

MAXSURF MODELER

Except otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Contents

Maxsurf Setup

Maxsurf Modeler interface

Maxsurf Modeler Basics

Model preparation for Stability calculations

Maxsurf Download and Setup

- Go to https://education.bentley.com/
 - Sign up using your Aalto Account
 - Go to Software → Offshore structural analysis menu
 →Maxsurf Ultimate → Download
 - Download the last version V23
 - Install connection client and Maxsurf products
- Activate Maxsurf products.
 - Sign in "Connection client" (integrated software with Maxsurf) using your Aalto account

O MAXSURF Advance

MAXSURF Ultimate

Learn more about Licensing
Remember license selection for individual Module

Show at Startup

License configuration - Multiframe CONNECT Edition 23.00.00.130

Rentley Licensing Tool:

(Includes: Modeler Advanced, Stability Advanced, Motions, Resistance, VPP Multiframe, Shape Editor)

(Includes: Modeler Advanced, Stability Ultimate, Motions Advanced, Resistance VPP, Multiframe Advanced, Shape Editor)

Note: Choosing any of these license options will log usage against the selected product licenses

New User? Register Now

Access additional licensing options with the Bentley Licensing Tool, incuding activation with the Activation Wizard from the

Note the license status as defined in the Policy is shown

Licensing: Select the license to be used for the Module

• Select Maxsurf Ultimate license when asked.

Aalto University

Maxsurf Tools

Maxsurf includes tools for

- Hull modelling (Maxsurf Modeler)
- Seakeeping (Maxsurf Motions)
- Stability calculations (Maxsurf stability)
- Resistance estimation (Maxsurf Resistance)
- Structural modelling and analysis (Maxusrf Structure and Multiframe).

	Bentley MAXSURF CONNECT Editi
8	Activation Wizard (x64)
æ	CONNECT Edition Overview
2	Installation Guide
2	Legal Notices
8	License Tool (x64)
Ø	MAXSURF Modeler 64-bit
C	MAXSURF Motions 64-bit
Ø	MAXSURF Multiframe 64-bit
Ø	MAXSURF Resistance 64-bit
Ø	MAXSURF Shape Editor 64-bit
Č	MAXSURF Stability 64-bit
Ø	MAXSURF Structure 64-bit
d	MAXSURF VPP 64-bit

Maxsurf Modeler (Interface)

Deck

- **Open Maxsurf Modeler** ٠
- You can open sample from Open \rightarrow quick start \rightarrow then choose a sample
- There are three windows
 - **Plan Window**: the plan window displays the model as seen from below, with Starboard above the centerline (+ve) and Portside below (-ve).
 - Profile Window: displays the hull as seen from the ٠ Starboard side, with the bow to the right of the screen.
 - **Body Plan**: The body plan window displays the transverse sections as seen from aft (view from behind) of the model. Starboard is on the right of the centerline and Portside on the left.
 - Perspective Window: The Perspective window is bordered by three rulers containing pointers that control the rotation of the displayed design.
 - Change window view:

Go to Window → select (Perspective, Plan, Profile or Body Plan) (Or from "windows" tap)

Maxsurf Modeler (Coordinate System)

- Longitudinal datum can be located at aft perpendicular, forward perpendicular, amidships or any other locations.
- Longitudinal datum: +ve forward of the datum -ve aft of the datum.
- Vertical datum can be located at the base line, design water line (DWL) or any other locations.
- Vertical datum: +ve up and -ve down the datum.
- Datum, aft perpendicular and forward perpendicular can be defined from Data → Frame of Reference

