.0	11.0	16.6	7 068	15	123	6S50MC		45726
DURGANDINI	01.11.92	36 406	172	28.0	11.0	16.6	7 855	15	123	6L50MC		45726
CAMPODOLA		36 522	192	26.5	10,7	14.0	10 738	15	134	7K74EF		38946
JO CEDAB	01.11.93	36 800	176	32.0	10.6	14.0	10 415		117	6L60MC		
PANCA SAMUDRA	01.02.93	37 087	166	30.5	10,9	16,9	7 355	15	113	6RTA52		42974
PERGIWO	01.11.92	37 087	166	30.5	10.9	16.9	7 355	15	113	6RTA52		42974
SAD SAMUDBA	01.05.93	37 087	166	30.5	10.9	16.9	7 355	15	113	6RTA52		42974
AKATSUKI MARU	01.04.92	37 999	172	31,0	12,2	18,2	7 090	14	98	6L60MC		50997
DIAMANT	01.12.92	39 768		28.0	12.0	16.8	8 421	15		K6SZ70/150		
RUBIN	01,12,93	39 768		28,0	12,0	16,8	8 421	15		K6SZ70/150		
TOMIS NORTH	01.10.92	39 768	180	28.0	12.0	16.7	8 421	14	114	6DKRN60/195-10		44540
TOPAZ	01.02.94	39 768		28,0	12.0	16,8	8 421	15		K6SZ70/150		
FOLEGANDROS	01.03.92	39 900	174	32.2	11,0	19.0	6 767	14	141	6S50MC		56403
CAPTAIN ANN	01.11.91	40 000	168	32,2	10,9	17,0	7 279	14	100	5UEC60LS		
IVER EXPLORER	01.05.90	40 077	169	32,0	11,2	15,1	8 679	14	117	5L60MC		45052
MOSOR SAILOR	01.06.91	40 490	169	32,0	10,0	15,1	7 649	14	117	5L60MC		
HALIA	01.06.93	40 549	174	32,2	12,2	18,0	7 457	14	117	6S50MC		52884
BRITISH ADMIRAL	01.02.90	41 100		30,8	10,0		5 149	14	120	6UEC52LS		48000
NAVIX ERICA	01,11,91	41 430	172	30,0	11,7	18,4	7 134	14	80	5S60MC		52492
MELODIA	01.01.92	41 450	172	30.0	11.7	18,4	7 134	14	78	5S60MC		52494
MINAS LEO	01.04.92	41 476	172	30,0	11,7	18,4	7 134	14	78	5S60MC		52494
BELLUS	01.08.91	41 490	172	30.0	11.7	18,4	7 134	14	78	5S60MC		52494
EMERALD RIVER	01.04.91	41 502	172	30,0	11,7	18,4	7 134	14	78	5S60MC		52494
ANTONIO D'ALESIO	01.09.90	42 086	170	29.5	12,3	16,6	7 988	14	154	6RTA52		48025
BRIGHT EXPRESS	01.09.92	42 235	171	31,3	11,5	17,8	9 378	14	102	5S60MC		48481
DYNAMIC EXPRESS	01.12.92	42 253	171	31,3	11,5	17,8	9 378	14	102	5S60MC		48471
KANG YUN	01.10.91	43 404	182	32.1	11.5	15,9	9 267			7RTA72		

Normand's no. (N)

Can be used to estimate the change in a ship's total weight i.e. the displacement change $d\Delta$, caused by scaling the size of a ship to accommodate extra/reduced weight dW

- Is defined as a ratio between the displacement and weight changes
- Starting point is the equilibrium between displacement and ship's weight
- The added weight dW causes the displacement change $d\Delta$

Reference Ship + Normand's no.

 Let's assume that the weight W_i can be defined as a function of displacement ∆ having the following format:

 $W_i = C_i \Delta^{k_i}$ (1)

• The derivation of the equation in terms of the displacement results:

$$\frac{dW_i}{d\Delta} = k_i C_i \Delta^{k_i - 1} = k_i \frac{W_i}{\Delta}$$
(2)

 When the both sides of the expression is multiplied by d∆ and the result is substituted into the weight equation, we get

$$d\Delta = dW + \frac{d\Delta}{\Delta} \sum k_i W_i (3)$$

Reference Ship + Normand's no.

