

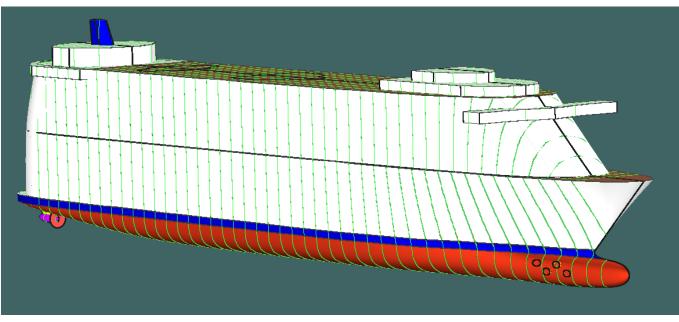
Parametric transformation of Parent cruise ship

Except otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Parametric Transformation Concept

Amending hull form manually

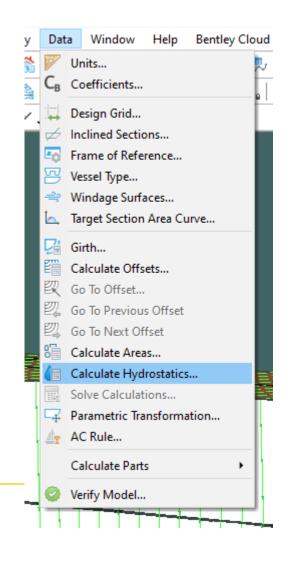
Hydrostatics



Parametric Transformation - Concept

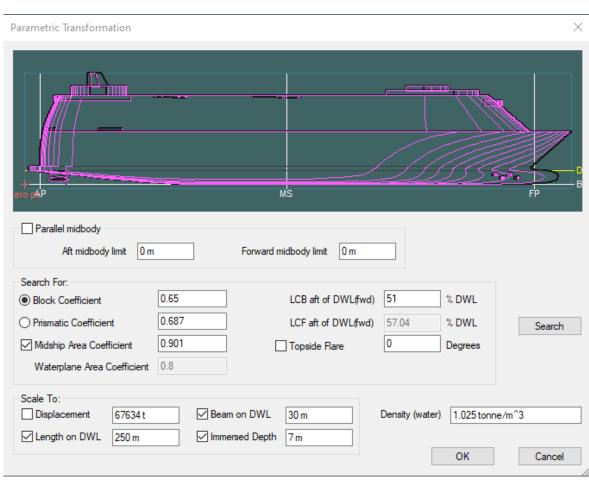
- Modeler Advanced has the ability to perform parametric transformations of hull shapes using the Parametric Transformation command in the Data menu.
- This process involves moving the columns fore and aft, while not changing the section shapes (unless scaling them) i.e. all y-coordinates move by ratio of beams, all z by ratio of drafts etc.
- The transformation moves stations fore and aft until the required parameter(s) specifications are met.
- A key quality of this approach is that it maintains the fairness of the hull to a very high degree during the transformation process.
- In this tutorial we are going to employ this parametric transformation feature to transform a parent 3D model into a geometric similar model with new particulars.
- The parent ship model used in this tutorial is a cruise ship; you can also use other parent models, like general cargo ship, ferry, catamaran, etc.

- Maxsurf Modeler has many types of parametric ship models that can be adjusted to meet the main particulars of a new design.
 - Go to the installation location to check the available models (C:\Program Files\Bentley\Offshore\MAXSURF CONNECT Edition V23\Sample Designs)
 - Open Cruise ship model (CruiseShip_Pro.msd)



- To show main particulars of the parent cruise ship model
 - ✓ Make sure that the grid lines (sections, buttocks and waterlines) and datum are defined.
 - ✓ Go to Data → Calculate Hydrostatics
- Assume that Your new model has the following particulars:
 - ✓ LWL = 250 m
 - \checkmark Breadth = 30 m
 - ✓ Draft = 7 m
 - \checkmark C_B = 0.65