Aalto University

		Dat	a Window	Help	Bentley Cl
			Units		
Frame of Reference and Zero point	×	CB	Coefficients		
		- 12	Design Grid		
			Inclined Sectio	ns	
			Frame of Refe	ence	
		2	Vessel Type		
 			Windage Surfa	ces	
rente 14		L_ .	Target Section	Area Cu	irve
atterfel?pt. MS	FP	댜	Girth		
		E	Calculate Offs	ets	
		臤	Go To Offset		
	Vertical Datum	ez.	Go To Previous	; Offset	
Aft Perp. 9.387 m Set to DWL	ODWL 8.8m	國	Go To Next Of	fset	
Midships 161./8/m	Baseline Om Find Base	5	Calculate Area	s	
O Fwd Perp. 314.188 m Set to DWL	O Other 1.463 m		Calculate Hyd	rostatics	
Other 0 m Fwd extent		III	Solve Calculat	ons	
		$\Box_{\overline{4}}$	Parametric Tra	nsforma	ition
Labei AP Default	Label Baseline 🗹 Default	1	AC Rule		
	OK Cancel		Calculate Parts	;	•
			Verify Model		

Maxsurf Modeler (Coordina

- To define Zero reference point (Coordinate system) and hull lines.
 - Go to **Data → Frame of Reference**
 - 1. Define design water line (DWL)
 - 2. Press find base
 - 3. Press (Set to DWL for Aft and Fwd perpendiculars)
 - 4. Set vertical Datum to Baseline
 - 5. Set Longitudinal Datum to Aft Perp.
 - 6. Press Ok

Zeropt MS 0 Jongitudinal Datum Vertical Datum 0.012 m Set to DWL ODWL 6.6 m Aft Penp. 4 O Baseline 0 m Find Base 50.006 m 0 Midships Fwd Perp. 100 m Set to DWL Other 2.043 m Aft extent Other 78.298 m Fwd extent Label AP Default Default Label Baseline 6 OK Cancel

Maxsurf Modeler (Units)

- A variety of metric and imperial units may be specified.
- Go to Data →Units → select the required units for length and mass

Dat	a Window	Help	Bentley C	lo
1	Units			
С _в	Coefficients			
4	Design Grid			
≠	Inclined Sectio	ns		ł
¢	Frame of Refer	ence		
3	Vessel Type			
22	Windage Surfa	ces		
Δ,	Target Section	Area Cu	urve	_
2	Girth			
1	Calculate Offse	ets		
꽃	Go To Offset			
烈 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	Go To Previous	; Offset		
当 吗	Go To Next Off	fset		
ō 📰	Calculate Area	S	_	
	Solve Calculati	ions	5	
	Parametric Tra	nsform	ation	
1	AC Rule			
	Calculate Parts		,	_
0	Verify Model		,	

Maxsurf Modeler (Basics)

There are different tools that can be used to create 3D hull model

- **Markers** are reference marks displayed on the screen. They may be offset data that has originated from an existing hull or simply limiting dimensions that need to be visible while developing a design.
- **Control points:** Used to define surfaces and curves. Movement of these control points and changing its weight allow you to manipulate a surface/curve into a desired shape.
- **NURBS Surface.** The shape of the surface is defined by the:

Maxsurf Modeler (Basics/Markers)

- Markers are purely graphical and have no effect on the calculation of surfaces/curves.
- Markers have three coordinates
 - "X" Longitudinal position
 - "Y" Offset
 - "Z" Height
- Markers can be defined either by:
 - **Fitting** lines to an existing design (represent offset table points)
 - A text file
 - DXF curves or points, will be converted into markers.
 - Coping and pasting into the markers table from another application such as a spreadsheet.
 - Markers can also be entered manually using the Add Marker function in the Edit menu.
- Each marker can be associated with a station in your design.

