Aalto University
School of Engineering

MEC-E1004 Principles of Naval Architecture

Tutorial 3 - Main dimensions

Exercise 1 (Understanding coefficients)

- Question 1A : Find the area of the waterplane of a ship 200 meters long, 30 meters beam, which has a coefficient of fineness of 0.8 ?
\checkmark Area of waterplane $=\mathrm{L} \times \mathrm{B} \times \mathrm{Cw}=200 \times 30 \times 0.8=4800 \mathrm{sq} \mathrm{m}$
- Question 1B : A ship 64 meters long, 10 meters maximum beam, has a light draft of 1.5 meters and a load draft of 4 meters. The block coefficient of fineness is 0.600 at the light draft and 0.75 at the load draft. Find the deadweight.
\checkmark Light displacement $=\mathrm{L} \times \mathrm{B} \times$ draft $\times \mathrm{Cb}=64 \times 10 \times 1.5 \times 0.600=576$ cubic meters
\checkmark Load displacement $=\mathrm{LxB} \times$ draft $\times \mathrm{Cb}=64 \times 10 \times 4 \times 0.750=1920$ cubic meters
\checkmark Deadweight $=$ Load displacement - Light displacement $=1920-576$ cubic meters
\checkmark Deadweight $=1344$ cubic meters $=1344 \times 1.025$ tonnes $=1378$ tonnes.
- Question 1C : Explain in detail the principles of the prismatic coefficient (see next page)

Exercise 1 (Understanding coefficients)

- Question 1C : Explain in detail the principles of the prismatic coefficient

The prismatic coefficient of a ship at any draft is the ratio of the volume of displacement at that draft to the volume of a prism having the same length as the ship and the same cross-sectional area as the ship's midships area. The prismatic coefficient is used mostly by ship-model researchers. In the figure below the shaded portion represents the volume of the ship's displacement at the draft concerned, enclosed in a prism having the same length as the ship and a cross-sectional area equal to the ship's midships area (Am).

Prismatic coefficient $(\mathrm{Cp})=$ Volume of ship \div Volume of prism $=$ Volume of ship $\div(\mathrm{L} \times \mathrm{Am})$
Volume of Ship $=\mathrm{L} \times \mathrm{Am} \times \mathrm{Cp}$
Note that Cp is always slightly higher than Cb at each waterline.
$\mathrm{Cm} \times \mathrm{Cp}=[\mathrm{Am} \div(\mathrm{B} \times \mathrm{d})] \times[$ Volume of ship $\div(\mathrm{L} \times \mathrm{Am})]$
$=$ Volume of ship $\div(\mathrm{L} \times \mathrm{B} \times \mathrm{d})$
$=\mathrm{Cb}$

The Prismatic Coefficeint
$\mathrm{Cm} \times \mathrm{Cp}=\mathrm{Cb}$ or $\mathrm{Cp}=\mathrm{Cb} \div \mathrm{Cm}$

Exercise 2 (Reference ship + Normand's no)

- Assume Reference ship
- Main dimensions of ship: $L=150, B=21 \mathrm{~m}, T=9 \mathrm{~m}$ and $C B=0.72$
- Lightship weight
- Hull WH = 4 ooo ton
- Machinery WM = 1500 ton
- Outfitting WO = 1000 ton
- Deadweight includes 1500 ton fuel
- Create a new ship using the reference ship approach
- Deadweight is increased by 4 ooo ton
- Speed and autonomy time is unchanged
- Draught is not possible to increase
- Calculate the new ship's main dimensions and displacement

Exercise 2 (Reference ship + Normand's no)

- In order to calculate Normand's number, the displacement of reference ship is needed (ρ $=1025$ ton $/ \mathrm{m} 3, \lambda$ factor is 1.006):

$$
N=\frac{d \Delta}{d W}=\frac{\Delta}{\Delta-W_{H+O}-\frac{2}{3}\left(W_{M}+W_{F}\right)}=1.5
$$

