ELEC-E8422 An Introduction to Electric Energy
Exercises - Lecture 1 AC circuits

EX 1 Ac circuits

The 230 V voltage source in the figure is connected in parallel with a resistance, inductance and capacitance. The frequency of the source is 50 Hz , the resistance is 5Ω, the reactance of the inductance is 10Ω, and the reactance of the capacitance is 2Ω.

1. Calculate the load total impedance
2. Calculate the frequency at which the load is seen as a resistance of 5Ω.

EX 2 Phasors and Power

The voltage over a load and the current through are:
$v=150 \sin (314.14 t+0.2) \mathrm{V}$
$i=25 \sin (314.14 t-0.5) \mathrm{A}$
Calculate:

1. The frequency of the source
2. The source voltage phasor
3. The load current phasor
4. The active power drawn by the load
5. The reactive power drawn by the load

EX 3 Power and Energy

An electric load is connected to a 230 V voltage source. The load impedance changes durring a 24 hours period according to the table below. Calculate the electric energy consumed by the load during the 24 hours period. You can use a spreadsheet calculation program.

Time period	Impedance Ω	Power angle $\left({ }^{\circ}\right)$
$8.00-10.30$	10	30
$11.00-13.00$	20	0
$15.00-17.00$	15	60
$17.00-20.00$	5	45

