MEC-E1004 Principles of Naval Architecture

Section modulus and bending moment calculations

Aalto University

Determining main dimensions

Make sure you have the scantlings and the dimensions of the ship section ready

Be careful of the units used in defining scantlings and during calculations

For simplicity, we do not consider any stiffeners

Define Scantlings

\square Define the dimensions of the plating

$\checkmark \quad b$ is the horizontal dimension parallel to the NA
$\checkmark d$ is the vertical dimension perpendicular to the NA
\square Then define the number of each component

Item $[-]$	Number of parts n [-]	Horizontal b [m]	Vertical d [m]	Height h_{i} [m]	$\begin{gathered} \text { Area } \\ a=n^{*} b^{*} d \\ {\left[m^{2}\right]} \end{gathered}$	1st Moment $\begin{gathered} S=a^{*} h_{j} \\ {\left[\mathrm{~m}^{3}\right]} \end{gathered}$	$\begin{gathered} \text { 2nd Moment @ centroid } \\ i=n^{*} b^{*} d^{3} / 12 \\ {\left[m^{4}\right]} \end{gathered}$	2nd moment @BL $\begin{gathered} \mathrm{I}_{\mathrm{S}}=\mathrm{a}^{*} \mathrm{~h}_{\mathrm{j}}{ }^{2} \\ {\left[\mathrm{~m}^{4}\right]} \end{gathered}$
Bottom plating	1	10.000	0.020	0.000	0.200	0.000	0.000	0.000
Inner bottom plating	1	10.000	0.018	1.500	0.180	0.270	0.000	0.405
Strength deck plating	1	6.000	0.022	13.000	0.132	1.716	0.000	22.308
2nd deck plating	1	6.000	0.016	10.000	0.096	0.960	0.000	9.600
Side plating	1	0.014	11.500	7.250	0.161	1.167	1.774	8.463
Bilge	1	0.016	1.500	0.750	0.024	0.018	0.005	0.014
Center girder (1/2)	1	0.012	1.500	0.750	0.018	0.014	0.003	0.010
Upper hatch side girder	1	-	-	13.000	0.008	0.104	0.000	1.352
Lower hatch side girder	1	-	-	10.000	0.003	0.030	0.000	0.300
Insert other items					0.000	0.000	$0.00 \mathrm{E}+00$	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
				Σ	0.822	4.279	1.782	42.451

Height (hj)

\square Define the height of each component's centroid above the baseline.
\square For instance, the side shell in the figure has (h) above BL equal to its half length + thickness of the bottom plate.
\square You can add more structural items in the empty cells.

Item	Number of parts n	Horizontal b	Vertical d	$\begin{gathered} \text { Height } \\ h_{i} \end{gathered}$	$\begin{gathered} \text { Area } \\ a=n^{*} b^{*} d \end{gathered}$	1st Moment $\mathbf{S}=\mathrm{a}^{*} \mathbf{h}_{\mathrm{j}}$	2nd Moment @ centroid $i=n^{*} b^{*} d^{3} / 12$	2nd momen $I_{s}=a^{*} h_{j}^{j}$
[-]	[-]	[m]	[m]	[m]	[m^{2}]	[m^{3}]	[m^{4}]	[m^{4}]
plating	1	10.000	0.020	0.000	0.200	0.000	0.000	0.000
sttom plating	1	10.000	0.018	1.500	0.180	0.270	0.000	0.405
7 deck plating	1	6.000	0.022	13.000	0.132	1.716	0.000	22.308
k plating	1	6.000	0.016	10.000	0.096	0.960	0.000	9.600
Iting	1	0.014	11.500	7.250	0.161	1.167	1.774	8.463
	1	0.016	1.500	0.750	0.024	0.018	0.005	0.014
jirder (1/2)	1	0.012	1.500	0.750	0.018	0.014	0.003	0.010
latch side girder	1	-	-	13.000	0.008	0.104	0.000	1.352
atch side girder	1	\cdot	-	10.000	0.003	0.030	0.000	0.300
her items					0.000	0.000	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+0$
her items					0.000	0.000	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+0$
her items					0.000	0.000	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+0$
her items					0.000	0.000	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+0$
her items					0.000	0.000	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+0$
				Σ	0.822	4.279	1.782	42.451

Aalto University
School of Engineering

2nd moment of area @centroid (i)

\square Calculate the area moment of inertia of each component about its centroid.
\square For rectangular cross-sections (e.g. plates) $\mathbf{i}=$ breadth x depth^3/12

