MEC-E1004 Principles of Naval Architecture

Light ship Weight Estimation

Light ship Weight estimation

This tutorial is to explain how to empirically estimate your ship's weight

Tips before going to calculations!

Your ship's main characteristics must be defined

Also, some information on the superstructure dimensions and machinery power must be defined before calculations

Ship Displacement and Weights

The displacement is computed by:

$$\Delta = \gamma . L_{BP} . B. T. Cb$$

The displacement is equal to the sum of the fixed and variable weights of the ship:

$$\Delta = DW + W_{LS}$$

in which:

DW - deadweight

W_{LS} - lightship weight

$$DW = CDW + DW_S$$

CDW - cargo deadweight

DWs - ship's own deadweight

Light Ship Weight estimation

Components to consider accurate estimate of the Lightship Weight

- Structure / Hull
- Machinery
- Outfitting
- Centers of Gravity
- Longitudinal distribution of the lightship weight

Light Ship Weight

For the purpose of estimate, generally the lightship weight is considered to be the sum of three main components:

$$W_{LS} = W_S + W_E + W_M$$

in which:

W_S - Weight of the structural steel of the hull, the superstructure and of the outfit steel (machinery foundations, supports, masts, ladders, handrails, etc).

$$W_S = W_H + W_{SPS}$$

 $W_{\rm E}$ - Weight of the equipment, outfit, deck machinery, etc. $W_{\rm M}$ - Weight of all the machinery located in the engine room

Ship's Main Characteristics

 As the hull form at this stage should be ready; you can insert the ship's main dimensions and LCB from the hydrostatic calculations.

Ship's main characteristics		
L(m)	100	
B(m)	32,5	
T(m)	10	
D(m)	13	
СВ	0,84	
LCB(m) @AP (m)	50	

Structure / Hull weight

 To calculate the ship's hull weight, besides the main dimensions, you have to define the dimensions of the superstructure and the deckhouse. Additionally, the K factor is provided from tabular values for different types of ships (see

lecture notes Chapter 10.3).

Structural weight		
Length of superstructure (m)	20	
Height of superstructure (m)	5	
Length of deckhouse (m)	7	
Height of deckhouse (m)	5	
Е	4616,25	
E K	4616,25 0,031	
_		
K	0,031	

Machinery Weight (see Ch 10, lecture notes)

- For machinery weight estimation, the maximum continous rate of the main prime movers of your ship and rpm must be defined.
- Additionally, the engine room height and the height of the engine room.
- Machinery weights are divided into main machinery weight and remainder weight of other auxiliary machinery.
- There are recommended values for cm based on the ship's type.

_			
Machinery weight			
MCR (KW)	3000		
N (rpm)	150		
type of plant	other		
cm	0,69		
W _M (tonne)	336,037		
Height of engine room (m)	5		
Height of double bottom (m)	0,7		
KG _M (m)	2,205		

Outfitting Weight (see Ch 10, Lecture notes)

 The outfitting weight is a function of the main dimensions and the coefficient Co which depends on the ship type.

Outfitting weight		
Со	0,2	
W _o (tonne)	650	
KG _o (m)	14,25	