 After separating the variables, the following expression is obtained:

$$\left(\Delta - \sum k_i W_i\right) d\Delta = \Delta dW \quad (4)$$

• When the derivative of the displacement with respect to the added weight is solved, the following expression is obtained for Normand's number N:

$$N = \frac{d\Delta}{dW} = \frac{\Delta}{\Delta - \sum_{i=1}^{n} k_i W_i}$$
 (5)

Reference Ship + Normand's no.

- Lightship weight is composed of:
 - Hull weight W_H , outfitting weight W_O and machinery weight W_M .
- Ship deadweight composed of:
 - Fuel weight W_F and cargo weight W_G .
- Let's derive the relationships between the weights and the displacement:
 - Hull and outfitting weight W_{H+O} can be assumed to be function of the product of the ship length L, breadth B and depth D:

 $W_{H+O} = C_{H+O} * LBD$ (6)

– Displacement as a function of the length L, breadth B and draught T gets

 $\Delta = \text{constant} * \text{LBT}$ (7)

 Assuming that the ratio between depth and draught D/T is constant, the relation between the weights and displacement is:

 $\mathbf{W}_{\mathbf{H}+\mathbf{O}} = \mathbf{C}_{\mathbf{H}+\mathbf{O}} * \Delta \tag{8}$

Selection of main dimensions

• Assumption that machinery weight is related power P, the following expression can be written:

$$P=\frac{\nu^3\Delta^{\frac{2}{3}}}{C_A}$$

• And thus, the machinery weight is

 $W_M = C_M \Delta^{\frac{2}{3}}$

• Fuel weight is related to the fuel consumption, which can be calculated based on power and operation time

$$W_F = C_F \Delta^{\frac{2}{3}}$$

• Based on the relation between the weights and displacements, Normand's number is:

$$N = \frac{d\Delta}{dW} = \frac{\Delta}{\Delta - W_H - W_O - \frac{2}{3}(W_M + W_F)}$$

Statistical approach

- Different procedures can be followed to obtain first estimation of main dimensions
- The selection of the appropriate procedure depends on the available data, curves, empirical formula, etc.
- For example, if we are given: DWT, Speed (owner requirements) and we need to define the main particulars:
 - Get displacement from the tabular values of deadweight displacement ratios.
 - Length, C_b and L/B can be calculated using regressionbased equations, suitable empirical formulas or tabular data.
 - \checkmark Draft can be calculated using $C_{\rm b}$, B, L and displacement
 - ✓ Depth can be calculated based on the L/D ratio from statistical data.