Item [-]	Number of parts n [-]	Horizontal b [m]	Vertical d [m]	Height h_{i} [m]	Area $\begin{gathered} a=n^{*} b^{*} d \\ {\left[m^{2}\right]} \end{gathered}$	$\begin{gathered} \text { 1st Moment } \\ \qquad \mathrm{S}=\mathrm{a}^{*} \mathrm{~h}_{\mathrm{j}} \\ {\left[\mathrm{~m}^{3}\right]} \end{gathered}$	$\begin{gathered} \text { 2nd Moment @ centroid } \\ i=n^{*} b^{*} d^{3} / 12 \\ {\left[\mathrm{~m}^{4}\right]} \end{gathered}$	$\begin{gathered} \text { 2nd moment @BL } \\ \mathrm{I}_{\mathrm{S}}=\mathrm{a}^{*} \mathrm{~h}_{\mathrm{j}}{ }^{2} \\ {\left[\mathrm{~m}^{4}\right]} \end{gathered}$
Bottom plating	1	10.000	0.020	0.000	0.200	0.000	0.000	0.000
Inner bottom plating	1	10.000	0.018	1.500	0.180	0.270	0.000	0.405
Strength deck plating	1	6.000	0.022	13.000	0.132	1.716	0.000	22.308
2nd deck plating	1	6.000	0.016	10.000	0.096	0.960	0.000	9.600
Side plating	1	0.014	11.500	7.250	0.161	1.167	1.774	8.463
Bilge	1	0.016	1.500	0.750	0.024	0.018	0.005	0.014
Center girder (1/2)	1	0.012	1.500	0.750	0.018	0.014	0.003	0.010
Upper hatch side girder	1	-	-	13.000	0.008	0.104	0.000	1.352
Lower hatch side girder	1	-	-	10.000	0.003	0.030	0.000	0.300
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
Insert other items					0.000	0.000	0.00E+00	0.00E+00
				Σ	0.822	4.279	1.782	42.451

Ship main particulars

\square Insert the ship main particulars, length, breadth, block coefficient C_{b} and height of the deck above the baseline (the ship's depth) and material yield stress.

Ship main particulars		
Ship Depth D	13.00	m
Ship length L	100.00	m
Ship Breadth B	13.00	m
Cb	0.7	
$\sigma_{\text {yield }}$	235	MPa

Bending moment calculation

Murray's method:

- Murray's Method can be employed to estimate the longitudinal bending moment amidships which arises when the ship is stabilized on a 'Standard Wave'.
- Standard Wave means a wave with length equals to the length of the ship (L) and height equals $0.607 \sqrt{L(\text { meter) }}$.

Bending moment calculation

Murray's method:

- The wave-induced bending moment is given as a function of ship breadth (B) and Length (L).

$$
\mathrm{M}_{\mathrm{w}}=\mathrm{b} \cdot \mathrm{~B} \cdot \mathrm{~L}^{2.5} \times 10^{-3} \text { tonnes metres }
$$

where b is a constant based on the ship block coefficient C_{b} and whether the ship is sagging or hogging.

	Values of b	
C_{b}	Hogging	Sagging
0.80	10.555	11.821
0.78	10.238	11.505
0.76	9.943	11.188
0.74	9.647	10.850
0.72	9.329	10.513
0.70	9.014	10.175
0.68	8.716	9.858
0.66	8.402	9.541
0.64	8.106	9.204
0.62	7.790	8.887
0.60	7.494	8.571

Bending moment calculation

Murray's method:
\square Total bending moment equals the summation of the still water bending moment and wave-induced bending moment.
\square The still water bending moment requires definition of load distribution; as it is still not available we can study only the wave induced bending moment and the corresponding maximum stress on deck and bottom plates.

Bending moment calculation

Murray's method:
\square Enter the still water bending moment, if available. +ve for hogging and -ve for sagging.
\square Excel sheet will calculate the wave induced bending moment based on Murray's method.
\square Total bending moment(M) equals (wave sagging M + still water sagging M OR wave hogging M + still water hogging M)

Bending moment			Notes
Still water bendign moment	$0.00 \mathrm{E}+00$	N.m	+ve hogging -ve sagging. If it is not availabe, enter 0.
wave induced hogging moment	$1.15 \mathrm{E}+08$	N.m	+ve hogging -ve sagging.
wave induced sagging moment	$-1.30 \mathrm{E}+08$	N.m	+ve hogging -ve sagging.
Total bending moment	$-1.30 \mathrm{E}+08$	N.m	+ve hogging -ve sagging.

Results

- The results you get in the spreadsheet are:
- The location of the neutral axis.
- The sectional modulus at the deck and the bottom.
- Stresses at the deck and the bottom.
- The area moment of inertia of the ship section considered.
- Factor of safety (FOS) ratio between yeild stress and max bending stress

Response			Notes
Moment Maximum	$1.30 \mathrm{E}+08$	$\mathrm{~N} . \mathrm{m}$	
$\sigma_{\text {deck }}$	23.07	MPa	tention in hogging , compression in sagging
$\sigma_{\text {bottom }}$	15.40	MPa	compression in hogging , tention in sagging
Type of deformation	Sagging		
FOS 10.19			

Aalto University
School of Engineering

Results

- There are 5 sheet to calculate the second moment of area of several stiffeners shapes.

```
Index | DefShapes | Coords | Func Index | About
```

- You can use this calculator to define the second moment of inertia (i) of the different structural items in your design as L beams, T girders, circular pillars etc.

Results

- Go to defshapes sheet and select the appropriate shape of the stucutral member.
- Cross-section of the item will be plotted against the table
- Define the dimensions of the section and get the results from the value column

Thank you

Aalto University

