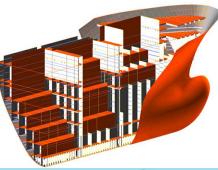

MEC-E1004 Principles of Naval Architecture

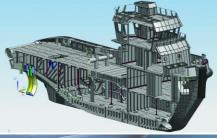
Lecture 7 – *Ship Structures*

Learning points !

□After the lecture, you will be able to list and explain

- ✓ The terminology related to ship structural design and the framework used
- ✓ The general characteristics of a ship's structure
- Determine the mid-ship section, frame stiffening, ship building material etc. of your project ship





Assignment 7 – Ship Structures

List and discuss structural requirements for your ship including

- Regulatory requirements
 - ✓ Longitudinal (bending) strength
 - ✓ Shear strength
 - \checkmark Hull girder ultimate strength
 - ✓ Structural continuity
- Ship specific challenges (e.g., structural challenges related with the GA development)
- □ Considering the structural requirements, determine a schematic structural solution for your project ship including
 - Preliminary cross section drawings namely the mid ship section and the engine room section
 - Specify main and forecastle deck heights, double bottom heights, framing system / spacing, ship-building materials

Introduction

□ Interconnected beams and plates

General functional requirements

- ✓ To form a water and weather tight body→ Buoyancy, stability
- ✓ To provide sufficient structural strength to deal with the anticipated structural loading

General objectives

- ✓ High strength/weight ratio
- \checkmark Affordability
- ✓ Producibility
- ✓ Fire resistance

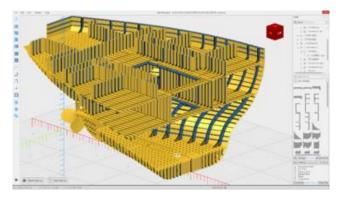


Image credit Napa

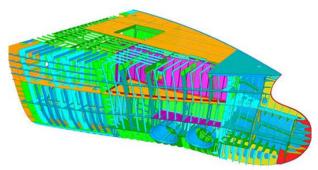
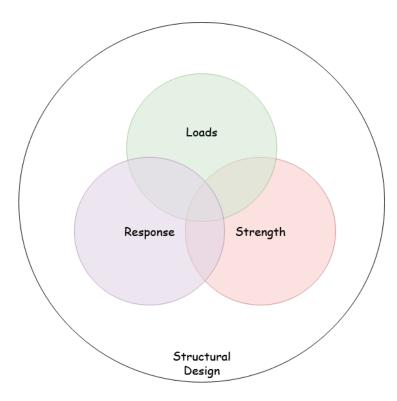
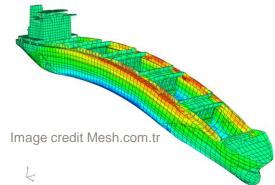



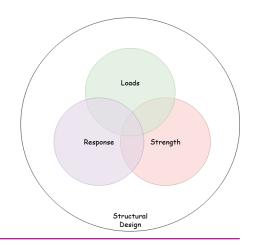
Image credit Wärtsilä

Structural Design

Structural Design – basic elements

□Loads


- A force applied to a structure or its components
 - ✓ Static loads
 - $\checkmark\,$ Dynamic loads
- Structural loads cause stresses, deformations, and displacements in structures


Responses

- A load induced deformation / dynamic response
 - ✓ Static structural response (e.g., hogging & sagging)
 - ✓ Dynamic structural response (e.g., whipping & springing)