2 3 [Displacement Volume (displaced)		Units	1
3 [Volume (displaced)	67583	t	
		65934.837	m^3	
4	Draft Amidships	8.800	m	
• II	Immersed depth	8.800	m	
5 1	WL Length	314.412	m	
6 E	Beam max extents on	38.595	m	
7	Wetted Area	13347.020	m^2	
BI	Max sect. area	305.423	m^2	
9 I	Waterpl. Area	9723.111	m^2	
10 F	Prismatic coeff. (Cp)	0.687		
11 E	Block coeff. (Cb)	0.617		
12	Max Sect. area coeff.	0.901		
13	Waterpl. area coeff. (0.801		
14 I	LCB length	157.760	from ze	
15 I	LCF length	138.326	from ze	
16 I	LCB %	50.176	from ze	
17 I	LCF %	43.995	from ze	
18 I	KB	5.028	m	
19 I	KG fluid	0.000	m	
20 E	BMt	15.895	m	
21 E	BML	850.789	m	
22 (GMt corrected	20.923	m	
23 (GML	855.816	m	
24	KMt	20.923	m	
25 H	KML	855.816	m	
26	Immersion (TPc)	99.662	tonne/c	
27	MTc	1897.596	tonne.m	
28 F	RM at 1deg = GMt.Dis	24678.716	tonne.m	

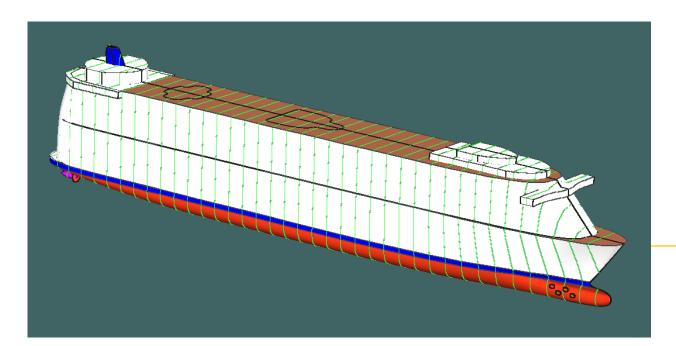

To create model with the new dimensions

- ✓ Unlock all surfaces (double click on the surfaces and uncheck "locked")
- ✓ Define the DWL and aft and forward perpendicular (refer to "Maxsurf Modeler Basics" presentation)
- $\checkmark~$ It is preferrable to do parametric transformation without superstructure
- ✓ Go to Data → Parametric Transformation → Insert the new particulars (C_B or C_P , Midship area coefficient, LCB, displacement, LWL, Beam and/or immersed depth) → Press Search
 - ➤ Check the new model main parameter are defined adequately and the lines are smooth without considerable distortion ➤ Press Ok or search again to define new model.

Parametric Transformation X	Parametric Transformation
	Zero AP MS FP Baseline
Parallel midbody Aft midbody limit 0 m Forward midbody limit 0 m	Parallel midbody Aft midbody limit 0 m Forward midbody limit 0 m
Search For: 0.65 LCB aft of DWLfwd) 51 % DWL Prismatic Coefficient 0.687 LCF aft of DWLfwd) 57.04 % DWL Midship Area Coefficient 0.901 Topside Flare 0 Degrees Waterplane Area Coefficient 0.8 0 0 Degrees	Search For: Block Coefficient 0.55 LCB aft of DWLf(wd) 51 %, DWL OWL O Prismatic Coefficient 0.723 LCF aft of DWLf(wd) 56.16 %, DWL Search VML Midship Area Coefficient 0.824
Scale To: □ Displacement 67634 t ☑ Beam on DWL 30 m Density (water) 1.025 tonne/m [^] 3 ☑ Length on DWL 250 m ☑ Immersed Depth 7 m OK Cancel	Scale To: Displacement 34974 t Beam on DWL 30 m Density (water) 1.025 tonne/m ^{^3} Usength on DWL 250 m Immersed Depth 7 m OK Cancel

Dat	Window Help Bentley Clou
1	Units
C_{B}	Coefficients
1	Design Grid
$\not=$	Inclined Sections
50	Frame of Reference
\square	Vessel Type
4	Windage Surfaces
<u>لم</u>	Target Section Area Curve
댰	Girth
E.	Calculate Offsets
臤	Go To Offset
認	Go To Previous Offset
認	Go To Next Offset
5	Calculate Areas
(6	Calculate Hydrostatics
ΞūΣ	Solve Calculations
4	Parametric Transformation
<u>A</u> r	AC Rule
	Calculate Parts
0	Verify Model

- The parallel midbody feature is used to keep the midbody between the aft and forward limit as it is while performing parametric transformations.
- The parameters that can be specified are divided into two groups:
 - Search Parameters: like $C_{B_i} C_P$ and LCB. These Parameters require a non-linear transformation of the hull shape. As there is no explicit function of these parameters, Maxsurf modeler performs an iterative search to achieve the specified values.
 - Scaling factors: Scaling Factors are those parameters that can be calculated directly using a linear scaling of the hull (as Displacement, LWL, B and Draft). These parameters can be constrained to particular values, or left to vary as other parameters change by selecting the appropriate check boxes and setting the required values.



