ELEC-E8715 Design and Analysis of MEMS

- Lecture 1 5.9.2022
 - Introduction to the course content and requirements

Prof. Mervi Paulasto-Kröckel Dr. Nikhilendu Tiwary

Ref. Till, Paulasto-Kröckel et al, Handbook of Silicon Based MEMS Materials and Technologies, 2020

ELEC-E8715 Design and Analysis of MEMS

- 5 credits master level course, I-II period
- Assessment 0 5:
 - Max 300 points total, 180 points from assignments, 120 points from exam
 - Both assignments and exam need to be passed
- Methods: 14 lectures, 6 assignments, final exam
 - Organized f2f at R030, T6 A136
 - Lectures Mondays 14:15 15:45
 - Assignment support Fridays 14:00 16:00 (note! not organized every Friday follow the detailed schedule)
 - Exam 12.12. 14:00 16:00
- Teachers from Aalto, VTT, Murata and Vaisala
 - Course organization by Prof. Mervi Paulasto-Kröckel (<u>mervi.paulasto@aalto.fi</u>) and Dr. Nikhilendu Tiwary (<u>nikhilendu.tiwary@aalto.fi</u>)
 - Course assistants: Artem Gabrelian (<u>artem.gabrelian@aalto.fi</u>), Kristina Bespalova (<u>kristina.bespalova@aalto.fi</u>), Tarmo Nieminen (<u>tarmo.nieminen@aalto.fi</u>)
- Materials:
 - Lecture notes, other material provided by the lecturers
 - Recommended reference material:
 - Handbook of Silicon Based MEMS Materials and Technologies, 3rd Edition, 2020 http://libproxy.aalto.fi/login?url=http://www.sciencedirect.com/science/book/978-0-12-817786-0
 - Practical MEMS, Ville Kaajakari, 2009: copies available in the learning center

Learning outcomes

After the course the student will

- understand the physical operating principals of MEMS
- understand fundamentally important aspects of MEMS, impact of scaling, mechanical and thermal behavior of miniaturized structures and materials
- understand the design principals for inertial sensors, piezoactuated ultrasonic transducers and optical MEMS
- be familiar with main tools to characterize MEMS devices
- be able to utilize finite element analysis for simplified structures
- be able to identify and analyse key impact factors from manufacturing and design on device performance
- gain insight into future sensor and actuator development needs on accuracy, security, new materials and integration for high performance applications

Why this course?

ELEC-E8715 is part of curricula in:

- ELEC: AEE/Electronic and Digital
 Systems
 https://into.aalto.fi/display/enaee/Electronic+and
 +Digital++Systems+2020-2022
- CHEM: Functional Materials
 https://into.aalto.fi/display/encbme/Functional+M
 aterials+2020-2022
- Erasmus Mundus Joint International Master in Smart Systems Integrated Solutions (2021 – 2026)