	Station Inde	Long. Pos. m	Offset m	Height	Surface
1	1	0.000	0.000	0.000	None
2	1	0.000	0.000	1.106	None
3	1	0.000	0.000	2.211	None
4	1	0.000	0.000	4.423	None
5	1	0.000	0.000	6.634	None
6	1	0.000	0.000	8.846	None
7	1	0.000	0.980	11.057	None
8	1	0.000	1.694	13.269	None
9	1	0.000	2.754	15.480	None
10	2	7.740	0.000	0.000	None
11	2	7.740	0.000	1.106	None
12	2	7.740	1.144	2.211	None
13	2	7.740	1.806	4.423	None
14	2	7.740	2.292	6.634	None
15	2	7.740	2.799	8.846	None
16	2	7.740	3.384	11.057	None
17	2	7.740	4.257	13.269	None
18	2	7.740	5.547	15.480	None
19	3	15.480	0.280	0.000	None
20	3	15.480	3.298	1.106	None
21	3	15.480	4.192	2.211	None
22	3	15.480	4.988	4.423	None
23	3	15.480	5.513	6.634	None
24	3	15.480	6.009	8.846	None
25	3	15.480	6.605	11.057	None
26	3	15.480	7.607	13.269	None
27	3	15.480	8.976	15.480	None
28	4	30.960	2.743	0.000	None
29	4	30.960	7.970	1.106	None
30	4	30.960	9.047	2.211	None

Maxsurf Modeler (Basics/Control points)

- Surfaces are defined in Modeler by the position of a set of control points (rows and columns of control points) that collectively form a control point net. Movement of these control points allows you to manipulate a surface into a desired shape.
- Central to the process of modelling designs using Modeler is an understanding of how control points may be used to attain the surface shapes that you wish to achieve.
- The shape of the surface will change by changing the coordinates of its control points.

Maxsurf Modeler (Basics/Surfaces)

- There are two types of surfaces in Maxsurf Modeler
 - NURBS surface
 - TriMesh surface.
- NURBS Surface, can be defined by:
 - Control point positions
 - Control point weights
 - Surface stiffness in transverse and longitudinal direction
- Designs may contain up to 1200 NURBS surfaces in Modeler Advanced.
- Compacting control points can introduce a discontinuity into the surface. Which may be useful for Chined hull vessel when it is designed using one surface.

NURBS Surface before and after adding knuckle

Maxsurf Modeler (Basics/Surfaces)

- TriMesh surface is a linear surface made up of triangular facets. So, it does not have control points, and can not be modified.
- The TriMesh surface is not designed to be smooth (you cannot use it for visual purposes or to extract lines plan from); it follows the input data points (Markers) exactly and is linear between the data points.
- TriMesh surface is dependent on the number of data points used to generate the TriMesh.
- The aim of the TriMesh surface is to provide a quick route from line or point data to a vessel surface model that may be used for analysis, like stability and seakeeping analysis.

Maxsurf Modeler (Basics)

- There are various methods to model your ship using Maxsurf Modeler.
 The best method you can employ depends on the available data:
 - Lines Plan
 - Offset Table
 - > 3D model of a parent ship
 - Main particulars only (Free modeling)
- The four methods are introduced in four separate presentations. You can combine these different methods in your design.

Model preparation for Stability calculations

Zero point and Perpendiculars

- Define Zero reference point (Coordinate system) and hull lines.
 - Go to **Data → Frame of Reference**
 - 1. Define design water line (DWL)
 - 2. Press find base
 - 3. Press (Set to DWL for Aft and Fwd perpendiculars)
 - 4. Set vertical Datum to Baseline
 - 5. Set Longitudinal Datum to Aft Perp.
 - 6. Press Ok

 \times

Frame of Reference and Zero point

Hull lines

- Define the hull lines (Data → Design Grid)
 - You can add Sections, Buttocks, Waterlines and Diagonals.
 - Add suitable number of Sections and waterlines to your ship, then define the space in between the lines and Press Ok

Maxsurf Modeler

 Display the hull line (Display → Contours → activate Sections, Buttocks, Waterlines, and DWL)