Strength

- Strength is a measure of the capacity of a structural element to withstand/carry a structural load without failure or plastic (permanent) deformation

https://www.youtube.com/watch?v=j1dGF6cTSRA

Discussion

Static vs. Dynamic Loads

Global vs. local loads

□ Springing


□ Slamming vs Whipping

□ High vs. low frequency loads

 \Box Sloshing

□ Ship collision and grounding

Green water on decks

Aalto University School of Engineering

Discussion

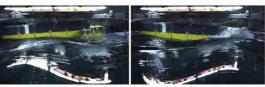
□ Static vs. Dynamic Loads

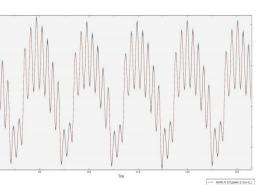
Global vs. local loads

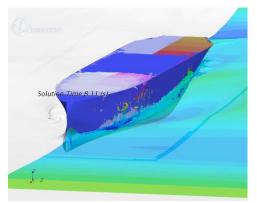
□ Springing

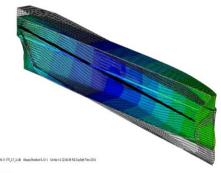
□ Slamming vs Whipping

□ High vs. low frequency loads


□ Sloshing


□ Ship collision and grounding


Green water on decks



Ingo Brog-2 accessent Dr. Brog Time + 0.000 Venary Van UL Magintude Neformad Van UL Defermation Scule F

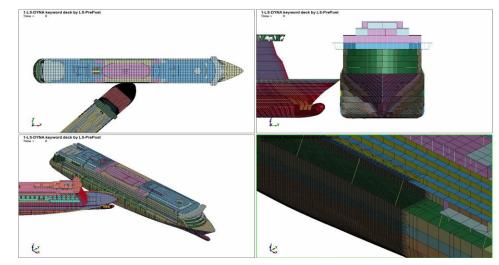
8

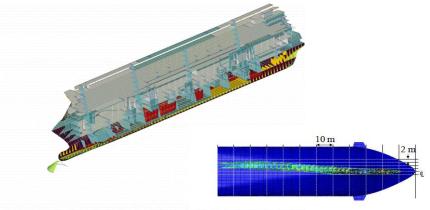
Discussion

□ Static vs. Dynamic Loads

Global vs. local loads

□ Springing


□ Slamming vs Whipping

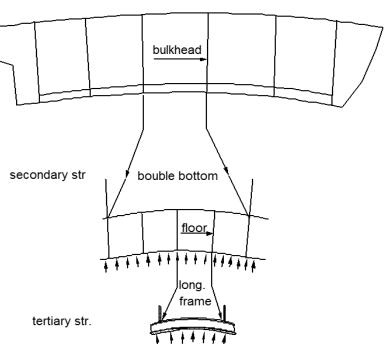

□ High vs. low frequency loads

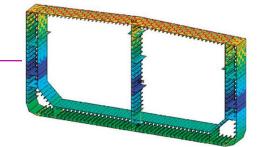
 \Box Sloshing

□Ship collision and grounding

Green water on decks

Hierarchy levels

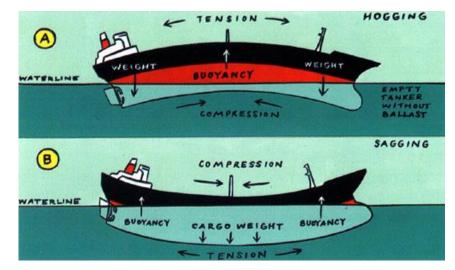

primery structure laivapalkki


hull girder

- □ Primary level, s1
 - e.g., ship beam, longitudinal strength
- □ Secondary level, s2
 - e.g., double bottom structure
- □ Tertiary level, s₃
 - e.g., plate frames

This division is commonly applied in Classification Society Rules, For example,

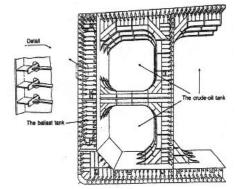
https://www.lr.org/en/rules-regulations/

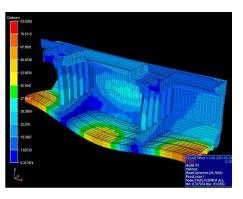


Primary Hierarchy Level – S1

Main (hull girder) elements forming closed compartments

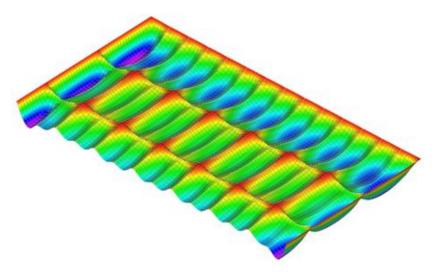
- Deck
- Bottom shell
- Side shell
- Longitudinal bulkhead
- Transverse bulkhead
- Bilge
- □ These primary level (s1) elements carry much of the hull girder bending, shear and torsion loads
- □ There are ship types that lack some of the main elements
 - Ro-Ro ships: no transverse bulkheads
 - Container ships: no main deck