- Thus, the displacement of new ship is $\Delta_{u}=\Delta+N d W=27050$ ton
- When the new main dimensions is determined, it is assumed that the L / B ratio (7.14) and the block CB and draught remain unchanged. Based on the weight equation, the main dimension of new ship is:
- $L=170 \mathrm{~m}$ (previously 150 m)
- $B=23,8 \mathrm{~m}$ (previously 21 m)
- $T=9 \mathrm{~m}$ (unchanged)
- $C B=0,72$ (unchanged)
- These main dimension give the displacement of 27035 ton, which agrees the required value with sufficiently accuracy

Example 3 - The satistical approach

- Define main dimensions of a bulk carrier

- The ship's is to transport coal to Finland. Density (stowage) factor for coal is assumed to be 1.3 m3/ton. The maximum allowed draught for Denmark Strait is 15 m , and the target speed is 15.5 knots.
- $T_{\max }=15 \mathrm{~m} \rightarrow \mathrm{DWT} \approx 100000 t$
- $\frac{D W T}{L B T} \approx 0.72$
- LBT $=100000 / 0.72 \approx 139000 \mathrm{~m} 3$
- Assumption: $\mathrm{Fn}=0.16 \rightarrow C_{B} \approx 0.81$
- Displacement $=C_{B}$ LBT $=112500 \mathrm{~m} 3$

Example 3 (Satistical approach)

- Displacement $=C_{B}$ LBT $=112500 \mathrm{~m} 3$
- Ship length according to Schneekluth
- $\mathrm{L}=\left(C_{B}-0.62\right) / 7.88 * 10^{\wedge}-4 \approx 241 \mathrm{~m}$
- $\mathrm{B}=\mathrm{L} / 6,25 \approx 38.6 \mathrm{~m}$
- LBT $=241 \mathrm{~m} * 38.6 \mathrm{~m} * 15 \mathrm{~m} \approx 140000 \mathrm{~m} 3$
- $\Delta=\rho \lambda C_{B}$ LBT $=1,025$ ton $/ \mathrm{m} 3$ *
1.006* $0.81^{*} 241 \mathrm{~m}^{*} 38.6 \mathrm{~m}^{*} 15 \mathrm{~m} \approx 117000 \mathrm{t}$
- DWT/ $\Delta=100000 \mathrm{t} / 117000 \mathrm{t} \approx 0.85$
- Lightship weight $=W_{L S}=117000 \mathrm{t}-100000 \mathrm{t} \approx$ 17000 t
- $\mathrm{D}=\mathrm{L} / 12=241 \mathrm{~m} / 12 \approx 20 \mathrm{~m}$ (grap 1)
- $\mathrm{D}=\mathrm{B} / 1.75=38.6 \mathrm{~m} / 1.75 \approx 22 \mathrm{~m}$ (grap 1$)$
- Let's select the higher $(22 \mathrm{~m})$ since the density of cargo is low
- Freeboard $=D-T=22 \mathrm{~m}-15 \mathrm{~m}=7 \mathrm{~m}$

Example 3 (Satistical approach)

- Length (L) $=241 \mathrm{~m}$
- Breadth (B) $=38.6 \mathrm{~m}$
- Draught $(\mathrm{T})=15 \mathrm{~m}$
- Depth (D) $=22 \mathrm{~m}$
- Block coefficient $\left(C_{B}\right)=$ 0.81
- Freeboard $(\mathrm{F})=7 \mathrm{~m}$

Example 4 (Direct Calculations)

- Shipowner requirements

- Modern Ropax ship for the route Aberdeen - Kirkwall - Lerwick
- Lloyd's Register of Shipping
- + 100A1, Roll on/Roll off Cargo and Passenger Ferry +LMC, NAV1, UMS, LI
- 600 passenger and 40 crew member
- 50 cabins for 2 person, 50 cabins for 4 person
- 10 officer cabins and 27 crew cabins
- About 430 lane meters for trucks or 530 lane meters for cars on the main deck
- 25 cars on the other cargo deck ($4.25 \mathrm{~m} / \mathrm{car}$)

