Exercise 1: Prestressed cross-section; pretensioned beam with bonded strands

Calculate stresses due to prestressing and self weight at transfer for the beam in the figure

Beam: depth \(h = 580 \text{ mm} \)
\hspace{1cm} width \(b = 280 \text{ mm} \)

Strands: 8 \(\phi_p \) 12.5 mm strands \((A_p = 93 \text{ mm}^2 /\text{strand}) \) grade 1600/1800
\hspace{1cm} Elastic modulus of the strands \(E_p = 195000 \text{ MPa} \)
\hspace{1cm} prestress just before the transfer \(\sigma_{po} = 1317 \text{ MPa} \)
\hspace{1cm} Distance of the strands from the bottom fibre \(c = 50 \text{ mm} \)

Concrete: C40/50; mean concrete strength at transfer \(f_{cm} = 0.75 f_{cm} \)
\hspace{1cm} Elastic modulus of concrete at transfer \(E_{cm} = 32300 \text{ MPa} \)

Length (span) of the beam \(L = 10 \text{ m} \)
DIMENSIONING OF THE PRESTRESSED STRUCTURE

1) Choosing the cross-section dimensions and the required amount of reinforcement (ultimate limit state, $t = \infty$)

2) Choosing the required prestress force (service limit state, $t=\infty$)

3) Prestress loss calculation

4) Stress and cracking analysis (service limit state, $t=\infty$)

5) Ultimate limit state , $t = \infty$
 - flexural resistance
 - shear resistance
 - torsion + combined actions

6) Lifting for precast unit

7) Deflection (service limit state, assembling and final stage $t = \infty$)

8) Anchorage and spalling at the end of the structure

9) Fire resistance
CHOOSING THE INITIAL PRESTRESS

1) Choosing the degree of prestress

- Fully prestressed structure
 The structure is fully compressed, no tension stresses
 water tight structures
 exposure class

- Partially prestressed structure
 Bridges; no tension

 Buildings: usually tension stresses are allowed
 under quasi-permanent load cracking is allowed,
 the crack width is limited

EC 2 table 7.1 N(FI):
Requirements at the cracking limit state depending on the exposure class

2) Choosing the initial prestress

- Code limitations:
 EC2: $\sigma_{p0} \leq 0.8 \ f_{puk}$ or $0.9 \ f_{p,0.1k}$

- The required balanced forces

- Cracking (or tension stress) in the tension side during prestressing stage, transfer (release) stage or lifting stage before any imposed loads

- Resistance of compressed area during prestressing stage, transfer (release) stage or lifting stage before any imposed loads

- Typically the initial prestress is $\sigma_{p0} = 1000 \ldots 1300$ MPa

- Precast prestressed structure with bonded strands:
 usually the whole main tensile reinforce is prestressed strands
Low prestress - disadvantages:
- cracking
- problem with strain about flexure
- prestressing steel is not optimically used
 Yield force of \(\phi 12.7 \text{ (99 mm}^2 \text{) } \) corresponds reinforcing bar T 20 (A500HW)

High prestress – disadvantages:
- upward deflection (camber) is great
- much debonding is required
- much spalling reinforcement at the end of the structure
- too high prestress may cause prestressing work more difficult

Estimation of the prestress losses

<table>
<thead>
<tr>
<th>Influencing factor</th>
<th>Influence</th>
<th>High losses</th>
<th>Small losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{M_{\text{quasi-perm}}}{M_{\text{total}}})</td>
<td>creep</td>
<td>(\frac{M_{\text{quasi-perm}}}{M_{\text{total}}} \text{ small})</td>
<td>(\frac{M_{\text{quasi-perm}}}{M_{\text{total}}} \text{ high})</td>
</tr>
<tr>
<td>Concrete stress (\sigma_{cp}) at the point of prestress tendons</td>
<td>creep</td>
<td>(\sigma_{cp} \text{ high})</td>
<td>(\sigma_{cp} \text{ small})</td>
</tr>
<tr>
<td>Cross-section</td>
<td>shrinkage creep</td>
<td>light, slender, thin</td>
<td>thick, massive</td>
</tr>
<tr>
<td>Initial prestress (\sigma_{po})</td>
<td>relaxation</td>
<td>(\sigma_{po} \text{ high})</td>
<td>(\sigma_{po} \text{ small})</td>
</tr>
</tbody>
</table>

Typically the prestress losses are:

pre-tensioned structure: 15 ... 25 %, normally about 20 %

post-tensioned structure: 10 ... 20 %, normally about 15 %
ANALYSIS OF PRESTRESSED CROSS-SECTION

Presstressing means that the prestressing reinforcement has stresses before loading of the structure.

