
MEC-E1004 Principles of Naval Architecture

Lecture 5 – Ship hydrostatics



Learning points !

❑Explain the purpose of numerical 
integration in ship design

❑Understand the background of 
hydrostatic formulas and methods

❑ Explain and apply the basics of 
transverse stability 



Assignment 5 – Hydrostatics

❑Using the hull lines drawing of your hull, 
estimate the hull volume

❑Verify the correctness of your calculations 
using numerical integration methods (e.g. 
Simpson Rules on frame area or hull volume)

❑Review 2 research articles / book chapters with 
focus on basic ship hydrostatics and stability

Image credit Meyer Turku



Hydrostatics

Question:  What is hydrostatics and why they are important in ship design?



What is Hydrostatics ?
❑Hydrostatics is a  branch of physics that deals with the characteristics of fluids at rest. The 

fluid can be gas or liquid exerting pressure on an immersed body. 

❑Through hydrostatics we investigate a ship’s  floating position

❑ In turn principles of hydrostatics are applied to assess a ship’s floatation and stability



Why do ships float ?

Archimedes principle:A body floating or submerged in a fluid is
buoyed up by a force equal to the weight of the water it displaces.

𝑾𝒔𝒉𝒊𝒑 = 𝝆𝒘 × 𝒈 × ∇

“as the weight of displaced liquid increases the force 

acting upwards because of water pressure 

increases…so the ship floats”https://science4fun.info/archimedes/

https://science4fun.info/archimedes/


❑ A floating ship displaces her own weight when afloat

Ship weight W = Buoyancy B

✓ Weight (w) acts downward through the center of gravity.

✓ Buoyancy forces act upward as one force through underwater  
geometric center. B is the geometric center of the volume displaced by 
the ship

✓ Metacenter (M) lies at the intersection of the vector of buoyancy and 
the centerline for  5º - 10º heeling angle

✓ All of the above terms are supported by the “Archimedes Principle”
which….remember…it practically states that the actual ''all up weight"
of a ship and her contents is equal to the weight of water displaced by
the hull.

Ship transverse stability basics (I)



Ship transverse stability basics (II)

❑ The centers of buoyancy (B) and gravity (G) strive at all times to remain vertically aligned.

❑ The measure of a ship's initial stability, when she is upright or nearly upright, is indicated by the
height of the metacenter (M) above (G), which is referred to as the metacentric height ( GM)
and should be +ve for stable ships



Ship transverse stability basics (III)
❑ When a stable ship is caused to heel by an external force, such as wind, wave, or turning motion

(not weight shift), the consequent change in underwater hull shape will result in (B) moving to
one side (B1) while (G) does not move.

❑ The horizontal separation between B and G is called righting level GZ. The resulting righting
moment, (w x GZ), will cause the vessel to oscillate from side to side as it attempts to realign (B)
and (G)



• Stable condition  
- The ship returns to its upright condition after 

removing the external load.

- KM –KG = GM (+ve value )

- GZ righting lever

• Neutral condition 
- The ship will have angle of loll after removing 

the external load.

- KM –KG = 0 and GM = 0

- GZ = 0

• Unstable condition 
- The ship will continue to heel further after 

removing the external load.

- KM –KG = GM (-ve value )

- GZ is a capsizing lever

Stable condition  

Neutral condition  Unstable condition  

Stable condition  

Ship transverse stability basics (IV)



LCF and Metacentric Height

❑ When the ship floats at a particular draft, any
trimming moment acting on the ship would act
about a particular point on the water plane. This
point is the centroid of the area of the water plane,
and is called the center of the floatation.

❑ The metacentric radius of a ship is the vertical
distance between its center of buoyancy and
metacenter.

❑ This parameter can be visualized as the length of
the string of a swinging pendulum of the center of
gravity of the pendulum coincides the center of
buoyancy of the ship. In other words, the ship
behaves as a pendulum swinging about its
metacenter.
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Transverse moment of inertia
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When the ship rolls, if one looks from the
top, the entire water plane area seems to
oscillate about its longitudinal centroidal
axis. The area moment of inertia of
this waterplane area about its
centroidal axis is the transverse
moment of inertia of waterplane at
the corresponding draft.



❑The inclining experiment is essential 

to help us determine accurate values 

of KG and GM in new build vessels

❑Test preparation

- Weight of the empty ship must be accurate

- The ship must be free to roll

- Sea must be calm with no wind

- No disturbance waves

- The test must be conducted on both 

starboard and port side with consistent 

outcome to ensure accuracy.

The inclining experiment



❑Test set up

- A known weight (P) is moved transversely 

across distance (d) as a result of which the 

ship lists. 

- The weight must be so large that:

✓ The ship remains within an initial range of 

stability max list 9- 10º

✓ Equal to about 2 % displacement

- (d)  is approximately ½ the breadth

- The ship’s list due to relocating the weight is 

accurately measured (using pendulum)

- KG and GM can be calculated.

Inclining Experiment



Ship Geometry
❑The determination of a ship’s geometry is a complex task 

that requires the consideration of multiple factors

- Volumes, dimensions of cargo holds
- Seakeeping, i.e safety in waves
- Resistance, i.e. hull performance and energy efficiency
- Aesthetics
- …

❑Accurate representation of geometry is important for 

- Safety and Performance assessment
- Manufacturing 

❑Challenge

- Complex hull shapes
• Double curvature in many places

o Bended beams, plates,..



Exact methods vs numerical aprox.
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Numerical integration
❑Integration is nowadays carried out using computers, e.g.
✓ AutoCAD 

✓ SolidEdge

✓ Plot Digitizer

✓ NAPA

✓ etc…

❑Numerical estimations do not always represent reality 

❑Useful for any geometry (even geometries which do not have analytical 
solutions)

Image credit Napa



Numerical integration
How many points?...too many is not necessarily good!

