#### **MEC-E1004 Principles of Naval Architecture**

Hydrostatics and Resistance calculations (Delftship)



# Calculating hydrostatics on Delftship



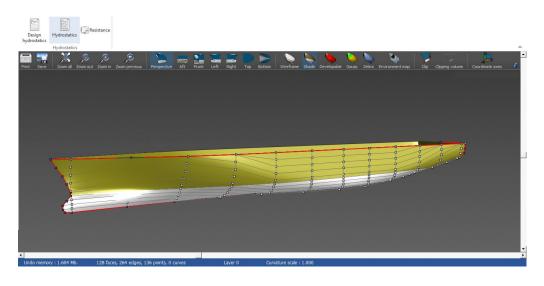
By this stage you should have your hull surface ready whether on Delftship or imported from somewhere else.

## Tips before going to calculations



Make sure you have set the right dimensions in project settings

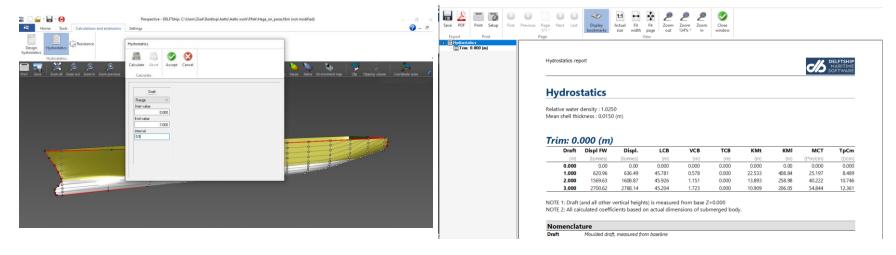



Resistance analysis on Delftship is limited and you should check whether the built-in methods are compatible with your hull.



### **Design Hydrostatics**

Calculate you hull's hydrostatic at the design draft. Once you click on Design hydrostatics, a report will be printed

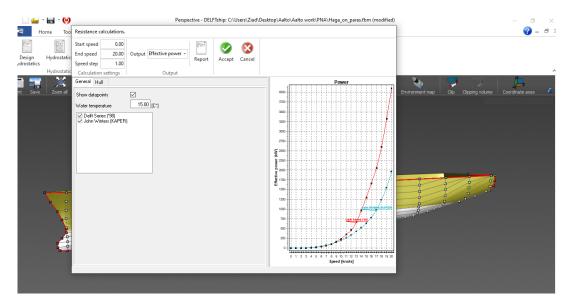

| Нада                            |                          |                                 |                          |
|---------------------------------|--------------------------|---------------------------------|--------------------------|
| Designer                        | ZA                       |                                 |                          |
| Created by                      |                          |                                 |                          |
| Comment                         |                          |                                 |                          |
| Filename                        | Haga_on_paras.fbm        |                                 |                          |
| Design length                   | 103.13 (m) Mids          | ship location                   | 51.565 (m)               |
| Length over all                 | 103.13 (m) Rela          | tive water density              | 1.0250                   |
| Design beam                     | 17.440 (m) Mea           | n shell thickness               | 0.0150 (m)               |
| Maximum beam                    | 17.453 (m) App           | endage coefficient              | 1.0000                   |
| Design draft                    | 3.000 (m)                |                                 |                          |
|                                 |                          |                                 |                          |
| Volume properties               |                          | Waterplane properties           |                          |
| Moulded volume                  | 2678.59 (m³)             | Length on waterline             | 96.826 (m)               |
| Total displaced volume          | 2700.62 (m³)             | Beam on waterline               | 17.441 (m)               |
| Displacement                    | 2768.14 (tonnes)         | Entrance angle                  | 1.131 (Degr.             |
| Block coefficient               | 0.5261                   | Waterplane area                 | 1206.0 (m²)              |
| Prismatic coefficient           | 0.5852                   | Waterplane coefficient          | 0.7048                   |
| Vert. prismatic coefficient     | 0.7404                   | Waterplane center of floatation | 43.023 (m)               |
| Wetted surface area             | 1468.8 (m <sup>2</sup> ) | Transverse moment of inertia    | 24604 (m <sup>4</sup> )  |
| Longitudinal center of buoyancy | 45.204 (m)               | Longitudinal moment of inertia  | 547311 (m <sup>4</sup> ) |
| Longitudinal center of buoyancy | -6.570 %                 |                                 |                          |
| Vertical center of buoyancy     | 1,723 (m)                |                                 |                          |





#### **Hydrostatics**

 Calculate hydrostatics at various drafts using Hydrostatics button. Set start value, end value and intervals. Click on calculate and then a report with hydrostatics at various drafts will be printed.






#### Resistance analysis

• Within Delfship Resistance is analyzed with only two methods, Delft series and John Winters (KAPER). You should check if your model is compatible with their criteria. Another method is the Holtrop and Mennen method (in Tutorial 8 you will be provided an \*.xls for this).

Click on Resistance button. Set the speed range and then it will show you a resistance/power curve. You can print a report with tabular values.





#### Thank you

