ELEC-E8422 An Introduction to Electric Energy
Homework 8: Electric Safety
Because of a fault in wiring connections, a voltage of 230 V appears in bath room shower tap. The resistance between the floor and electrical system neutral (i.e. ground) has been measured to be $20 \mathrm{k} \Omega$. A person whose body resistance is $1 \mathrm{k} \Omega$ takes a shower. How large a current flows through his/her body? What is the consequence to the person? (use Thevenin's method for calculation).

Solution of Homework 8

The equivalent circuit diagram is as follows.

$$
\begin{aligned}
& R_{\text {total }}=R_{\text {man }}+R_{\text {ground }}=21 \mathrm{KOhm} \\
& I=\frac{v}{R_{\text {total }}}=\frac{\angle S U}{21000}=10.95 \mathrm{~mA}
\end{aligned}
$$

The consequence would be loss of muscle control for the man.