1. PRETENSIONED STRUCTURE WITH BONDED STRANDS

- Strand are tensioned against the anchors of the bed before casting the concrete
 Usually strands are straight

- When the strength of concrete is developed to the required strength (transfer strength, normally about 65 ... 75% of nominal strength of concrete) the strands are released from the anchors by cutting (sudden release) or by hydraulic jack (gradual release)

- Because of the transfer strength there is bond between the strands and concrete; so the deformation (strain) of the strand is the same as the deformation of concrete at the same point.

- When the strand is released it tends to shorten but the shortening is mostly eliminated by the surrounding concrete due to bond between the strand and concrete

 \[\Rightarrow \] this means that the counterforce of the pre-tensioned force of the strand transmits from the anchor to the concrete as a compressive force.
Due to bond between the strand and concrete the structure function for a normal imposed compressive force like a reinforced concrete section where the strand function as a reinforcement.

The compressive counterforce of the prestress force is distributed between concrete cross section and the strand so that concrete (at the level of the strand) and strand get the same compressive strain due to the normal force.

The force of the strand decrease due to this elastic shortening strain.

Initial before the transfer: The counterforce of the prestressing force of the strands acts as a compressive normal force to the cross-section composed by concrete and the strands (transformed cross-section)

Prestressed strand has tensile prestressing force \(P \) and the stress

\[
\sigma_{po} = \frac{P}{A_p}
\]

Counterforce of the strand is affected to the anchor blocks.

After the transfer: Concrete cross section gets compressive force which is the counterforce of the prestressing force of the strand

Compressive force transfers to concrete by bond between the strand and concrete

Due to bond the strand gets the same compressive strain as concrete at the level of the strand =>

Prestressed strand gets compressive force which reduce the initial force of the strand

Equilibrium: Resultant of the concrete stresses + reduced force of strands = 0

For imposed loads: Structure function as an uncracked reinforced cross section.

Stresses are distributed between concrete cross section and the strands so that they have the same change of strain at the same level.

Strands act like a normal reinforcement getting tensile stresses which eliminated the effect of the elastic shortening at the transfer.

Tensile stress of the strand will reduce the tensile stresses of concrete.

So the effect of the elastic shortening is partly reversible.

Due to the bond between strand and concrete the stress analysis is obtained using so called transformed cross-section where the strands and other reinforcement are taken into account with respect of the elastic modulues; it means the area of the strands are multiplied by the factor \(\frac{E_p}{E_c} - 1 \), where \(E_p \) is the elastic modulus of the strands and \(E_c \) is the elastic modulus of concrete.
For the transfer situation the elastic module of concrete E_{mi} represents the transfer strength f_{ci}

$\Rightarrow A_{mi}, I_{mi}, W_{mai}, W_{myi}$

P is the prestressing force just before the transfer

Prestressing load is treated in the same manner as the normal compressive imposed load $-P$

Stresses:

Concrete:

$$\sigma_{cp} = 0 + \frac{-P}{A_{mi}} + \frac{-P \cdot y_p}{I_{mi}} \cdot y = 0 + \frac{-P}{A_{mi}} + \frac{-M_p}{W_{mi}}$$

(initial concrete stress before the transfer is 0)

Prestressing strand:

$$\sigma_{p,t} = \sigma_{po} + n_e \left(\frac{-P}{A_{mi}} + \frac{-P \cdot y_p}{I_{mi}} \cdot y_p \right)$$

(initial stress is σ_{po})

y_p is the distance of the prestressing strand from the centroid

The negative bending moment due to the eccentricity y_p of the prestressing force $M_p = -P \cdot y_p$
For imposed loads:
The elastic module of concrete E_{cm} represents the final strength of concrete f_c
\Rightarrow the cross-section values should be calculated newly

Change of the stresses due to the imposed load N_{imp}, M_{imp}:

Concrete:

$$
\Delta \sigma_c = \frac{N_{imp}}{A_m} + \frac{M_{imp}}{I_m} \cdot y = \frac{-P}{A_m} + \frac{-M_p}{W_m}
$$

(initial concrete stress before the transfer is 0)