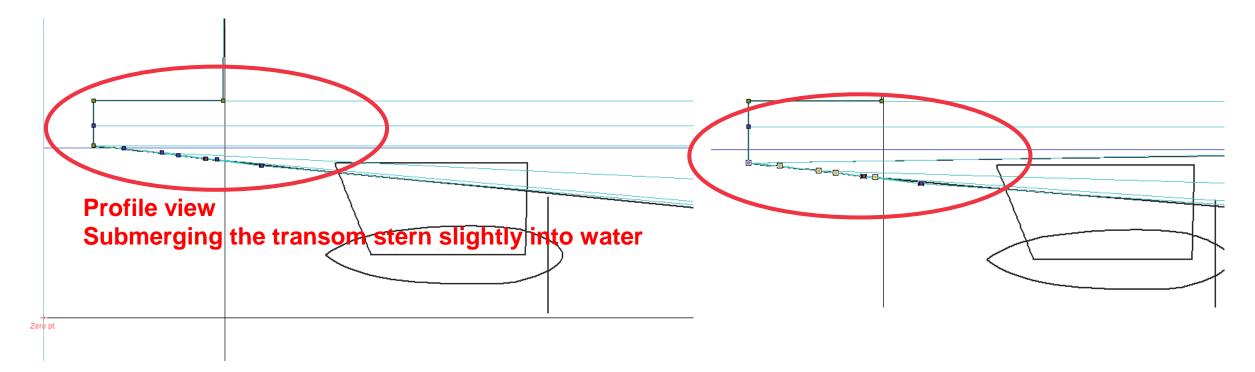
Data

Window Units C_R Coefficients. Design Grid Frame of Ref Vessel Type.. Windage Sur 📐 🛛 Target Sectio Girth Calculate Off Go To Offset Go To Previo Go To Next C Calculate Are Calculate Hy Solve Calcula Parametric T AC Rule ... Calculate Par Verify Model

- The parametric variation tool is ideal for making adjustments from a suitable parent design. It is not inter be used for gross design modifications.
- The reference point and the design grid should be redefi ٠
- Now you can calculate the new hydrostatics of the trans model
 - Go to Data \rightarrow Calculate Hydrostatics...



small		Measurement	Value	Units		
ded to	1	Displacement	34973	t		
	2	Volume (displaced)	34120.037	m^3		
	3	Draft Amidships	7.000	m		
	4	Immersed depth	7.000	m		
مط	5	WL Length	250.000	m		
ed	6	Beam max extents on	29.997	m		
	7	Wetted Area	8417.390	m^2		
ormed	8	Max sect. area	188.814	m^2		
	9	Waterpl. Area	6196.424	m^2		
	10	Prismatic coeff. (Cp)	0.723			
	11	Block coeff. (Cb)	0.650			
	12	Max Sect. area coeff.	0.901			
	13	Waterpl. area coeff. (0.826			
	14	LCB length	122.541	from ze		
Bentley Clo	15	LCF length	109.246	from ze		
	16	LCB %	49.016	from ze		
	17	LCF %	43.698	from ze		
	18	KB	3.973	m		
	19	KG fluid	-1.800	m		
	20	BMt	11.982	m		
	21	BML	695.797	m		
	22	GMt corrected	17.754	m		
Curve	23	GML	701.570	m		
	24	KMt	15.954	m		
	25	KML	699.770	m		
	26	Immersion (TPc)	63.513	tonne/c		
et	27	MTc	981.450	tonne.m		
	28	RM at 1deg = GMt.Dis	10836.531	tonne.m		
ics						
	Den	sity (water) 1.025 tonne	e/m^3			
mation						
	Std.	densities 1.025 tonne	e/m^3 - Std. I	Metric sea water	(1025.0 kg/m^3)	
•						
	VCG					


