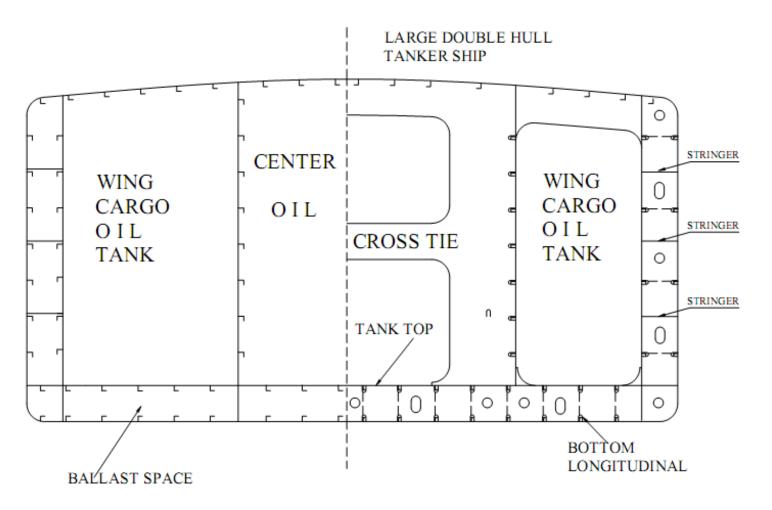
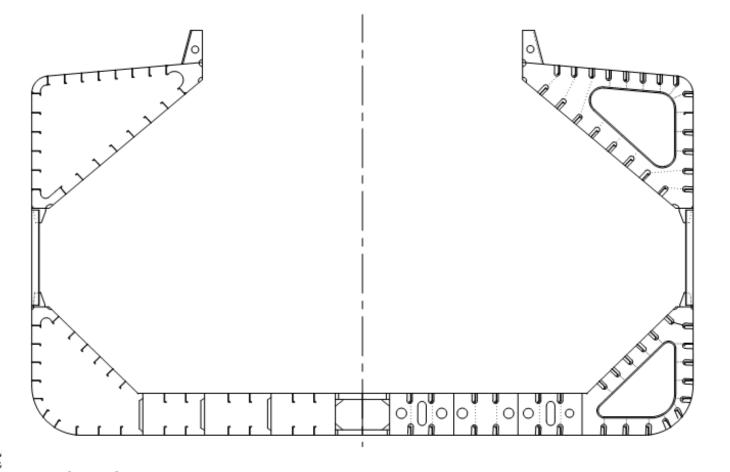
MEC-E1004 Principles of Naval Architecture

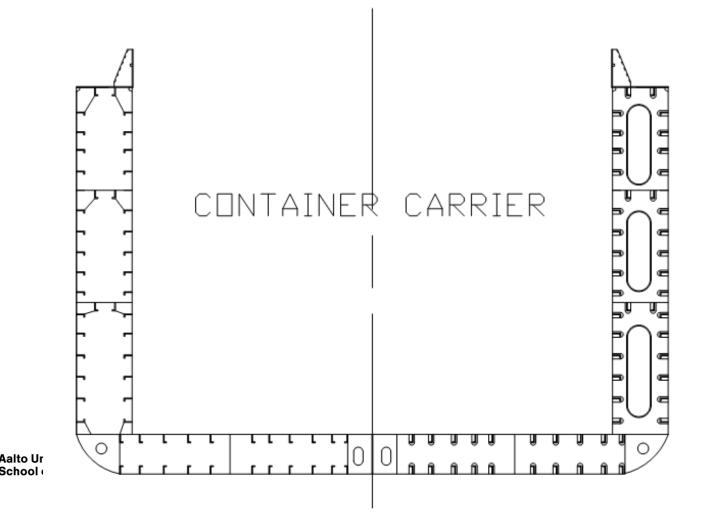
Scantling


Scantlings in Class Society Rules

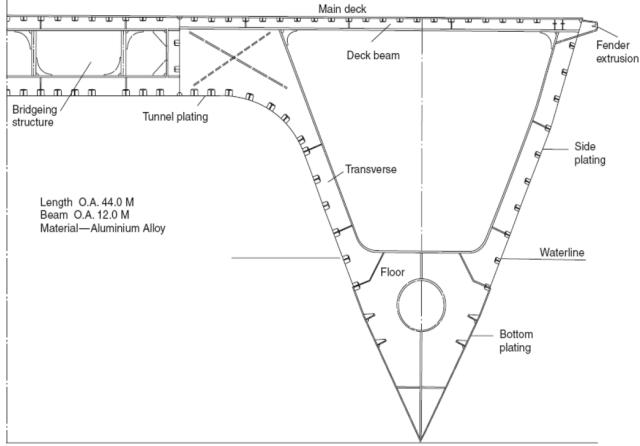
- Scantling should be obtained based on the rules of the corresponding potential classification society.
- Here DNVGL rules "Hull Structural Design, Ships with Length 100 meters and above" is used only as an example.
- Before calculating scantling you should have the ship main particulars, subdivisions and the shape of the amidship section including frame spacing and web frame spacing.