Secondary Hierarchy Level – S2

□ Elements that may experience significant deformations

- Double bottom
- Double side
- Web frames
- Longitudinal girder
- Grillages
- □ These elements transfer loads between primary (s1) and tertiary (s3) hierarchy level elements
 - Acts as boundary condition for level 3 response evaluation
 - Acts as internal load for level 1 response evaluation
- □ The share of load carried by a specific type of element depends on the ship type
 - Ro-Ro ships: web frame carries much load
 - Bulk carriers: double bottom carries much load

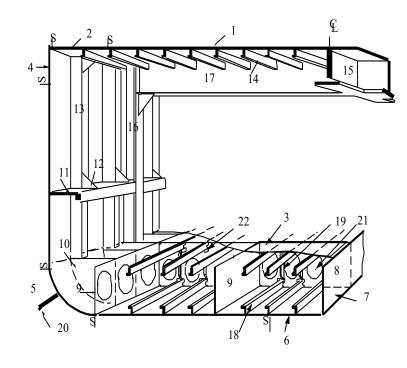


Tertiary Hierarchy Level – S3

$\square Consist of local parts such as$

- Plating
- Longitudinals
- Transversals

□Can be assessed using basic beam and plate theory

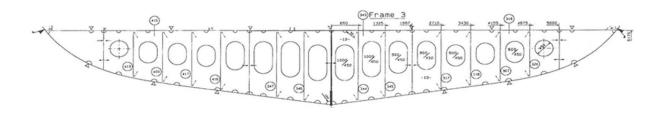

Main hull girder components

- 1. deck plating
- 2. deck stringer
- 3. tank top
- 4. sheer strake
- 5. bilge strake
- 6. keel plate
- 7. center girder
- 8. floor

11.

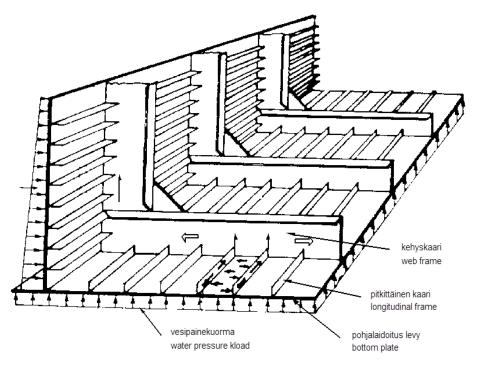
- 9. side girder
- 10. side bracket
 - side stringer 22

- 12. bracket
- 13. frame
- 14. deck beam
- 15. longitudinal deck girder
 - 16. web frame
 - 17. transverse deck girder
 - 18. bottom frame
 - 19. stiffener
 - 20. bilge keel
 - 21. manhole
 - 22. notch



Openings (Man-holes)

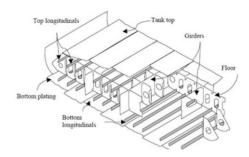
- Needed for ship systems, maintenance, etc.
- The size of a manhole is to be defined considering its required function (e.g. cabling) and general design criteria (e.g. vibration, strength)

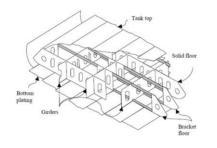


Load transfer mechanisms

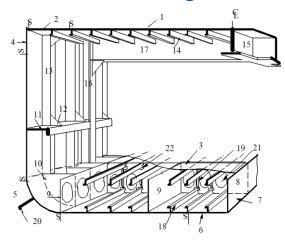
Pressure on plate supported by longitudinals and web frames