		1	2	3	4	5	6
Ship type		Limits		DWT/. (%)	$\Delta W_{ST}/W_{L}$ (%)	W _{OT} / W _L (%)	W _M /W _L (%)
	Lower	Upper					
General cargo	Г) 5,000	15,000	65-80	55-64	19-33	11-22	
Coasters, cargo) 499	999	70-75	57-62	30-33	9-12	
Bulk carriers ^a (Bulk carriers ^a (t DWT)			74-85	68–79	10 - 17	12-16
	50,000	200,000	80-87	78-85	6-13	8-14	
Tankers⁰ (t DW	Tankers ^b (t DWT)			78-86	73-83	5-12	11-16
				83-88	75-88	9-13	9–16
Containerships	Containerships (t DWT)			65 76	58-71	15-20	9-22
Ro-Ro (cargo)	(† DWT)	15,000 L~80 m	16 000 t	50_60	68-78	12-19	10-20
Ro-Ro (cargo)	((DWI)	$L \equiv 80 \text{ III}$	DWT	50-00	00-78	12-19	10-20
Reefers ^d (ft ³) o	. 300,000	500,000	45-55	51-62	21-28	15-26	
Passenger Ro-I	Ro/ferries/	<i>L</i> ≅85 m	L≅120 :	m 16–33	56-66	23-28	11-18
RoPax							
Large passenge ships)	er ships (crui	se <i>L</i> ≅200 n	n <i>L</i> ≅360 ^e	m 23–34	52-56	30–34	15-20
Small passenge	er ships	$L \cong 50 \text{ m}$	$L \cong 120$	m 15–25	50-52	28-31	20-29
Stern Trawlers	Stern Trawlers			a 30–58	42-46	36-40	15-20
Tugboats	P _B ≅500 KW	3,000 K	W 20-40	42–56	17-21	38–43	
River ships (to	wed)	$I \simeq 32 \text{ m}$	$I \simeq 35 \text{ m}$	22-27	58-63	19-23	16-21
River ships (se	lf-propelled)	$L \simeq 80 \text{ m}$	$L \simeq 110$	m 78–79	69-75	11-13	13-19
	TT-11.6				Deties		
coefficients					of main		
	coemeients				dimension	s	
	Cp	C _M	C _B	Cwp	L_{pp}/B	B/T	$L_{pp}/V^{1/3}$
Fast seagoing	0.57-0.65	0.97-0.98	0.56-0.64	0.68-0.74	5.7-7.8	2.2-2.6	5.6-5.9
cargo ships							
Slow seagoing cargo ships	0.66–0.74	0.97–0.995	0.65-0.73	0.80-0.86	4.8-8.5	2.1-2.3	5.2-5.4
Coastal cargo	0.69-0.73	-0.985	0.58-0.72	0.78-0.83	4.5-5.5	2.5-2.7	4.2-4.8
ships							
Small short sea	0.61-0.63	0.82-0.85	0.51-0.53	0.65-0.70	5.8-6.5	3.3-3.9	6.3-6.6
passenger							
ships	0.52 0.62	0.01.0.08	0.50.0.00	0.00.0.01	50 (28	2740	() (0)
Femes	0.55-0.62	0.91-0.98	0.50-0.60	0.69-0.81	5.9-0.2" 5.2.5.4b	5.7-4.0	5.7 5.0b
Fishing vessels	0.61_0.63	0.87_0.90	0.53_0.56	0 76-0 79	5.1-6.1	23_26	5.0-5.4
Tugboats	0.61-0.68	0.75-0.85	0.50-0.58	0.79-0.84	3.8-4.5	2.4-2.6	4.0-4.6
Bulk carriers	0.79-0.84	0.990-	0.72-0.86	0.88-0.92	5.0-7.1ª	2.1-3.2	4.7-5.6
-		0.997					
Tanker F _n =0.15	0.835– 0.855	0.992– 0.996	0.82-0.88	0.88–0.94	5.1-6.8	2.4–3.2	4.5-5.6
Tankers F_n = 0.16-0.18	0.79-0.83	0.992– 0.996	0.78–0.86	0.88-0.92	5.0-6.5	2.2-2.9	4.5-5.2
Fast seagoing	(0.55) ^c	0.96-0.985	(0.53) ^c	0.68-0.72	6.7-7.2	2.8-3.0	6.1-6.5
reefers	0.59-		0.57-				

Note on tutorial

- **Exercise 1** : Three basic exercises on ship form coefficients to build up your knowledge and experience from Lecture 2
- **Exercise 2** : An example on reference ship and Normands No.
- Exercise 3 : A step by step example on how to apply the statistical approach
- **Exercise 4** : An example on how to apply direct calculations
- Bonus information on statistical relationships between main dimensions (empirical charts)

- Explanatory note on how to use the xls tools
- Database with information on statistical data for different ship types (not perfect but can be useful !)
- Calculation tool for Normand's no.

Summary and conclusions

The main dimensions consist of

- Linear dimensions: length, breadth,...
- Area based dimensions
- Volume based dimensions

The selection of appropriate main dimensions is very important as they define to a large extent a ship's technical and economical performance

- Can be selected/determined in various ways
 - Based on a reference ship
 - The dimensions can be scaled using the Normand's number
 - Based on statistical data
 - Based on direct calculations

Image credit pancanal.com

Summary and conclusions

- Ship hydrodynamic performance, seakeeping, maneuvering, stability, strength, etc. depend on the selection of the main dimensions and their ratios.
- There are different methods to obtain the first estimation of the main dimensions
 - ✓ Based on a reference ship (Normand's number can be used to define the new displacement)
 - ✓ Based on statistical data
 - ✓ Based on direct calculations
- Regardless of method, the selection of the main dimension is an iterative process that is sensitive to data availability and design novelty

Thank you !