

MEC-E1004 Principles of Naval Architecture

Tutorial 3 – Main dimensions

Exercise 1 (Understanding coefficients)

- **Question 1A :** Find the area of the waterplane of a ship 200 meters long, 30 meters beam, which has a coefficient of fineness of 0.8?
- ✓ Area of waterplane = $L \times B \times Cw$ = 200 x 30 x 0.8 = 4800 sq m
- **Question 1B :** A ship 64 meters long, 10 meters maximum beam, has a light draft of 1.5 meters and a load draft of 4 meters. The block coefficient of fineness is 0.600 at the light draft and 0.75 at the load draft. Find the deadweight.
- ✓ Light displacement = L x B x draft x Cb = 64 x 10 x 1.5 x 0.600 = 576 cubic meters
- ✓ Load displacement = L x B x draft x Cb = 64 x 10 x 4 x 0.750 = 1920 cubic meters
- ✓ Deadweight = Load displacement Light displacement = 1920 576 cubic meters
- ✓ Deadweight = 1344 cubic meters = 1344 x 1.025 tonnes = 1378 tonnes.
- **Question 1C :** Explain in detail the principles of the prismatic coefficient (see next page)

Exercise 1 (Understanding coefficients)

• **Question 1C :** Explain in detail the principles of the prismatic coefficient

The prismatic coefficient of a ship at any draft is the ratio of the volume of displacement at that draft to the volume of a prism having the same length as the ship and the same cross-sectional area as the ship's midships area. The prismatic coefficient is used mostly by ship-model researchers. In the figure below the shaded portion represents the volume of the ship's displacement at the draft concerned, enclosed in a prism having the same length as the ship's midships area (Am).

Prismatic coefficient (Cp) = Volume of ship \div Volume of prism = Volume of ship \div (L x Am) Volume of Ship = L x Am x Cp

Note that Cp is always slightly higher than Cb at each waterline.

```
Cm x Cp = [Am \div (B x d)] x [Volume of ship \div (L x Am)]
= Volume of ship ÷ (L x B x d)
= Cb
```


The Prismatic Coefficeint

$Cm \ge Cp = Cb \text{ or } Cp = Cb \div Cm$

Exercise 2 (Reference ship + Normand's no)

- Assume Reference ship
 - Main dimensions of ship: L = 150, B = 21 m, T = 9 m and CB = 0.72
 - Lightship weight
 - Hull WH = 4 000 ton
 - Machinery WM = 1 500 ton
 - Outfitting WO = 1 000 ton
 - Deadweight includes 1 500 ton fuel
- Create a new ship using the reference ship approach
 - Deadweight is increased by 4 000 ton
 - Speed and autonomy time is unchanged
 - Draught is not possible to increase
 - Calculate the new ship's main dimensions and displacement

Exercise 2 (Reference ship + Normand's no)

• In order to calculate Normand's number, the displacement of reference ship is needed (ρ = 1025 ton/m3, λ factor is 1.006):

$$N = \frac{d\Delta}{dW} = \frac{\Delta}{\Delta - W_{H+O} - \frac{2}{3}(W_M + W_F)} = 1.5$$

- Thus, the displacement of new ship is $\Delta_u = \Delta + NdW = 27\ 050\ ton$
- When the new main dimensions is determined, it is assumed that the L / B ratio (7.14) and the block CB and draught remain unchanged. Based on the weight equation, the main dimension of new ship is:
 - *L* = 170 *m* (previously 150 *m*)
 - B = 23,8 m (previously 21 m)
 - T = 9 m (unchanged)
 - *CB* = 0,72 (unchanged)
- These main dimension give the displacement of 27 035 ton, which agrees the required value with sufficiently accuracy

Example 3 – The satistical approach

- Define main dimensions of a bulk carrier
 - The ship's is to transport coal to Finland. Density (stowage) factor for coal is assumed to be 1.3 m3/ton. The maximum allowed draught for Denmark Strait is 15 m, and the target speed is 15.5 knots.
 - $T_{max} = 15 m \rightarrow DWT \approx 100\ 000\ t$
 - $\frac{DWT}{LBT} \approx 0.72$
 - LBT = $100 \ 000 / 0.72 \approx 139 \ 000 \ m_3$
 - Assumption: Fn=0.16 $\rightarrow C_B \approx 0.81$
 - Displacement = $C_B LBT$ = 112 500 m3

Example 3 (Satistical approach)³⁰

- Displacement = $C_B LBT$ = 112 500 m3
- Ship length according to Schneekluth
- L=(C_B -0.62) / 7.88*10^-4 \approx 241 m
- B=L/6,25 \approx 38.6 m
- LBT = $241m * 38.6m * 15m \approx 140\ 000\ m3$
- $\Delta = \rho \lambda C_B \text{LBT} = 1,025 \text{ ton/m3 }^*$ 1.006*0.81*241m*38.6m*15 m $\approx 117\ 000 \text{ t}$
- DWT/ Δ = 100 000 t/ 117 000 t \approx 0.85
- Lightship weight = W_{LS} = 117 000 t 100 000 t \approx 17 000 t
- $D = L/12 = 241 \text{ m}/12 \approx 20 \text{ m} \text{ (grap 1)}$
- $D = B/1.75 = 38.6 \text{ m} / 1.75 \approx 22 \text{ m} (\text{grap 1})$
 - Let's select the higher (22 m) since the density of cargo is low
- Freeboard = D-T = 22 m 15 m = 7 m