Select Rows

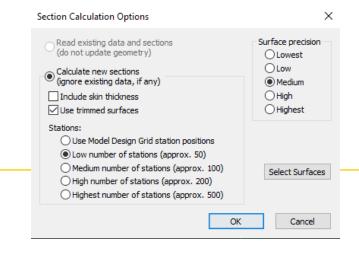
Amending hull form manually

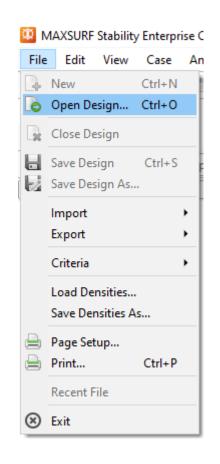
- The shape of the hull, pulpous bow or stern can be amended easily by manipulating the position of the nearest control points
 - Make sure that the surface is unlocked (double click on the surface and uncheck Locked)
 - Activate surface Net (Display → Net → activate Rows and Columns)
 - Then manipulate the control points to get the desired shape (Use the appropriate view to ease the manipulation of the control points).

Amending hull form manually

Check the presentation "Ice Breaker from lines plan" for more information about manipulating the control points and surface forming.

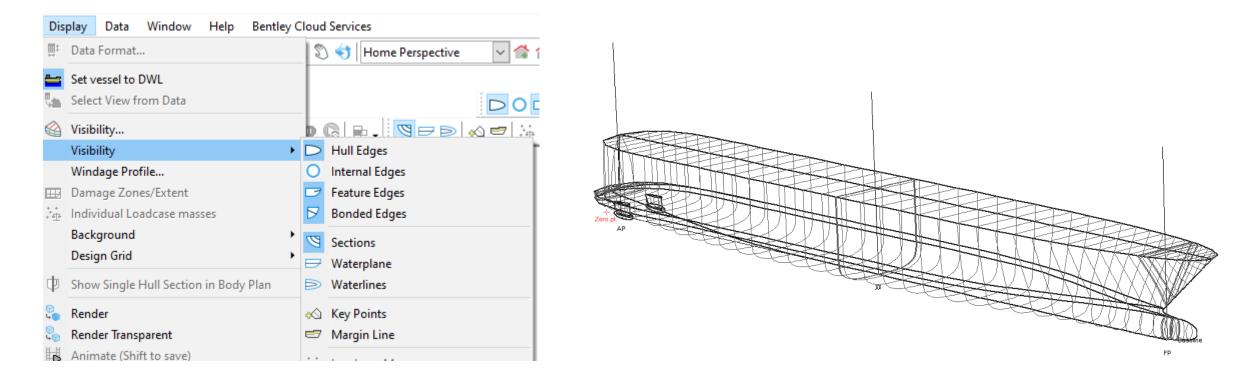
Hydrostatics


- Maxsurf Stability can be employed, to plot hydrostatics curves.
 - Save the model in Maxsurf modeler


Aalto University

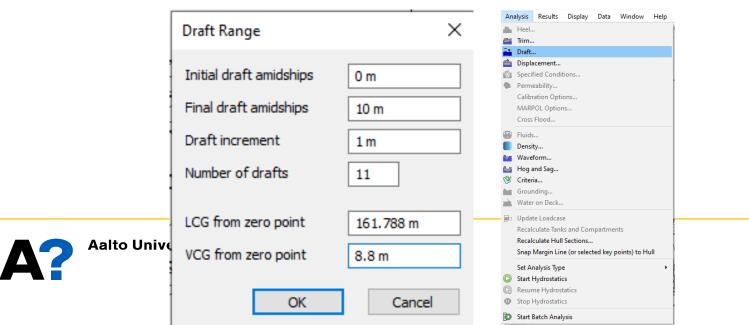
• Open Maxsurf stability

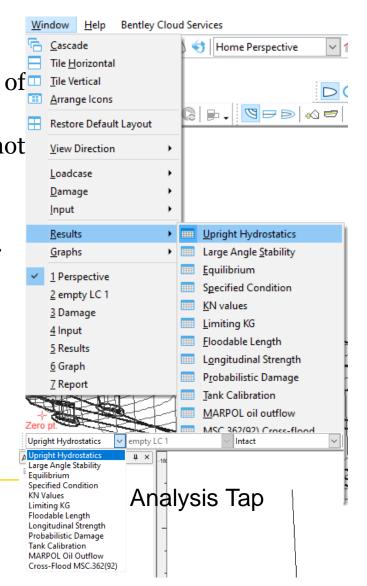
•


- Go to File \rightarrow Open Design \rightarrow and open the modified model.
- If it is the first time to open the model in Maxsurf Stability, the first option " read existing data" should not be active (Next time you can select this option to open the saved stability file)
- From stations, select the appropriate number of stations that will be used to calculate ship hydrostatics. It depends on the ship length and the ship geometry. Increasing the number of stations will increase the required analysis time.