Micronova facilities and ecosystem strong on MEMS

Schedule

Date	Lecture	Responsible	Main content	Date	Related exercise / HW helpdesk	Assessment / points	Deadline
			Course structure, introduction to MEMS		FE simulation basics, MEMS electrical	•	
	Introduction lecture, Introduction		and its applications, main principles, Si		domain modeling examples, COMSOL		
	to MEMS, Si for MEMS, SOI/C-SOI		properties, SOI/C-SOI manufacturing,		introduction, microcantilever case study		
5.9.	(L1)	Aalto	critical parameters for MEMS	9.9.	(L2)		
	Scaling and mechanics of		Mechanics of materials for isotropic		Calculations on Q value and spring		
12.9.	materials (L3)	Aalto	materials, beam bending, Q factor, stiction	16.9.	constants (A1)	0 - 10	25.9.
			Mechanics of materials, anisotropic				
	Mechanics of materials: thin		materials and thin films, grain size,				
	films, Residual stresses: thin films		Stresses in thin films and elements,		FEM analysis of a multilayer structure,		
19.9.	and bonded structures (L4)	Aalto	characterization methods	23.9.	Comsol (L5+A2)	0-40	9.10.
	Thermal effects in microscale		Thermal properties MEMS materials,		FEM analysis of multilayer structure,		
26.9.	(recorded lecture) (L6)	Aalto	phase change actuators, nebulizers	30.9.	Comsol assignment support (A2)		
			Operation principals, capacitive sensing,				
	Inertial sensors – accelerometers		resonance frequency, electrical and		Introduction to accelerometer design &		
3.10.	(L7)	Murata	mechanical noise	7.10.	analysis by calculations (A3-I)	0 - 20	16.10.
					Lab measurement on video and results,		
					CV curve of moving mass and related		
10.10.	Inertial sensors continued (L8)	Murata	Electronics, system analysis	14.10.	analysis (A3-II)	0 - 30	23.10.
					Reverse engineering analysis and Comsol		
					simulation of Murata accelerometer (A3–		
17.10.	Inertial sensors – gyroscopes (L9)	Murata	Operation principle, actuation, detection	21.10.	III)	0 - 30	30.10
					Constitutive relations of piezoelectricity,		
			Introduction to piezoelectric transduction		piezoelectric force generation and		
24.10.	PiezoMEMS (L10)	VTT	and its applications (BAW, FBAR)	28.10.	sensing (A4)	0-20	13.11.
			Piezoelectric thin film ultrasound				
	Piezoactuated ultrasound		transducer (PMUT) - principle and				
31.10.	transducers (L11)	VTT	structure	4.11.	N/A		
			Challenges in MEMS characterization,				
			sidewall cantilever motion detection,				
7.11.	MEMS characterization (L12)	Aalto	electrical, SEM characterization	11.11.	N/A		
					Design aspects of oscillator,		
					Measurement of a mechanical resonator		
14.11.	RF-MEMS (L13)	Aalto	RF-MEMS and casimir effect in NEMS	18.11.	(A5)	0 - 15	27.11.
			Fabry-Perot interferometer/spectroscopic				
21.11.	Optical MEMS (L14)	Vaisala	measurements	25.11.	FPI opto-electro mechanics (A6)	0 - 15	4.12.
	L						
12.12.	Exam					0-120	
						Max 300	

Requirements

- Assessment:
 - Assignments max. 180 points
 - Exam max. 120 points
 - Both assignments and exam need to be accepted (at least grade 1)
 - Extra 5 points available for returning Aalto Webropol course feedback
 - Total max. 300 points (305 with feedback)
- Grades:
 - 0 − 5
- No attendance requirements

COMSOL installation instructions

- Establishing a remote connection (VPN) to Aalto network: https://www.aalto.fi/en/services/establishing-a-remote-connection-vpn-to-an-aalto-network
 - Step 1: Installation of client software Cisco AnyConnect VPN Client: https://download.aalto.fi/
 - Step 2: Connecting to Aalto network After installing client software, enter the connection address: **vpn1.aalto.fi** or **vpn2.aalto.fi** (or **vpn.aalto.fi**). Then login with your Aalto credentials.
- Installing COMSOL on personal computers:
 - Go to: https://download.aalto.fi/index-en.html

- ➤ Download the file and run the installer (marked in green).
- Use the passcode provided for the version (marked in blue).
- Stick to the default recommendations and complete the installation.

COMSOL installation instructions

 If you don't want to install COMSOL on your personal computer, you can use classroom computers:

https://wiki.aalto.fi/pages/viewpage.action?spaceKey=AaltoWin&title=Aalto+IT+Windows+Classroom+Software+list

Classrooms (all except ARTS and BIZ specific) - Windows
ELE Classroom Laptops
PHYS OppLab
VDI Windows 10 3D

- Or, use servers brute.aalto.fi/force.aalto.fi: https://www.aalto.fi/en/services/servers-for-light-duty-calculation
 - For instructions: https://linux.aalto.fi/instructions/#using-your-own-computer
 - Install VcXsrv (Windows X server) and PuTTY (SSH Client)
 - After installation:
 - 1. Open XLaunch
 - Click 'Next' on all steps with default settings
 - 2. Open PuTTY SSH
 - Go to 'SSH' under category:
 - click on 'X11' and tick 'Enable X11 forwarding'
 - Go to 'Session':
 - Type 'brute.aalto.fi' or 'force.aalto.fi' in host name
 - Click 'open'
 - · Login with Aalto credentials
 - In the command prompt, type 'comsol'