Total stress $\sigma_c = \sigma_{cp} + \Delta \sigma_c$

Prestressing strand:

$$
\Delta \sigma_p = n_e \cdot \left(\frac{N_{imp}}{A_m} + \frac{M_{imp}}{I_m} \cdot y_p \right)
$$

Total stress in the strand $\sigma_p = \sigma_{p,P} + \Delta \sigma_p$
BASIC ASSUMPTIONS

1. Compatibility condition
 => same strain in the reinforcement and concrete at the same level \((\varepsilon_s = \varepsilon_c)\)
 => no slip between reinforcement and concrete
 => plane sections remain plain section under the loading
 => Bernoulli’s assumption
 => strain \(\varepsilon\) at the certain distance \(y\) from the centroid can be obtained by linear equation
 \[\varepsilon = \varepsilon_o + \psi \cdot y \]
 where \(\varepsilon_o\) is the strain at the centroid due to a normal force
 \(\psi\) is the curvature due to a bending moment
 \(y\) is the distance from the centroid

2. Constitutive equations of concrete and reinforcement steel
 => stress-strain-relation
 => Hooke’s law: \(\sigma = E \cdot \varepsilon\)
 Concrete: \(\sigma_c = E_c \cdot \varepsilon_c\)
 Prestressing reinforcement: \(\sigma_p = E_p \cdot \varepsilon_c\) \((\varepsilon_s = \varepsilon_c)\)

3. Equilibrium equations
 => Stress resultant of concrete + stress resultant of reinforcement = imposed load

Concrete stress resultant
\[N_c = \int_A \sigma_c \cdot dA \]

Moment of stress resultant about the centroid
\[M_c = \int_A \sigma_c \cdot y \cdot dA \]

Reinforcement stress resultant
\[N_s = \sum A_p \cdot \sigma_p \]

Moment of the reinforcement forces about the centroid
\[M_s = \sum A_p \cdot \sigma_p \cdot y_s \]

\(A_p\) is the area of one prestressing strand
\(y_s\) is the distance of a strand from the centroid

Equilibrium:
\[N_c + N_s = N_{\text{imp}} \]
\[M_c + M_s = M_{\text{imp}} \]
Ultimate limit state.

Due to bond between concrete and strands the strands get due to loading the same strain $\Delta \varepsilon_p$ as concrete at the level of the strands. The total strain in the strands is $\varepsilon_{\text{tot}} = \varepsilon_p + \Delta \varepsilon_p$.

The strain due to prestressing $\epsilon_{p\text{os}} = \frac{P}{A_p}$ where P_∞ is the effective prestress after losses (loss due to elastic shortening excluded).

The stress of the strands is calculated from the stress-strain diagram of the strand with the total strain ε_p.
2. POST-TENSIONED STRUCTURE

- Ducts and anchors are assembled in the mould;
- Tendons composed by several strands are assembled in the ducts;
- Tendons have usually parabolic curve form.

- Concrete structure with the ordinary reinforcement is casted

- Tendons are tensioned when the strength of the concrete has been developed to the required value => post-tensioning;
In this situation the ducts are not yet injected => there is no bond between the tendons and concrete.
Tendons are tensioned against the anchors => Prestressing force goes to the concrete at the ends of the structure by the anchors

- Ducts are injected by mortar => when the mortar has hardened there exist bond between the tendon and concrete.
Tensioning: No bond between the tendon and concrete
The compressive counterforce of the prestressing force goes to the concrete only by the anchors
Cross-section is the net concrete cross section where the ducts forms the holes

\[A_{\text{net}} = A_c - n \cdot A_{\text{duct}} \]

Where \(A_{\text{net}} \) is the net concrete cross-section
\(A_{\text{duct}} \) is the area on one duct
\(n \) is the number of the ducts

Compressive force causes the elastic shortening of the structure and the distance between the anchors => the strain of the tendons decrease => force of the tendon decrease => prestressing loss due to the elastic shortening

Stresses:

Concrete:

\[\sigma_{cp} = 0 + \frac{-P}{A_{\text{net}}} - \frac{P \cdot y_p}{I_{\text{net}}} \cdot y = 0 + \frac{-P}{A_{\text{net}}} - \frac{M_p}{W_{\text{net}}} \] \hspace{1cm} \text{ (initial concrete stress before the transfer is 0)}