□Line loads on longitudinals supported by web frames

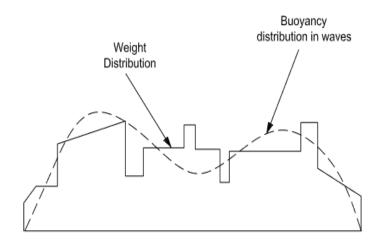

Point loads on web frames supported by side structures

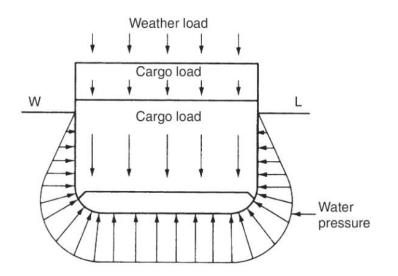

Framing systems - revision

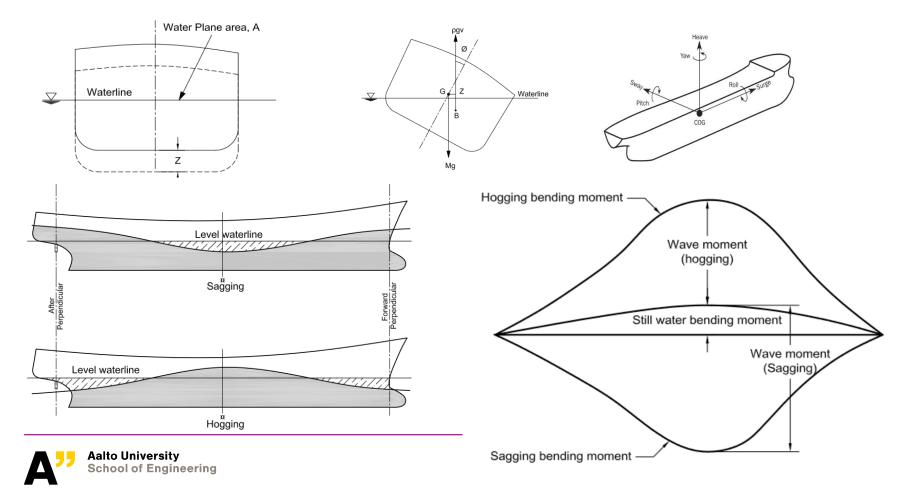
Longitudinal framing

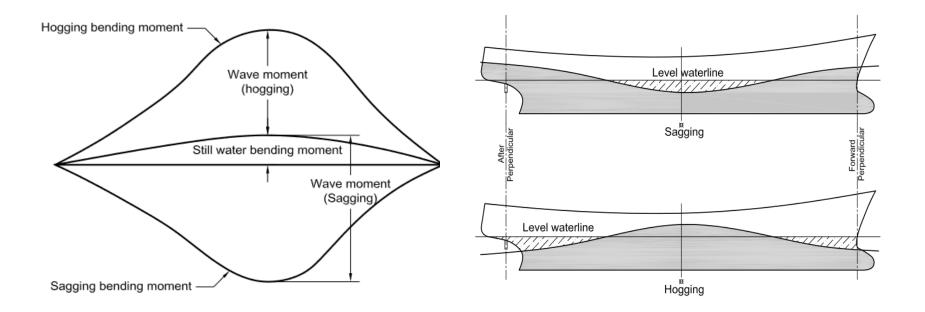

- Closely spaced longitudinals
- Few and widely spaced transverse frames

Transverse framing

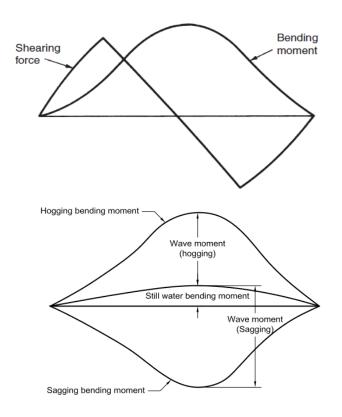

- Many closely spaced transverse frames
- Few and widely spaced longitudinals


Mixed framing

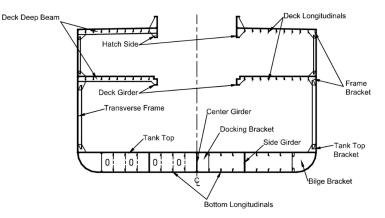

Still water loads

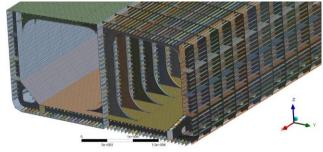


How about ship motions ?