Hydrostatics

- To show the stations that will be used in hydrostatics calculations
 - Go to Display → Visibility → Sections

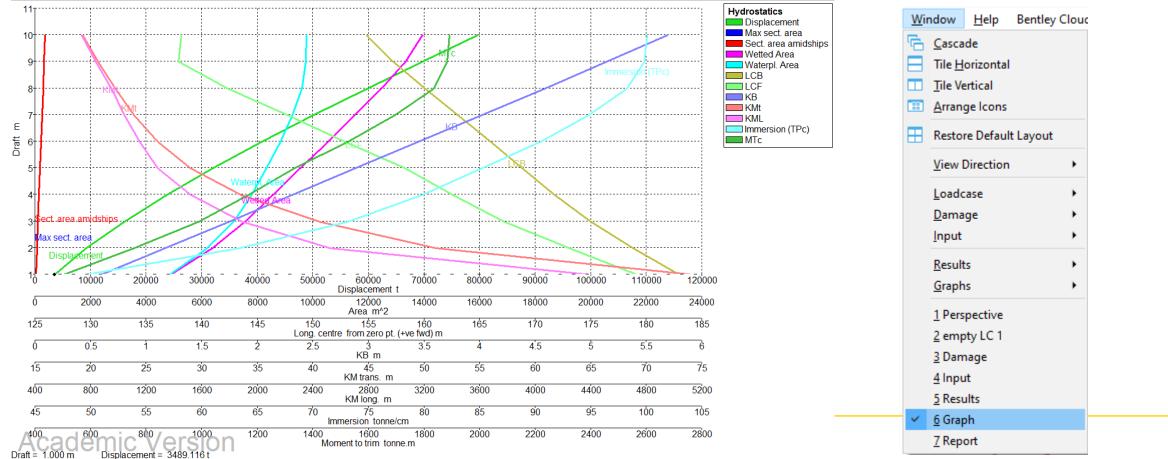


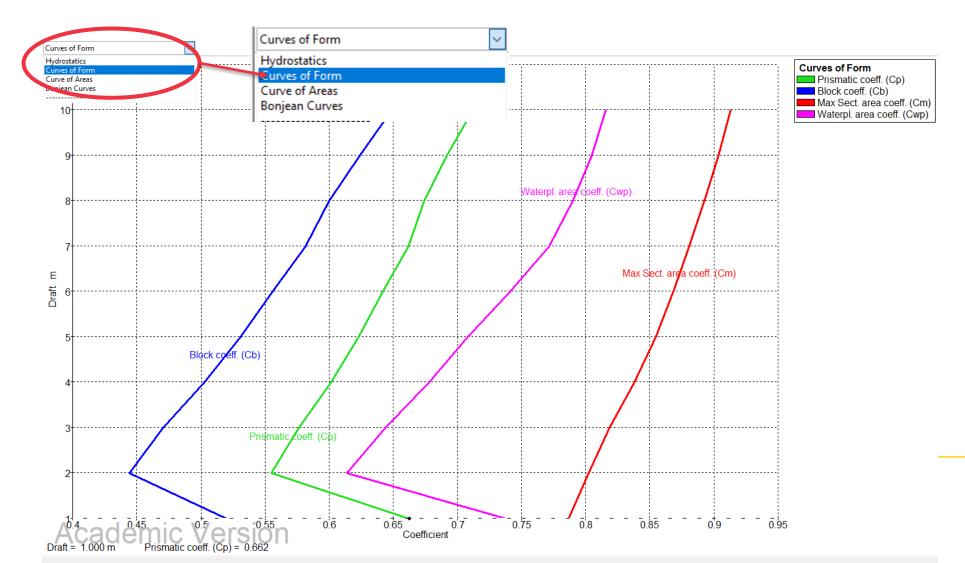

Hydrostatics

- Now we need to define the range of draft for hydrostatics calculations:
- Go to window → Upright Hydrostatics (Or select it from Analysis tab)
- Go to Analysis → Draft..
- Define initial draft amidship, Final draft and draft increment or number of drafts
- Define VCG and LCG if available unless the calculations of GM will be not accurate.
- Press Ok