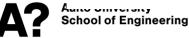

DNVGL rules "Hull Structural Design, Ships with Length 100 meters and above" http://rules.dnvgl.com/docs/pdf/dnv/rulesship/2016-01/ts301.pdf

Amidships section of an Oil tanker


A?

Amidship section of a Bulk carrier




A? [^]

Amidships section of a container ship



Amidships section of a catamaran

Amidships section of a cruise ship

Aalto University School of Engineering

Material

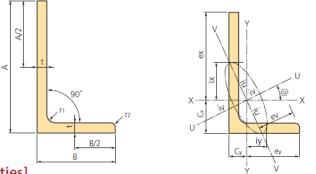
□ Go to the material section in the corresponding rules and define the hull structural material (Section 2 In DNVGL Rules)

Sec. 2	Materials	. 18
A. Gene	eral	18
A 100	Introduction	18
A 200	Introduction Material certificates	18
B. Hull	structure steel	18
B 100	General	18
B 200	Material designations and classes	18
B 300	Basic requirements	19
B 400	Requirements for low air temperatures	20
B 500	Material designations and classes Basic requirements. Requirements for low air temperatures Material at cross-joints	20
C Alter	mative structural materials	21
C 100	Aluminium	21
C 200	Stainless steel	21
C 300	Steel sandwich panel construction	22
C 400	Aluminium Stainless steel Steel sandwich panel construction Concrete Barge	22

Plating and stiffeners

Define the min thickness of the plates and the stiffeners and girder section modulus (sec 6 in DNVGL)

C.	Platin	ng and stiffeners	90
С	100	Ğeneral	90
С	200	Keel plate	90
С	300	Bottom and bilge plating	90
U	400	inner bottom plating	91
С	500	Plating in double bottom floors and longitudinal girders	92
С	600	Transverse frames	92
С	700	Bottom longitudinals	93
С	800	Bottom longitudinals Inner bottom longitudinals	94
С	900	Stiffening of double bottom floors and girders	94


Stiffeners and girder selection

- Minimum thickness of side shell, deck plate, keel plate, bilge plate etc. can be calculated from the rules
- Rules give the minimum section modulus of the stiffeners and girders
 - ✓ For stiffeners, you can select the appropriate angles from the shipbuilding steel suppliers' catalogue (available on the internet)
 - ✓ For girders, you can use the excel file (Section Modulus calculator) to get the shape of the girder that gives the minimum required section modulus.

Stiffeners and girder selection

Stiffener selection from the shipbuilding steel suppliers' catalogue

[Product shapes, dimensions and sectional properties]

Dimension (mm)			Sectional area	Unit mass	Position of center of gravity (cm)		Geometrical moment of inertia (cm ⁴)				Radius of gyration of area (cm)				tan α	Modulus of section (cm³)		
А	t	ľ1	Γ2	(cm²)	(kg/m)	Сх	Су	lx	ly	max. lu	min. lv	ix	iy	max. iu	min. iv		Zx	Zy
100×75	7	10	5	11.87	9,32	3.06	1.83	118	56.9	144	30,8	3,15	2,19	3.49	1.61	0.548	17.0	10.0
100×75	10	10	7	16,50	13.0	3,17	1.94	159	76.1	194	41.3	3,11	2 15	3/13	1 58	d 43	23,3	13.7
125×75	7	10	5	13.62	10.7	4.10	1.64	219	60.4	243	36.4	4.0					26,1	10.3
120×70	10	10	7	19.00	14.9	4.22	1.75	299	80.8	330	49.0	3.96	2.06	4.17	1.61	0.357	36.1	14.1
150×00	9	12	6	20.94	16.4	4.95	1.99	485	133	537	80.4	4.81	2.52	5.06	1.96	0.361	48.2	19.0
150×90	12	12	8.5	27,36	21,5	5.07	2.10	619	167	685	102	4.76	2.47	5.00	1.93	0.357	62,3	24.3

Stiffeners and girder selection

Girder definition based on the excel sheet

			Index	Section Type		
			28	T section		← ↓ Y ← B →
	Dimens	sions	Property	Formula	Value	
	В	10	A	=B*Tf+Tw*H-Tw*Tf	12.500	
	н	8	Xc	0	0.000	
	Tw	1	Yc	=H-(Tw*H^2+B*Tf^2-Tw*Tf^2)/(2*A)	5.350	
	Tf	0.5	lx	=B*H^3/3-(B-Tw)*(H-Tf)^3/3	441.042	
			ly	=(B^3*Tf+(H-Tf)*Tw^3)/12	42.292	
			Ixc	=Ix - A*Yc^2	83.260	
_			lyc	=ly	42.292	
			iye.	''	72.232	Tw
			J	0	0.000	×
1		-				

Thank you