Wave loads

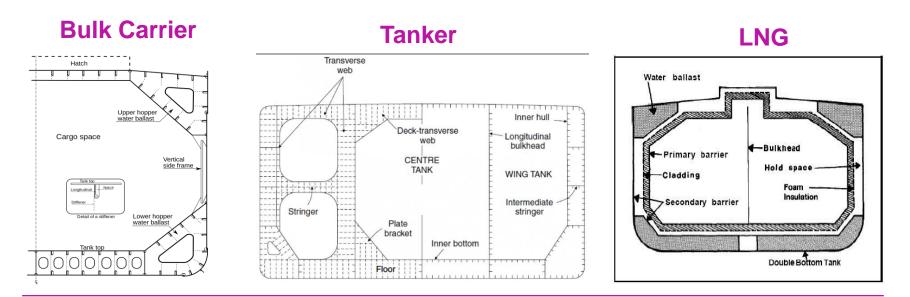
Mid-ship section


- Maximum longitudinal bending moment is experienced by a hull girder within this midship zone.
- The midship section plays an important role from longitudinal strength point of view
- It also depicts the structural layout depending on the type of cargo the ship is going to carry.



The mid ship section

- The longitudinal strength of hull girder depends on the section modulus of the midship section.
- This in turn depends on the scantlings and layout of the structural members in the midship region.
- The midship region extends ¼ length of the ship forward and aft of midship. Over this midship region the scantlings of the structural members are kept the same.



https://www.youtube.com/watch?v=a_hRHgG5-8s

Different mid ship sections (1)

□ Different types of ships have different midship sections.

- □ The structural arrangement and their scantlings are shown in these plans
- □ These are statutory structural plans which are to be approved by the concerned classification society prior to actual construction of ship

Different mid ship sections (2)

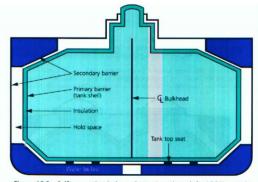
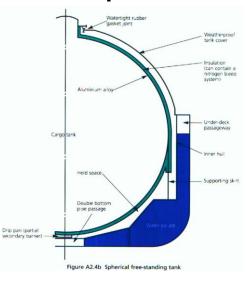



Figure A2.3a Self-supporting independent prismatic tank for LPG/Ammonia

LPG

LNG - spherical

General Cargo

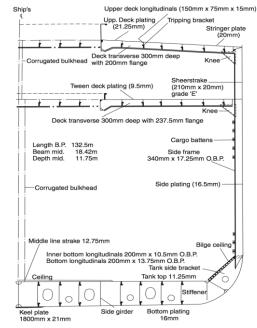
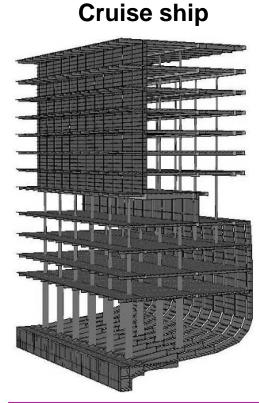
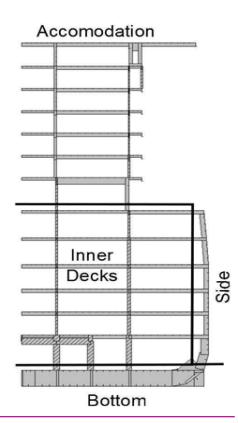
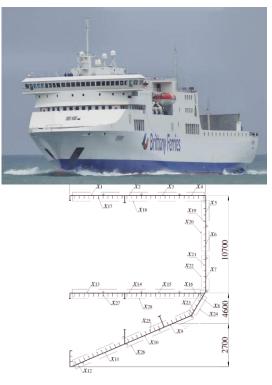



