Ch 7. Alternating Current Circuits

- Lecture outcomes (what you are supposed to learn):
- Root Mean Square (tehollisarvot)
- Phase and Phase shift (vaihekulma ja vaihesiirto)
- Phasors as vectors and complex numbers (osoitin)
- Real, Reactive, Complex power (Pätö- , Lois-, Näennäisteho)
- Power factor (tehokerroin)
- Electric energy

Introduction

- Electricity discovered around 600 BC
- Extensive use started at the end of $19^{\text {th }}$ century
- Batteries produce DC-voltage
- DC generator or Dynamo at beginning of $19^{\text {th }}$ century
- DC power system for lighting 1882
- Low voltage (100 V)
- Large losses and voltage drop in wires
- AC motor and generator + transformer
- AC power system with high voltage

Why AC won the battle?

- Voltage level can be adjusted with transformers
- High-voltage allow for long transmission lines
- Low losses
- Low wire cross-section

Courtesy of CRC Press/Taylor \& Francis Group

- AC system produce rotating field necessary to spin motors
- Is the battle over? Rectifiers, inverters, HVDC, local DC

Basic quantities

- Waveform

$$
v=V_{\max } \sin \omega t
$$

- Frequency (taajuus): $f=\frac{\omega}{2 \pi}$

- Root Mean Square (tehollisarvo)
- Makes it possible to quantify distorted waves

$$
V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2} d t}
$$

Phase shift

- Waveform

$$
v=V_{\max } \sin \boldsymbol{\omega} t
$$

- Resistive load:

$$
i=\frac{V_{\max }}{R} \sin \omega t
$$

- Inductive load: $\quad i=\frac{1}{L} \int_{0}^{t} v d t=-\frac{V_{\max }}{\omega L} \cos \boldsymbol{\omega} t$

Phase shift

- Waveform

$$
v=V_{\max } \sin \omega t
$$

- Capacitive load: $\quad i=C \frac{d v}{d t}=\omega C V_{\max } \cos \boldsymbol{\omega} t$

- Complex load: $\quad i=I_{\max } \sin (\boldsymbol{\omega} t-\boldsymbol{\theta})$

Concept of Phasors

- Graphical representation with mathematical basis
- Give quick information on magnitude and phase shifts

- Vector length proportional to rms value
- Angle with respect to x-axis equals to phase shift

Concept of Pahsors

- Resistive load

- Inductive load
- Capacitive load
- Complex load

Lagging and leading phase shifts

Current lagging voltage

$i=I_{\max } \sin (\omega t-\theta)$

Current leading voltage

$$
=\boldsymbol{\omega} C V_{\max } \sin \left(\boldsymbol{\omega} t+\frac{\boldsymbol{\pi}}{2}\right)
$$

Complex representation of Phasors

- Phasors are good visuals but not convenient to compute
- Vectors can be represented as complex numbers
- Calculus with complex number is handy.

$$
\begin{gathered}
\bar{V}=V \angle 0^{\circ} \\
\bar{I}=I \angle-\theta^{\circ}
\end{gathered}
$$

Complex numbers calculus

$$
\bar{A}=A \angle \boldsymbol{\theta}^{\circ}=A[\cos \boldsymbol{\theta}+j \sin \boldsymbol{\theta}]=X+j Y
$$

- Real component

$$
A \cos \boldsymbol{\theta}=X
$$

- Imaginary component

$$
A \sin \boldsymbol{\theta}=Y
$$

Imaginary axis

- Conjugate

$$
\bar{A}^{*}=X-j Y=A \angle-\theta^{\circ}
$$

Impedances

- Basic impedances
- Resistance

$$
R=\frac{\bar{V}}{\bar{I}_{R}}=\frac{V \angle 0}{I_{R} \angle 0}=R \angle 0
$$

- Inductance

$$
\bar{X}_{L}=\frac{\bar{V}}{\bar{I}_{L}}=\frac{V \angle 0}{I_{L} \angle-90^{\circ}}=X_{L} \angle 90^{\circ}
$$

- Capacitance

$$
\bar{X}_{C}=\frac{\bar{V}}{\bar{I}_{C}}=\frac{V \angle 0}{I_{C} \angle 90^{\circ}}=X_{C} \angle-90^{\circ}
$$

- Complex
- Series and parallel connections of basic impedances

Admittance

- Series connected impedances are additive

- Parallel connected impedances are not additive
- Parallel connected admittances are additive

$$
\begin{aligned}
& \bar{G}=\frac{1}{R}=\frac{1}{R} \angle 0^{\circ} \\
& \bar{B}_{L}=\frac{1}{\bar{X}_{L}}=\frac{1}{X_{L}} \angle-90^{\circ} \\
& \bar{B}_{C}=\frac{1}{\bar{X}_{C}}=\frac{1}{X_{C}} \angle 90^{\circ}
\end{aligned}
$$

Electric power

- Instantaneous power

$$
p=v i
$$

- For a complex load

$$
\begin{aligned}
p & =\left[V_{\max } \sin (\boldsymbol{\omega} t)\right]\left[I_{\max } \sin (\boldsymbol{\omega} t-\boldsymbol{\theta})\right] \\
& =V I[\cos (\boldsymbol{\theta})-\cos (2 \boldsymbol{\omega} t-\boldsymbol{\theta})]
\end{aligned}
$$

4地等

Electric energy

- Energy is the time integral of the power
- Constant power

$$
E=p T
$$

- Discrete power

$$
E=\sum_{i} p_{i} T_{i}
$$

- Variable power

$$
E=\int_{0}^{T} p d t
$$

Active, Reactive and Complex Power

- The power that produces energy is the average of $p=v i$

$$
\begin{aligned}
P & =\frac{1}{2 \pi} \int_{0}^{2 \pi} p d(\boldsymbol{\omega} t) \\
& =V I \cos (\boldsymbol{\theta})
\end{aligned}
$$

- This is called Active or Real power

- The Complex or Apparent power is defined as

Active, Reactive and Complex Power

- Part of the instantaneous power does not produce energy, it is called Reactive or Imaginary power $Q \equiv V I \sin (\boldsymbol{\theta})$

$$
S=\bar{V} \bar{I}^{*}=V I \cos (\boldsymbol{\theta})+j V I \sin (\boldsymbol{\theta})
$$

- In case of sinusoidal quantities the reactive power is well defined but not obvious in case of distorted quantities !

Power factor

- The power factor is defined as the ratio of real to apparent power

$$
p f=\frac{P}{S}=\cos (\boldsymbol{\theta})
$$

- In an electric circuit it can be calculated as

$$
\begin{aligned}
& p f=\frac{R}{Z}=\frac{R}{\sqrt{X^{2}+R^{2}}} \\
& p f=\frac{P}{S}=\frac{P}{\sqrt{P^{2}+Q^{2}}}
\end{aligned}
$$

Problems with power factor

- Increases losses in the transmission line
- Reduces the sparse capacity of transmission line
- Reduces the voltage across the load
- Need for power factor correction

$$
P_{\text {loss }}=I^{2} R_{\text {wire }}
$$

Summary of the lecture

- Sinusoidal voltage and current represented by phasors
- Phasor has amplitude and phase \Rightarrow complex number
- The nature of load (resistive, reactive) produces phase shift between voltage and current \boldsymbol{m} power factor
- Real power produces work, reactive power is a parasitic effect that increases the line losses
- Real mean square useful measure of AC -quantities even under distortion.