Prestressing tendon:

\[\sigma_{p,p} = \sigma_{po} + \Delta \sigma_{p,el} \] \hspace{1cm} \text{ (initial stress is } \sigma_{po} \text{)}

\(y_p \) is the distance of the prestressing strand from the centroid
\(\Delta \sigma_{p,el} \) is the loss of elastic shortening of the distance between the anchors

\[\Delta \sigma_{p,el} = E_p \cdot \int_0^L \frac{n - 1}{2n} \cdot \sigma_{cp} \cdot dL \]

The negative bending moment due to the eccentricity \(y_p \) of the prestressing force \(M_p = -P \cdot y_p \)
\(n \) is the number of the tendons

The average value can be used because there is no bond between the tendons and concrete at the time of prestressing.
For imposed loads: Ducts are injected

=> bond between the tendon and concrete
=> concrete gets tensile strain due to imposed loads
=> due to the bond the tendons gets the same tensile strain as concrete
at the level of the tendon
=> transformed cross-section can be used for analyzing stresses
from the loads affecting after the injecting the ducts.

The elastic module of concrete E_{cm} represents the final strength of concrete f_c
=> the cross-section values should be calculated newly without duct holes (ducts have been injected with mortar)

Change of the stresses due to the imposed load N_{imp}, M_{imp}:

Concrete:
$$\Delta \sigma_c = \frac{N_{imp}}{A_m} + \frac{M_{imp}}{I_m} \cdot y = \frac{-P}{A_m} + \frac{-M_p}{W_m}$$ \text{(initial concrete stress before the transfer is 0)}

Total stress $\sigma_c = \sigma_{cp} + \Delta \sigma_c$

+

Prestressing strand:
$$\Delta \sigma_p = n_e \cdot \left(\frac{N_{imp}}{A_m} + \frac{M_{imp}}{I_m} \cdot y_p \right)$$

Total stress in the strand $\sigma_p = \sigma_{p,P} + \Delta \sigma_p$
Ultimate limit state.

Due to bond between concrete and tendons after grouting the ducts the strands get due to loading the same strain $\Delta \varepsilon_p$ as concrete at the level of the strands. The total strain in the strands is $\varepsilon_{\text{tot}} = \varepsilon_{p\infty} + \Delta \varepsilon_p$.

The strain due to prestressing $\varepsilon_{p\infty} = P_{\infty}/A_p$ where P_{∞} is the effective prestress after losses (loss due to elastic shortening included because elastic shortening happens before grouting the ducts).

The stress of the strands is calculated from the stress-strain diagram of the strand with the total strain $\varepsilon_{p\infty}$.
3. PERMANENTLY UNBONDED TENDONS

- **Tendon is in the duct which is filled with grease.** The duct does not injected with mortar. => there is no bond between the tendon and concrete

Ducts and anchors are assembled in the mould;
- Tendons composed by several strands are assembled in the ducts
- Tendons have usually parabolic curve form

- Concrete structure with the ordinary reinforcement is casted

- **Tendons are tensioned when the strength of the concrete has been developed to the required value => post-tensioning;**

Tendons are tensioned against the anchors => Prestressing force goes to the concrete at the ends of the structure by the anchors

Tensioning: No bond between the tendon and concrete
The compressive counterforce of the prestressing force goes to the concrete only by the anchors
Cross-section is the net concrete cross section where the ducts forms the holes

\[\text{Anet} = A_c - n \cdot A_{duct} \]

Where Anet is the net concrete cross-section
Aduct is the area on one duct
n is the number of the ducts

Compressive force causes the elastic shortening of the structure and the distance between the anchors => the strain of the tendons decrease => force of the tendon decrease => prestressing loss due to the elastic shortening

For imposed loads: Ducts are not injected => no bond between the tendon and concrete
The net concrete area is used

Ultimate limit state:
There is no bond between concrete and the tendons.
Length of the tendon increased due to curvature of the structure under the load in the ultimate limit state.
The increase of the stress from the effective prestress to the stress in the ultimate limit state is \(\Delta \sigma_{p,ULS} = 100 \text{ MPa} \) (according to the Finnish National Annex \(\Delta \sigma_{p,ULS} = 50 \text{ MPa} \)).
Prestressed concrete section (with bonded pretensioned strands)

Transfer stage – elastic shortening

Beam with centric prestressing, cross-section \(A = h*b \)
The amount of the strands \(A_p \), prestressing just before the transfer \(\sigma_{pi} \)