4 points (using 7 we might get the best fit)

Blue line: section line

Green line: 7. degree

polinomial approx

23 points (using lower degree 

polinomial we might get a better fit)

Blue line: section line

Red line: 1 degree

polinomial approx

Magenta line: 2. degree

polinomial approx



Numerical integration
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Numerical integration

If evenly spaced ordinates

❑ Rectangle rule (Piecewise constant estimation of curve)

❑ Trapezoidal rule (Piecewise linear estimation of curve)

❑ Simpson I rule

❑ Simpson II rule

If unevenly spaced ordinates

• Tsebysev rule

• Gauss rule (used in FEM)
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Numerical integration
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Numerical integration – Simpson I
The spacing needs to be even, because the solution of parabolic 
approximation requires solution of coefficients a, b and c 
based on three consecutive coordinates 
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Numerical integration – Simpson II 
• Third order polynomial calls for 4 ordinates

• Spacing n should be multiple of 3

x

y

 

  
 

A1

 

A2 A3

s s s

L

yn-1

A4

yny0 y1 y2 y3 yn-2

An-1 An

y4

y =f(x)

( )

( )nn yyyyyyyysA

yyyysAAA

++++++++=

+++=++

−1543210

3210321

3...33233
8

3

33
8

3

321 AAA ++ 654 AAA ++

Kreyszig, Erwin. Advanced Engineering Mathematics. New York :Wiley, 10th Edition., p. 832



Numerical integration – example

Station ½ ordinates Simpson’s 

multiplier

Product for 

area

0 1.1 1 1.1

1 2.7 4 10.8

2 4 2 8

3 5.1 4 20.4

4 6.1 2 12.2

5 6.9 4 27.6

6 7.7 1 7.7

𝐴 =
1

3
× h × sum × 2 = 𝟓𝟖. 𝟓𝟑𝐡

Simpson’s 

multiplier

Product for area

1 1.1
2 5.4
2 8
2 10.2
2 12.2
2 13.8
1 7.7

Simpson’s 

multiplier

Product for 

area

1 1.1
3 8.1
3 12
2 10.2
3 18.3
3 20.7
1 7.7

𝐴 =
3

8
× ℎ × sum × 2 = 𝟓𝟖. 𝟓𝟕𝟓𝐡 𝐴 =

1

2
× h × sum × 2 = 𝟓𝟖. 𝟒𝐡

Simpson’s 1st Rule Simpson’s 2nd Rule Trapezoidal Rule



Hydrostatic curves
❑ A series of graphs that give values

such as the center of buoyancy,
displacement, moment causing unit
trim, and center of flotation

❑ This graph is used by the crew on-
board to instantly obtain the value of
a hydrostatic parameter of the ship
for a given draft. However, one
needs to be careful about the multi-
scale horizontal axis that is used
here, since multiple parameters with
different units are plotted on the
same graph.

Image credit Principles of Naval Architecture, SNAME, USA



Hydrostatic curves - example

Assume mean draft 

of a ship is 6 m



Hydrostatic curves - discussion
❑ The only hydrostatic parameters that decrease with increase in draft are 

height of metacenter from the keel (KM), and longitudinal center of 

buoyancy (LCB). 

❑ LCB is calculated from the forward perpendicular.

❑ Decreasing LCB with increasing draft implies, the LCB moves forward 

❑ Does it hold true for all ships? 



Hydrostatic curves - discussion
❑ While, the nature of KM is mostly the same,

the nature of change of LCB with draft will
vary according to the form of the hull.

❑ For example, the graph here is for a
passenger ship with a fine stern

❑ A fine stern means, with increase in
draft, the percentage of submerged
volume towards the forward of the
midship increases more rapidly than
the submerged volume in the aft.

❑ Hence, at larger drafts, a majority of
the submerged volume will be
concentrated towards the forward of
the midship.



Hydrostatic curves - discussion
❑ If this would have been a ship with finer bow and fuller stern, an increase in draft

would have caused the LCB to shift towards the aft, thereby showing opposite nature
on the hydrostatic curve.

❑ A ship designer can therefore predict the hullform of a ship just by
looking at its LCB curve.



Bonjean curves
They are used for the 
purpose of obtaining, for 
any given waterline, the 
areas of the immersed 
portion of each transverse 
section throughout the 
ship's length

Example

• Path KCL1W1K equals frame 
area A at point draught Q

• This can be used to estimate 
the buoyancy V=A*L of this 
section having length L



Bonjean curves example

Point of immersion

❑ The immersed sectional area value for is the distance from the section base line to the intersection point of a 
Bonjean curve with the waterline. 

❑ By using Bonjeans the displacement and Buoyancy can be calculated for inclined waterlines. 

❑ This may be useful in trim analysis and ship launching calculations



Curves of form - discussion

❑ Play important role in optimizing the hull shape,
and fairing the hull to a fine shape.

❑ The curves are not smooth.

❑ This implies that the hull at this stage of design,
is not completely smooth, and would result in
increased resistance.

❑ The same also applies to all the hydrostatic
curves. Both these curves, along with the
sectional area curve of a ship are simultaneously
referred to, at each stage of hull modification,
until a smooth set of curves are obtained.



Summary

❑ Ship hydrostatics relate with complex hull shapes.

❑ Ship transverse stability for a ship subject to external load
✓ Stable if she returns to her upright condition

✓ Neutral if she developes large angle of loll 

✓ Unstable if she continues to capsize

❑ Numerical integration methods embedded in CAD packages  
help with the determination of areas, volumes, moments etc. 
These are used to assess ship characteristics such as :

• Buoyancy

• Wetted surface

• Center of buoyancy 

• …etc.



Thank you !