Example 3 (Satistical approach)

- Length (L) = 241 m
- \circ Breadth (B) = 38.6 m
- Draught (T) = 15 m
- Depth (D) = 22 m
- Block coefficient $(C_B) = 0.81$
- Freeboard (F) = 7 m

Example 4 (Direct Calculations)

• Shipowner requirements

- Modern Ropax ship for the route Aberdeen Kirkwall Lerwick
- Lloyd's Register of Shipping
 - + 100A1, Roll on/Roll off Cargo and Passenger Ferry +LMC, NAV1, UMS, LI
- 600 passenger and 40 crew member
 - 50 cabins for 2 person, 50 cabins for 4 person
 - 10 officer cabins and 27 crew cabins
- About 430 lane meters for trucks or 530 lane meters for cars on the main deck
 - 25 cars on the other cargo deck (4.25 m / car)
- Speed 24 knots, design draught
- Deadweight 1560 t, design draught

Example 4 (Direct Calculations)

- Breadth is function of lane width and width of double side: B = 2x2m + 5x3m = 19mIn comparison to reference ship, B is reasonable
- For car-passenger ferries with the speed of about 24 knots, the Froude number is about 0.35

$$L = \frac{v^2}{F_n^2 g} = 126.8 m \qquad C_B = 1.09 - 1.68F_n = 0.502$$

- L / B ratio = 6.67
 - In comparison to the references, this is reasonable
- Ro-ro deck requires about 4.5 meters free height and the web frame requires about 1 m

B = (4.5 + 1 + 1 + 2x3.5)m = 13.5m

L	126.8 m	CB	0.502
В	19 m	Fn	0.35
Т	5.25 m	A	6510 t
D	13.5 m	WLS	4950 t

Example 4 (Direct Calculations)

- Steel weight W_{ST} (t): $W_{ST} = 0.135W_{DW} + 2500 t = 2707 t$
- Estimation of the machinery weight $W_Q(t)$ is based on the power requirement (BkW), which based on the reference ship is assumed 20 000 kW

$$W_Q = \frac{BkW(895 - 0.0025BkW)}{10\ 000} = 1\ 690\ t$$

- Outfitting weight : $W_{0A} = 277 + 0.115LB = 554 t$
- Lightship weight: $W_{LS} = W_H + W_M + W_o \approx 4950 t$
- **Displacement:** $\Delta = W_{LS} + W_{DW} = 6510 t$
- Draught with the sea water density of $\rho = 1.025$ t /m3: $T = \frac{\Delta}{C_{P} \rho LB} = 5.25m$

Summary

The main dimensions consist of

- Linear dimensions: length, breadth,...
- Area based dimensions
- Volume based dimensions

The selection of appropriate main dimensions is very important as they define to a large extent a ship's technical and economical performance

- Can be selected/determined in various ways
 - Based on a reference ship
 - The dimensions can be scaled using the Normand's number
 - Based on statistical data
 - Based on direct calculations

Image credit pancanal.com

Bonus material

Examples of Main Dimensions

- Slenderness ratio describes the ratio between length and volume
- Ratio of principal dimensions
 - L/B describes relative breadth, 4-10
 - B/T describes relative breadth, 8-5
 - L/T describes beam characteristics, 10 - 30
 - L/D describes beam characteristics, 10 - 20
- Hydrodynamic speed, Froude number: $F_n = \frac{v}{\sqrt{gL}}$

parametri	Passenger	Container	Crude oil	Oil product	War ship
	ship	ship	tanker	tanker	
L _{OA} [m]	301,75	262,13	335,28	201,47	135,64
L _{pp} [m]	275,92	246,89	323,09	192,02	124,36
L[m]	286,99	246,89	323,09	192,02	124,36
D[m]	22,63	20,12	26,21	13,79	9,14
B[m]	30,94	32,23	54,25	27,43	13,74
T[m]	9,65	10,67	20,39	10,40	4,37
D SW [ton]	46.720	50.370	308.700	43,400	3390
CB	0,532	0,579	0,842	0,772	0,449
C _M	0,953	0,965	0,996	0,986	0,741
CP	0,558	0,600	0,845	0,784	0,605
CW	0,687	0,748	0,916	0,854	0,727
C _{VP}	0,774	0,774	0.919	0,904	0,618
LCB, % L	mid-ship	-1,1	+2,7	+1,9	-1,4
$L/\nabla^{1/3}$	8,03	6,62	4,82	5,51	8,36
L/B	9,28	7,94	5,96	7,00	9,05
B/T	3,21	2,91	2,66	2,64	3,14
L/T	29,74	23,14	15,85	18,46	28,46
L/D	12,68	12,27	12,33	13,92	13,61
P _s [MW]	117,9	32,2	26,11	11,19	29,84
V [knots]	33	25	15,2	16,5	30
F _n	0,320	0,261	0,139	0,196	0,442

Statistical relationships between various main dimensions

Statistical relationships between various main dimensions

Length (L) vs. Breadth (B)

Statistical relationships between various main dimensions

