
CS-A1113 Basics in Programming Y1
Final Lecture 15.11.2022

What Have we Leaned?

• Procedural programming
• Data and code
• Functions, loops and branches
• Most programming languages are procedural

• Object oriented model
• Many languages support object oriented model

What do You Get out of this Course?

• A start on programming
• The principles will work on any language
• Assignments, loops, branches, functions

• An understanding on how computers and software work
• This will be useful for all of us
• You can program your future house to use the market price of electricity
• You can use spreadsheets and analysis software more efficiently

• You can make utility programs
• E.g., read a file in one format and output it in another format

Programming Paradigms

• Procedural or imperative programming
• Data and code are separate
• Program manipulates data

• Object oriented model
• Data and code are packaged in objects

• Functional programming
• Theoretical approach, data is passed as parameters between functions

• Declaritive languages
• E.g., database query language SQL
• Describe the result you want

Software Engineering:
Design and Development

Software Engineering

• Software is created to fulfill some requirements
• A reason and need
• Like other engineering tasks

• Software can be changed during and after creating
• Differs from most types of engineering
• Even major changes are feasible

• There are two main approaches to programming
• Waterfall model: analyze, design, build, test, and deploy
• Agile: "We don't really know what we are needing, so let's get started and

have good work practices"

Waterfall Model

• Collect Requirements
• Create specification
• Design
• Implement
• Test and accept
• Maintenance
• Fixing bugs
• Adding functionality

Requirements

Specification

Design

Implementation

Integration

Deployment and
maintenance

Verify

Verify

Verify

Test

Test

• Approaches
software like
other engineering
projects
• Has major

problems

Why The Waterfall Model Often Fails?

• The requirements for the software were not understood well
• Requirements were not interpreted correctly to specification
• Specification was not correctly implemented in code
• Too much coding is done before testing, making it very hard to find

causes of failure

• Pure waterfall is not recommended
• Waterfall can be used iteratively when the requirements are clearly

understood
• Work in sprints, add functionality, integrate and test

Iterative Software Development
Methodologies
• Software is developed in small iterations (sprints)
• Weeks or months

• Each iteration ends with working, tested software that can be
presented to the customer
• Initially minimal, functionality is added during the process

• Requirements are re-evaluated after each sprint
• Even dramatic changes can be made (pivot)

• Many methodologies: Agile, DevOps, Test Driven, Scrum, Kanban...
• Overlapping and subject to much debate

Common Practices

• Requirements management
• Requirements and their completion is tracked (ticketed)
• There is a measurable awareness of progress
• Completion of a task or requirement is unambiguous, "Definition of Done"

• Work discipline
• Tasks are assigned to people in a clear manner
• Documentation to maintain the resulting software

• Continuous integration and automated testing
• Acceptance procedures

From Idea to a System

• Proof of concept (PoC)
• Showing that the technical challenges (performance etc.) can be solved

• Prototype
• A working model for experimenting

• Mock-up
• A visual representation of what the product could look like

• None of the above should be put into production…

• Minimum Viable Product (MVP)
• The smallest working product and set of features that can be deployed

Architecture

3-Layer Architecture
• One common architecture
• Presentation layer
• Front end
• Talks to web browser / mobile app
• Manages user sessions

• Application / logic layer
• Server software
• The actual business logic

• Database / data layer
• Data storage
• SQL, NoSQL ...

Business logic
Supporting
frameworks

SQL

Session and user
management

NoSQL
Object
Store

Client tier

Logic tier

Data tier

HTML, JavaScript,
mobile appUser tier

A System
on the

Internet
Internet

Front-end and session management

Load balancer

Back-end and business

Databases

WAF/IPS/API-GW

User:
JavaScript or
a mobile app

Advertisements

Payment service

Jump server

Operations

Development

Analytics
Maps
Images
...

Backups, logs

Internal support services

Testing and
acceptance

IT and Business

Is IT a Critical Component for Business?

• Computers entered business in the support role
• Billing, accounting, numerical analysis
• "Faster people"

• Now many businesses can't exist without computers/digitalization
• Uber, AirBnB, Amazon, delivery services, logistics
• Process industries, manufacturing

• Computing is still developing
• Understanding its possibilities is important for business
• Also understanding what computers can't do

The Future of IT in Work and Business

• Computers are good with well defined and organized tasks
• Much more efficient than humans

• Humans are good at open ended reasoning
• Computers fail spectacularly with undefined tasks

• Computing is evolving
• AI and machine learning are current hot topics (early 2020's)

• A likely scenario for near future is better human-machine co-working
• "Human in loop" and semi-autonomous systems

Careers in and near IT

Roles and Skill Sets
Who creates the system?
• Programmer
• Writes functions, modules and

small programs
• Lead Programmer
• Directs the other programmers

• Architects
• System architect designs program

modules and their locations
(usually several servers or
instances in the cloud)
• Data architect designs data models

for the software and databases

Who decides what the system is?
• Product owner, business owner
• Controls what the system does,

decides product's features
• Technical product owner
• Controls the technical features

• Project manager
• Makes sure the project is on

schedule and budget and has the
required features
• Often not reaching all goals

• Sales and marketing

Roles and Skill Sets

Support roles
• Tester
• UI designer
• UX designer
• Security specialist
• Operator/Administrator
• Database manager
• …

Specific skill areas
• Front end developer
• Back end developer
• Full stack developer

Other roles
• Sales engineer
• Consultant

Roles in IT are often flexible

Digitalization and Importance of Software

• Everything will be computerized and networked
• The field is evolving and changing
• There will be new roles and tasks
• We still don't know how to write correct programs or work in an

efficient way
• Lots of practical work and research to do

Study Paths

Interesting Areas in Computing

• Programming, architectures, data (big and small)
• Distributed and embedded systems
• Cyber-physical systems
• Machine to machine interaction

• Artificial intelligence and machine learning
• Human-computer interaction
• User interfaces and experience

• Graphics and media
• Games, VR, AR

• Quantum computing

Where to Go from Here?
• CS-A1123 - Basics in Programming Y2

• Continues from this course with object oriented Python
• ELEC-A7100 - Basic Course in C programming

• C is a more low level language, useful especially in embedded systems
• CS-A1143 Data Structures and Algorithms Y

• Fundaments of computing theory, also required for CS minor
• CS-A1153 – Databases

• Modeling data and relations
• CS-A1150 Tietokannat in Finnish, can be done in English with self study

• Minor in Computer Science (20 – 25 cr)
• https://into.aalto.fi/pages/viewpage.action?pageId=53681468

• Ask around your own study program for recommendations

§§