Strain in the strands just before the transfer \(\varepsilon_{pi} = \frac{\sigma_{pi}}{E_p} \)

Prestressing force (tension force) just before the transfer \(P_i = \sigma_{pi}A_p = \varepsilon_{pi}E_pA_p \)

When the compressive counter force \(-P_i\) of this prestressing force acting to the structure composed by the concrete and the strands, the concrete gets the compressive strain \(\varepsilon_c (\leq 0) \)

Concrete stress \(\sigma_c = E_c\varepsilon_c (\leq 0) \)
The stress resultant of concrete \(N_c = A_c\sigma_c = \varepsilon_cE_cA_c \) \((\leq 0) \)
The net cross section of concrete \(A_c = A - A_p \)

Bond between the concrete and reinforcement (strands) => Strands gets the same strain as the concrete at the location of the strands, so \(\Delta \varepsilon_p = \varepsilon_c \)

Strain of strands just after the transfer \(\varepsilon_p = \varepsilon_{pi} + \Delta \varepsilon_p = \varepsilon_{pi} + \varepsilon_c \)
Stress in the strands just after the transfer \(\sigma_{pm} = \varepsilon_pE_p = (\varepsilon_{pi} + \varepsilon_c)E_p \)
The stress resultant just after the transfer \(P = \sigma_{pm}A_p = (\varepsilon_{pi} + \varepsilon_c)E_pA_p \)

Equilibrium:
\[
P + N_c = 0
\]
\[
(\varepsilon_{pi} + \varepsilon_c)E_pA_p + \varepsilon_cE_cA_c = 0
\]
\[
\varepsilon_c(E_pA_p + E_cA_c) = -\varepsilon_{pi}E_p
\]
\[
\varepsilon_c = \frac{-\varepsilon_{pi}E_pA_p}{E_pA_p + E_cA_c} = \frac{-P_i}{E_pA_p + E_c(A - A_p)} = \frac{-P_i}{E_c\left[A + \left(\frac{E_p}{E_c} - 1\right)A_p\right]} = \frac{-P_i}{E_cA_n}
\]

The transformed cross-section composed by the concrete and the strands
\[A_m = A + \left(\frac{E_p}{E_c} - 1 \right) \cdot A_p \]

Stress in the concrete \[\sigma_c = \varepsilon_c E_c = \frac{P_i}{A_m} \]

The stress resultant of the concrete \(N_c = \sigma_c A_c = \frac{P_i}{A_m} A_c \)

Elastic shortening of the strands \(\Delta \varepsilon_p = \varepsilon_c = \frac{P_i}{E_c A_m} \)

The change of the stress of the strands due to the elastic shortening
\[\Delta \sigma_{pe} = \Delta \varepsilon_p E_p = \frac{P_i}{A_m E_c} E_p \]

The stress in the strands just after the transfer
\[
\sigma_p = \sigma_{pi} + \Delta \sigma_{pe} = \frac{P_i}{A_p} \left(1 - \frac{A_p}{A_m} \frac{E_p}{E_c} \right) = \frac{P_i}{A_p} \left(1 - \frac{A_p}{A_m} \frac{E_p}{E_c} \right) \frac{E_p}{E_c} \left(A + \left(\frac{E_p}{E_c} - 1 \right) \frac{A_p}{E_c} \right)
\]
Prestressed concrete structure
Transfer stage - elastic shortening

Example

Beam b * h with **centric prestressing**; area of the prestressing strands A_p

\[
\begin{array}{c}
\text{500} \\
\text{500}
\end{array}
\]

\[
\begin{array}{c}
\text{• • • • •} \\
\text{• • • • •}
\end{array}
\]

\[b := 500 \text{ mm} \quad h := 500 \text{ mm}\]

Brutto area \[A := b \cdot h \quad A = 0.25 \text{ m}^2\]

Area of prestressing strands \[A_p := 1000 \text{ mm}^2\]

Initial stress just before the transfer \[\sigma_{pi} := 1250 \text{ MPa}\]

Elastic modulus of the strands \[E_p := 195000 \text{ MPa}\]

Strain of the strand just before the transfer \[\varepsilon_{pi} := \frac{\sigma_{pi}}{E_p} \quad \varepsilon_{pi} = 6.41 \%\]