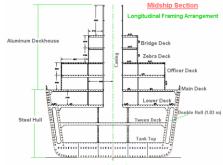
FIGURE 17.6 General cargo ship-midship section



Different mid ship sections (3)

Stiffened plate element

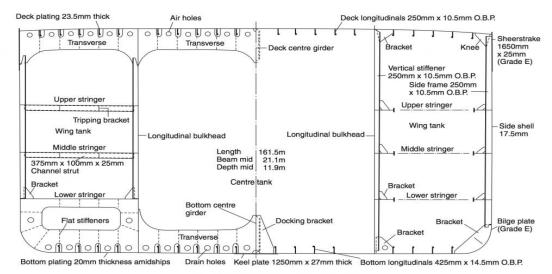



Different mid ship sections (4)

Ro-Pax ship

Ice breaker

FR.98 LOOKING FWD



Section Modulus (Home work)

□Calculate the section modulus of your ship's mid ship section (this is part of your assignment)

□Refer to :

- Page 88,89 of course booklet
- Tutorial background notes files : T7_Background notes 1.pdf, T7_Background notes 2.pdf
- Section modulus calculation.xls

Structural loads

Question: What different types of structural loads can you mention?

Structural loading

□ Internal vs. external loads

- Static vs. dynamic loads
 Inertia forces in case of dynamics
- Controlled vs. uncontrolled loads
 - Can the crew impact on the load e.g. by adjusting the speed and bearing of the ship?

Deterministic vs. probabilistic loads

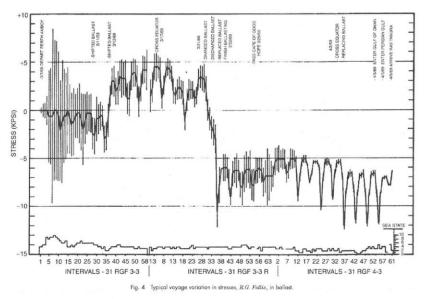
Design loads vs. accidental loads

- Forces of nature are unknown and do not have any specific upper limit

	Type of load	Frequency	Examples		
1	Constant	Non-periodic	Ship production and own weight		
2	Once	Non-periodic	Launching, water pressure on bulkheads in accidents		
3	Docking period	Docking period	Docking loads, e.g. bottom pillars		
4	Journey	Typical journey time	Still water shear and moment Static pressure Temperature loads		
5	Daily	24h	Loads due to temperature variations		
6	Wave	Wave experiencing period wave length, ship speed	Hydrodynamics loads Acceleration loads Sloshing loads		
7	Vibrations	Eigenfrequency of the structure	Hull girder vibration due to impact (whipping) and waves (springing)		
8	Impact	Seconds	Slamming Ice load Collision and Grounding		

Wave loading

□The sea surface is random and causes high loading on ships


□The amount of loading depends or the operational area

- Selection of design operational area affects the ship design
- The North Atlantic is often considered "as the worst case" for wave loads
- Operations in ice cause high local loads
- Structural loads acting on a ship are stochastic and complex – there is no maximum for the loads!
- Uncertainty must be treated probabilistically.

Image credit AP

Strength vs Structural Failure

Ship Strength is a measure of the capacity of the ship structure to withstand/carry a load

□ If a load induced stress exceeds ship strength a structural failure may occure

□ Different types of structural failures

- Ductile fracture
 - \checkmark Extensive plastic deformation
- Brittle facture
 - ✓ Sudden, very rapid cracking of equipment under stress where the material exhibited little or no evidence of ductility or plastic degradation before the fracture occurs
- Fatigue fracture
 - ✓ Material failure that occurs as a result of excessive cyclic loading
- Elastic or plastic deformation
- Instability: buckling or tripping
- Creep
 - ✓ Deformation that happens gradually