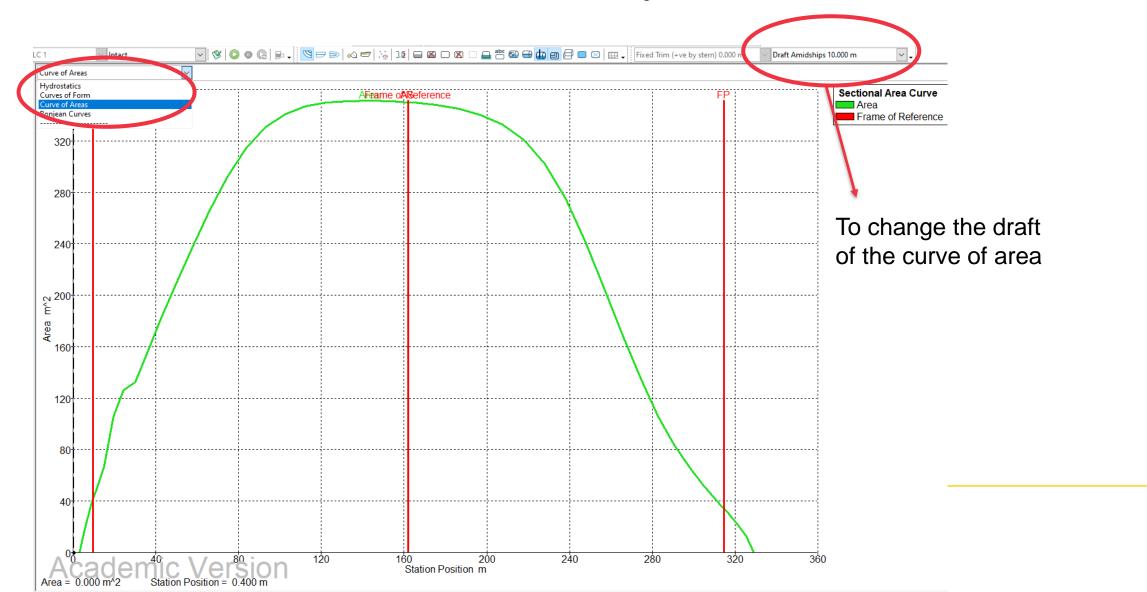
٠

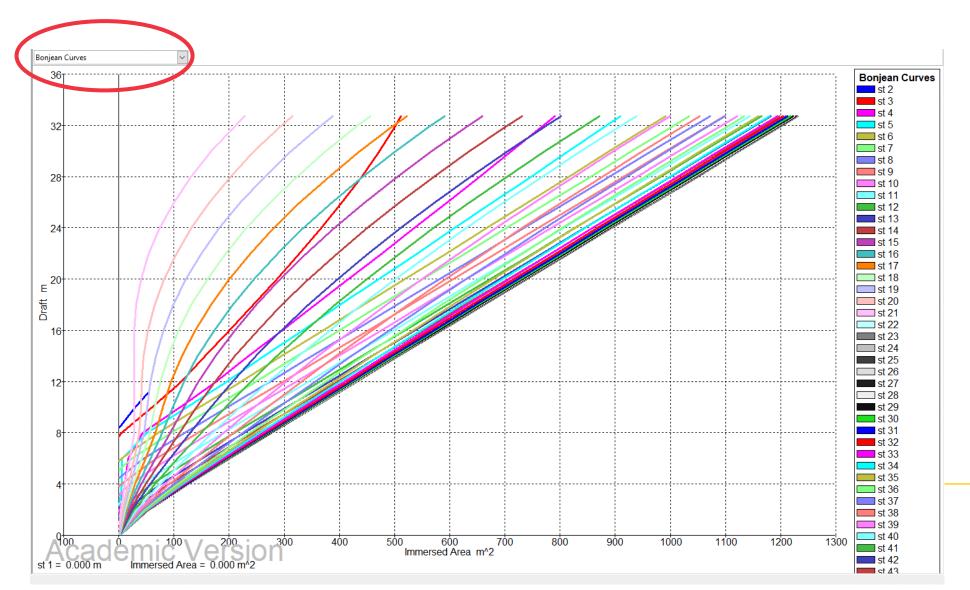
• You can instead define range of displacement from Analysis → Displacement..