Maxsurf Modeler Vessel Type

Define vessel Type

Aalto University

- Monohull
- Catamaran
- Trimaran

Vessel Type		×	7 D	ata	Window	Help	Bentley Cloud Se
			5 C	Ur B Co	nits Defficients		
			7	De	sign Grid		
				2 In	clined Section	ons	
			÷.	Fr	ame of Refe	rence	
			2	6 Ve	ssel Type		
				e W	indage Surf	aces	
			L_	, Ta	rget Section	Area Cu	urve
				Gi	rth		
		Baseline	E	Ca	Iculate Offs	ets	_
Zero pt.			E7	G	To Offset		
			2	G	To Previou	s Offset	
Number of hulls			삗	G	To Next Of	fset	
Monohull			8	Ca	Iculate Area	as	
() Catamaran				Ca	lculate Hyd	lrostatics	s
Demihull centreline offset	0 m			So	lve Calculat	tions	
			5 9	Pa	rametric Tra	ansform	ation
			_ ₫	A	CRule		
Outer hull centreline offset	0 m			C	loulate Part	·c	
Outboard transverse extent of main hull	0 m				inculate r dit	2	`>
				Ve	rify Model		
r	01/			t			t I I
l	OK	Cancel					

Maxsurf Modeler

- Define Windage surfaces:
 - Go to the profile view → Data → Windage surfaces → Define the wind direction and add surfaces to be used in wind resistance Calclaution → Add → select surfaces affected by wind and underwater surfaces → Ok

Windage Area Groups

Define Windage Groups

	Group	Surfaces	F_drag	F_shield	F_user	F_total: F_dr	
1	Underwater	none	n/a	n/a	n/a	n/a	
2	Windage	none	1.000	0.000	1.000	1.000	

Add Delete

- r arone r boombly		Name	Assembly	Use	^	- I [Name	Assembly	Use	
Surface Use	1	Topsides	MainHull	Hull Shell						-
_	2	LowerTopsides	MainHull	Hull Shell						
	3	Bottom	MainHull	Hull Shell						
	4	Deck	MainHull	Hull Shell						
	5	SS1Front	Bridge	Internal Structure						
	6	SS1Roof	Bridge	Internal Structure						
	7	SwimDeck	MainHull	Hull Shell						
	8	AccomSides	Structure	Internal Structure						
	9	SS1Floor	Bridge	Internal Structure						
	10	SS1Back	Bridge	Internal Structure						
	11	SS1End	Bridge	Internal Structure						
	12	Roof	Structure	Internal Structure						
	13	SS2Front	AftBridge	Internal Structure						
	14	SS2Roof	AftBridge	Internal Structure						
	15	SS2Floor	AftBridge	Internal Structure						

OK

Cancel

Maxsurf Modeler

Windage surfaces

Α

Maxsurf Modeler Help

- You can always refer to Maxsurf user manual if you need any help.
 - Press **F1**.
 - Or, (Help → Maxsurf Modeler Help)
- You can also get free online training and certificate from the following link.

http://apps.bentley.com/studentserver

Site Activation Key will no longer be available on the "Software Downloads" page after 30th June : contact your account admin or drop a mail at academic@bentley.com requesting your activation key fc versions of products.

Step 1

Download Software

Once you have joined the STUDENTserver, first order of business is downloading and installing one or more of the many Bentley software products relevant to your studies. Be sure to check for the vital Site Activation Code required to register the software as part of the installation process.

Step 3

Certificate and Transcript

Bentley records each student's completion of On-Demand learning in their transcript. On completion of training, students are able to download and print Certificates of course completion. It may take up to 4 hours for a completed course to appear in your transcript.

Step 2

Take Online Training To learn how to use Bentley software, be

sure to check out the online training. You find a wide range of topics from how to u your new software to advanced subjects taught by experts in the field. To get start a list of recommended introductory cours are available on the eLearning page.

Step 4

Visit Bentley Academic Cor

Gain insight, get answers, exchange idea access training, and discuss a wide rangtopics related to Bentley products in Bent Communities. For how-to tips, Bentley product support, best practices, opinions advice from students and faculty, infrastructure professionals, and Bentley subject matter experts, Communities is th anytime, from anywhere. MAXSURF Modeler MOSES Hull Modeler SACS Hull Modeler

Copyright © 2018 Bentley Systems, Incorporated. All rights reserved.