□ Strength and corrosion margins necessary

Image credit Canadian Coast Guard

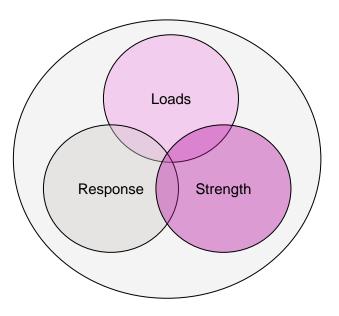
Structural design – work steps

□ Estimation of loads

- Hydrostatic and hydrodynamic loads
- Considerations of accelerations due to ship motions

□ Evaluation of the structural response

- Normal and shear stresses
- Deflections
- Eigen frequencies and modes

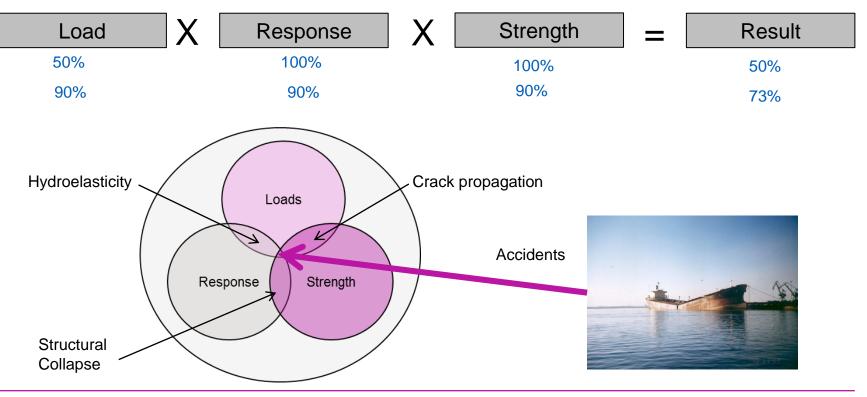

□ Strength assessment

- Ultimate (yield)
- Buckling
- Fatigue
- Brittle fracture

\square Allowable stress vs. limit state design

 Designers typically account for a strength marginal whose magnitude depends on level of optimization and uncertainty

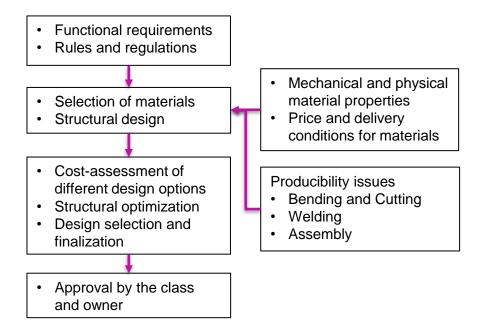
Structural Design Framework


What happened here ?

Aalto University School of Engineering

Structural analysis

Successful vs. unsuccessful structural analysis



The structural design process

□ Many stakeholders

□ Process steps

- Preliminary weight estimates using empirical data
- Class regulations \rightarrow basic dimensioning
- Determination of a steel GA
 - Stiffener spacing
 - Web frame spacing
- Detailed weight estimates
- Identification of problem areas
 - Direct analysis of problem areas
- Class approval
- Determination of production drawings
- Consideration of feedback from
 - The builder
 - The operator/owner

Shipbuilding materials

- □ Steels are the most common materials being used for shipbuilding (AH36 typical)
 - Provide a favorable combination of a relatively high strength/weight ratio, producibility, and costs

□ Alternative materials include

- Composites
 - ✓ Lightweight, strong, and stiff (+)
 - ✓ Do not corrode (+)
 - ✓ Excellent fatigue properties (+)
 - ✓ Fire safety issues (-)
 - ✓ High building costs (-)
- Aluminum
 - ✓ High strength/weight ratio (+)
 - ✓ Corrosion resistant (+)
 - ✓ Challenging to work with (-)
 - ✓ Fire safety issues (-)