- To Calculate the hydrostatics Go to Analysis → Start Hydrostatics.
- To show the tabulated results at different drafts:
 - Go to Window → Results..

Analysis Results Display Data Window Help Heel	_	ndow Help Bentley	Cloud		Draft Amidships m	0.000	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000
Trim	- C	Cascade		1	Displacement t	0.0000	3489	9165	16023	23681	31932	40719	49994	59654	69578	79565
Draft		Tile Horizontal		2	Heel deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Displacement				3	Draft at FP m	0.000	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000
Specified Conditions		Tile Vertical		4	Draft at AP m	0.000	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000
Permeability	Arrange Icons		5	Draft at LCF m	0.000	1.000	2.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	10.000	
Calibration Options			6	Trim (+ve by stern) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MARPOL Options	—	Restore Default Layout		7	WL Length m	129.202	234.244	307.279	312.778	312.800	312.768	312.923	312.327	314.670	å	310.088
Cross Flood				8	Beam max extents on W	0.000	27.957	32.791	35.443	36.775	37.582	38.090	38.401	38.556	38.600	38.600
		View Direction	H	9	Wetted Area m ²									12443.70		
Fluids		view birection		10	Waterpl. Area m ²	0.000		å				ξ	÷	9580.742	å	å
Density		Loadcase	- -	11	Prismatic coeff. (Cp)	0.000	0.662	0.554	0.576	0.601	0.622	0.641	0.661	0.674	0.691	0.712
Waveform				12	Block coeff. (Cb)	0.000	0.520	0.444	0.470	0.502	0.530	0.555	0.581	0.600	0.623	0.649
Hog and Sag		Damage	- >)	13	Max Sect. area coeff. (0.000	0.786	0.802	0.818	0.837	0.854	0.868	0.880	÷	0.903	0.913
S Criteria		Input	•	14	Waterpl. area coeff. (C	0.000	0.737	0.613	0.643	0.677	0.707	0.741	0.771	0.790	0.804	0.815
Grounding				15	LCB from zero pt. (+ve f	9.734	182.913	178.779	174.958	171.690	168.794	165.935	163.008			å
Water on Deck		Results		16	LCF from zero pt. (+ve f	9.734	179.121	173.031	167.143	162.523	158.234	152.841	147.703			138.137
Update Loadcase	Nesuits	Results	ands P	17	KB m	1.463	0.592	1.167	1.743	2.314	2.880	3.447	4.014	4.579	5.139	5.686
Recalculate Tanks and Compartments		Graphs	_ > [18	KG m	8.800	8.800	8.800	8.800	8.800	8.800	8.800	8.800	8.800	8.800	8.800
Recalculate Hull Sections				19	BMt m	0.000	73.537	49.854	38.776	31.145	26.051	22.539	19.860	17.591	15.474	13.588
Snap Margin Line (or selected key points) to Hull		1 Perspective		20	BML m	0.000	4394.601	2520.782	1885.509		1276.998		1036.611	940.823	827.623	727.159
		2 empty LC 1		21	GMt m	-7.337	65.328		31.719	24.659	20.131	17.186	15.073		11.813	÷
Set Analysis Type		2 empty CC 1		22	GML m	-7.337	å	2513.149				\$	÷		823.962	724.045
Start Hydrostatics		3 Damage		23	KMt m	1.463	74.128	51.021	40.519	33.459	28.931	25.986	23.873	22.171	20.613	19.274
Resume Hydrostatics	_	4 Input	-	24	KML m	1.463	4395.192	2521.949		1512.955					å	732.845
Stop Hydrostatics	_			25	Immersion (TPc) tonne/c	0.000	49.501	63.350	73.106	79.847	85.195	90.472	94.754		99.792	100.028
Start Batch Analysis	~	5 Results		26	MTc tonne.m	0.000	502.120							1833.063		
		6 Graph		27	RM at 1deg = GMt.Disp.		å	å				å	÷	13920.34	å	å
		o orapii		28	Max deck inclination deg	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		7 Report		29	Trim angle (+ve by stern	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	-1-4	151: U 597: 1 167:	1/4													


- The graphical representation of the results can be illustrated from:
 - Window → Graph..


• To show curves of form, change the type of curves from the tab above the Graph window

• You can also show the curves of areas and Bonjean curves from the same tab.

Bonjean curves