- Speed 24 knots, design draught
- Deadweight 1560 t, design draught

Example 4 (Direct Calculations)

- Breadth is function of lane width and width of double side: $\quad B=2 \times 2 m+5 \times 3 m=19 m$

In comparison to reference ship, B is reasonable

- For car-passenger ferries with the speed of about 24 knots, the Froude number is about 0.35

$$
L=\frac{v^{2}}{F_{n}^{2} g}=126.8 \mathrm{~m} \quad C_{B}=1.09-1.68 F_{n}=0.502
$$

- L / B ratio $=6.67$
- In comparison to the references, this is reasonable

L	126.8 m	C_{B}	0.502
B	19 m	$\mathrm{~F}_{\mathrm{n}}$	0.35
T	5.25 m	A	6510 t
D	13.5 m	$\mathrm{~W}_{\mathrm{LS}}$	4950 t

- Ro-ro deck requires about 4.5 meters free height and the web frame requires about 1 m

$$
B=(4.5+1+1+2 x 3.5) m=13.5 m
$$

Example 4 (Direct Calculations)

- Steel weight $W_{S T}(\mathrm{t}): \boldsymbol{W}_{\boldsymbol{S T}}=\mathbf{0 . 1 3 5} \boldsymbol{W}_{\boldsymbol{D} \boldsymbol{W}}+\mathbf{2 5 0 0} \boldsymbol{t}=\mathbf{2 7 0 7} \boldsymbol{t}$
- Estimation of the machinery weight $W_{Q}(\mathrm{t})$ is based on the power requirement (BkW), which based on the reference ship is assumed 20000 kW
$W_{Q}=\frac{B k W(895-0.0025 B k W)}{10000}=1690 \mathrm{t}$
- Outfitting weight : $\boldsymbol{W}_{\boldsymbol{O A}}=\mathbf{2 7 7}+\mathbf{0 . 1 1 5 L B}=554 \boldsymbol{t}$
- Lightship weight: $\boldsymbol{W}_{L S}=\boldsymbol{W}_{\boldsymbol{H}}+\boldsymbol{W}_{\boldsymbol{M}}+\boldsymbol{W}_{\boldsymbol{O}} \approx 4950 \mathrm{t}$
- Displacement: $\Delta=\boldsymbol{W}_{L S}+\boldsymbol{W}_{\boldsymbol{D} W}=\mathbf{6 5 1 0} \boldsymbol{t}$
- Draught with the sea water density of $\rho=1.025 \mathrm{t} / \mathrm{m} 3: T=\frac{\Delta}{\boldsymbol{C}_{\boldsymbol{B}} \boldsymbol{\rho L B}}=\mathbf{5 . 2 5 m}$

Summary

The main dimensions consist of

- Linear dimensions: length, breadth,...
- Area based dimensions
- Volume based dimensions

The selection of appropriate main dimensions is very important as they define to a large extent a ship's technical and economical performance

- Can be selected/determined in various ways
- Based on a reference ship
- The dimensions can be scaled using the Normand's number
- Based on statistical data
- Based on direct calculations

Image credit pancanal.com

Bonus material

Aalto University
School of Engineering

Examples of Main Dimensions

- Slenderness ratio describes the ratio between length and volume
- Ratio of principal dimensions
- L/B describes relative breadth, 4-10
- B/T describes relative breadth, 8-5
- L/T describes beam characteristics, 10-30
- L/D describes beam characteristics, 10-2O
- Hydrodynamic speed, Froude number:

$$
F_{n}=\frac{v}{\sqrt{g L}}
$$

Statistical relationships between various main dimensions

Length (L) vs. Draught (T)

Depth (D) vs. Breadth (B)

Length (L) vs. Freeboard (F)

Statistical relationships between various main dimensions

Length (L) vs. Breadth (B)

Statistical relationships between various main dimensions