Composite vessels. Image credit DAMEN

Aluminium catamaran. Image credit Meyer Turku

Shipbuilding materials

Classification of steel

- Classification based on yield point
 - normal steel (NS),
 - high strenght steel (HS)
 - extra high strenght steel (EHS)
- Classification based on impact toughness (grade):
 - A-, B-, D, F- and E-grade
- Production methods need approval from classification society

□ Steel quality measures

- Chemical composition
- Carbon equivalent
- Yield and tensile stress
- Fracture strain
- Impact toughness
- Z-strength properties

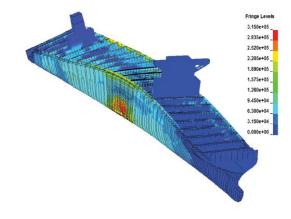
SHIPBUILDING STEELS ACCORDING TO THE RULES OF THE LISTED CLASSIFICATION SOCIETIES (SEE BELLOW)					STRUCTURAL STEELS ACCORDING TO EURONORMS		
Strength	Grade	Delivery Condition	Max CE ¹⁾	Others	Euronorm	Grade ²⁾	Condition
7	A, B	AR CR		Shei for Low Temperature Service	EN 10025:1990 + A1:1993	S235JR / S235JRGn ²⁾	AR
Normal	D					S235J0	
a	E					S235J2Gn ^a	CR
	A32	TM	0,36			S275JR / S275JRGn ²⁾	AR
	D32					S275J0	AR
	E32					S275J2Gn ²⁾	CR/1
	F32					S355JR	тм
	A36		0,38			S355J0	
High	D36					S355J2Gn ^a	
ĝ.	E36					S355K2Gn ²⁾	
	F36				EN 10025-22005	S235JR	AR
	A40		0,40			S235J0	
	D40					S235J2	CR
	E40					S275JR	AR
	F40					S275J0	
	A420					S275J2	CR/1
	D420					S355Jn ²⁾ +M	- TM
	E420				EN 10113-3:1993 or 07 EN 10025-4:2000	S275M	
ñ	A460					S275ML	
Extra high	D460					\$355M	
iġh	E460					\$355ML	
	A500					S420M	
	D500					S420ML	
	E500					S460ML	
-	NV 2-2		0,34			S460ML	
Normal	NV 2-3				EN 10225:2001 (OFFSHORE STEELS)	S355G4+M	
าล	NV 2-4					S355G11+M	
	NV 4-2		0,38			S355G12+M	
High	NV 4-3	l				S420G3+M	
	NV 4-4	I				S420G4+M	1

 Ruukki Profiler AS is approved by the following Classification Societies

 DN - Det norske Veritas
 ABS - American Bureau of Shipping

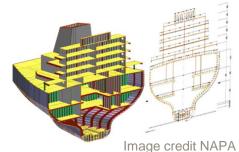
 R. Loyds Register of Sipping
 RS - Russian Martime Register of Shipping

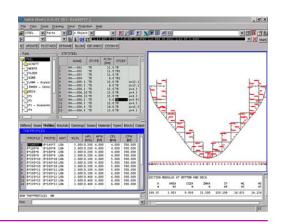
 GL - Germanischer Loyd
 RNA - Registro Italiano Navele


 V - Bureau Veritas
 NK - Nipon Kauji KYOKAI

Structural design tools – FEA method

 Support BHD
 Collapse
 Location
 Support BHD





Structural design tools – NAPA steel

□An integrated tool for structural design tasks

- Weight and center of gravity, bill of materials, welding lengths and painting areas
- Generating data for production planning and cost estimation
- Section modulus and radius of gyration
- Generation of drawings and visualizations for plan approval
- Data exchange with classification societies' systems for scantling analysis and FEM
- Export of the 3D structural model to outfitting and production design systems
- Automatic idealization and generation of FEM mesh, export to FEM solvers such as Nastran and Ansys

Summary

- Different levels with regards to structural analysis
 - Primary, secondary, tertiary
- Components of the structural design framework
 - Load, response and strength
- Time scales
 - Dynamic, quasi-static, static
- Loads in the maritime environment are stochastic

Image credit Mesh.com.tr

Thank you !