Prestressing force just before the transfer \[P_i := \sigma_{pi} \cdot A_p \quad P_i = 1250 \text{ kN}\]

Concrete C35/45 (characteristic cylinder /characteristic cubic compressive strength)

Characteristic strength \[f_{ck} := 35 \text{ MPa}\]

Mean strength \[f_{cm} := f_{ck} + 8 \text{ MPa} \quad f_{cm} = 43 \text{ MPa}\]

Elastic modulus of concrete \[E_{cm} := 22000 \text{ MPa} \left(\frac{f_{cm}}{10 \text{ MPa}}\right)^{0.3} \quad E_{cm} = 34077 \text{ MPa}\]

Transfer strength usually about 70 % of the final strength

Development of concrete strength according to EC2

Cement type parameter \[s := 0.2 \quad \text{(rapid-cement)}\]

Development strength of strength \[\beta_{cc}^{(1)} := e \left(1 - s \sqrt{\frac{28}{t}}\right) \quad \text{EC2, equation(3.4)}\]
Mean strength, when age of concrete is t
\[f_{\text{cmt}}(t) := \beta_{\text{cci}}(t) f_{\text{cm}} \]

At transfer:
\[f_{\text{cmi}} := 0.7 f_{\text{cm}} \quad f_{\text{cmi}} = 30.1 \text{MPa} \]

\[=> \beta_{\text{cci}} := 0.7 \]

Development of elastic modulus as a function of time
\[E_{\text{cmt}}(t) := \left(\frac{f_{\text{cmt}}(t)}{f_{\text{cm}}} \right)^{0.3} E_{\text{cm}} \]

EC2 equation (3.5)

Elastic modulus of concrete at transfer
\[E_{\text{cmi}} := \left(\frac{f_{\text{cmi}}}{f_{\text{cm}}} \right)^{0.3} E_{\text{cm}} \quad E_{\text{cmi}} = 30619 \text{MPa} \]

Ratio of elastic modules
\[n_e := \frac{E_{\text{p}}}{E_{\text{cmi}}} \quad n_e = 6.369 \]

Area of the transformed cross-section
\[A_m := A + (n_e - 1) A_p \quad A_m = 0.255 \text{m}^2 \]

Netto area of concrete
\[A_c := A - A_p \quad A_c = 0.249 \text{m}^2 \]

Axial rigidity of the beam cross-section
\[\begin{align*}
EA & := E_{\text{cmi}} A_c + E_{\text{p}} A_p \\
EA & := E_{\text{cmi}} (A - A_p) + E_{\text{p}} A_p \\
EA & := E_{\text{cmi}} A + (E_{\text{p}} - E_{\text{cmi}}) A_p \\
EA & := E_{\text{cmi}} \left[A + \frac{E_{\text{p}}}{E_{\text{cmi}}} - 1 \right] A_p \\
EA & := E_{\text{cmi}} A_m
\end{align*} \]

Concrete strain
\[\varepsilon_{\text{c}} := \frac{-P_i}{EA} \quad \varepsilon_{\text{c}} := \frac{-P_i}{E_{\text{cmi}} A_m} \quad \varepsilon_{\text{c}} = -0.16\% \]

Concrete stress
\[\sigma_{\text{c}} := \varepsilon_{\text{c}} E_{\text{cmi}} \quad \sigma_{\text{c}} = -4.895 \text{MPa} \]

Netto area of concrete
\[A_c := A - A_p \quad A_c = 0.249 \text{m}^2 \]

Concrete stress resultant
\[N_c := A_c \sigma_{\text{c}} \quad N_c = -1218.827 \text{kN} \]

Change of strain of the strands
\[\Delta \varepsilon_{\text{p}} := \varepsilon_{\text{c}} \quad \Delta \varepsilon_{\text{p}} = -0.16\% \]

Change of stress of the strands due to the elastic shortening
\[\Delta \sigma_{\text{pe}} := \Delta \varepsilon_{\text{p}} E_{\text{p}} \quad \Delta \sigma_{\text{pe}} = -31.173 \text{MPa} \]
Stress of the strands just after the transfer

\[\sigma_p := \sigma_{pi} + \Delta \sigma_{pe} \]
\[\sigma_p = 1218.8 \text{MPa} \]

Force of the strands just after the transfer

\[P := \sigma_p \cdot A_p \]
\[P = 1218.827 \text{kN} \]

Equilibrium

\[P + N_c = 0 \text{N} \]