
CS-A113 Basics in
Programming Y1

3rd Lecture
20.09.2022

Topics Today

Vocabulary and Format

Coding Style & Debugging 101

For-Loop and Range

LOOPS

while and for

Loops Recap:

def superLoop():
i = 1
j = i
while i < 5:

print(i)
j += 1

For-Loop with Range-Function
def superLoop1():

for i in range(8):
print(i)

0,1,2,3,4,5,6,7

def superLoop2():
for i in range(0,8):

print(i)
0,1,2,3,4,5,6,7

def superLoop2():
for i in range(2,8):

print(i)
2,3,4,5,6,7

for i in range(x,y) ->
i= x
i = x+1
i=x+2
...

i=y-1

Loops

def superLoop():
myNumber = int(input(‘Say a number.\n’)):
for i in range(myNumber)

print(i)

Range in more Detail
range(5) = range(0,5,1)
range(x,y,z)
x,
x+z,
x+2z,
x+3z,
...
x+wz<y

We want to print all positive, odd numbers until 100.

def superLoop():
for i in range(x,y,z):

print(i)

Why Start from Zero?

range(n) returns n numbers, which is desirable
But annoyingly from 0 to n-1

This is common custom in computing, caused
by some lower level languages like C
Which is due to the memory offset from a
named memory area to the first item
This is a convention and you just have to learn
to live with it

Foo

Bar

Batz

Named array
in RAM

1:st item Offset from
name to
start of first
item is 0
bytes

Loops

def superLoop():
for i in range(x,y,z):

print(i)

We want all negative Numbers greater than -20 which are
divisible by 3 without remainder

We want all numbers in a descending order between 20 and
0 that are divisible by 3 without remainder

Why both while and for?

For is for processing a known data sequence
range(), list, set

While is to repeat something until a condition is met
Even if one can often replace another, there are differences
and knowing which to use makes code easier to understand
Also, there are implementation differences and nuances

Break: Move your
Shoulders

and Format ;)

Incomprehensive, Non-Accurate List:
Programming words
Syntax: ‘structure’ of the program e.g., for x in range(n):
Semantic: What the program actually does e.g., loop through 0 to n-1

Algorithm: A way of solving a problem by methodological steps
Program: An instruction for the computer to follow

Input: What is given to a program
Output: What the program returns

Incomprehensive, Non-Accurate List
Data words
String: one or several characters
Integer: a ‘normal’ number
Float: a number that can have a decimal point
List: a list of elements with an order
Bool: a logical value, True or False

Incomprehensive, Non-Accurate List
Working words
Comment: Something the computer ignores when running a program
IDE: Integrated Development Environment (e.g. PyCharm, Eclipse)
Python File: A file with the endin ”.py” should contain python code
Debugging: Correcting the code to do what one wants it to do

Formatting output

print(firstname, “earned“, salary, “Euros in“, month, “. “)

Alex earned 100.126735486649 Euros in September .

Joe earned 10.5 Euros in August .

Sally earned 2450.5999 Euros in August .

print(firstname+“ earned “+str(salary)+“ Euros in “+month+“. “)

Alex earned 100.126735486649 Euros in September.

Joe earned 10.5 Euros in August.

Sally earned 2450.5999 Euros in August.

We want an easy way to make output pretty, especially when printing lists of things

Format Strings with .format()
("{:} earned {:} Euros in {:}.").format(firstname,salary,month)
Alex earned 100.126735486649 Euros in September.

print(("{:15s} earned {:} Euros in {:}.").format(firstname,salary,month))
Alex earned 100.126735486649 Euros in September.

print(("{:15s} earned {:7f} Euros in {:}.").format(firstname,salary,month))
Alex earned 100.126735 Euros in September.

print(("{:15s} earned {:7.2f} Euros in {:}.").format(firstname,salary,month))
Alex earned 100.13 Euros in September.

("{:15s} earned {:7.2f} Euros in {:>9s}.").format(firstname,salary,month)
Alex earned 100.13 Euros in September.
Joe earned 10.50 Euros in August.
Sally earned 2450.60 Euros in August.

Using print() and Formatting

• We want to have nice output on screen
• Data in justified columns
• Proper number of decimals for a float

• Python has two methods for this
• format() is the older (Python 2.6)
• F-strings is nicer from Python 3.6 onwards
• Both use the same formatting method
• Quite a lot of details we don't get into

• Programming languages evolve and minor features get added on

Alternative f-strings

Since python 3.6 you can use f-strings (slightly less confusing)
Same formatting system, but variables and values inside the string

number = 5
factor = 8
result = number * factor
print(f"{number:3d} times {factor:3d} is {result:6d}")
5 times 8 is 40

print(("{:3d} times {:3d} is {:6d}").format(number,factor,result))

Are all Programming Languages Same?

• Some things are found in almost all languages
• For and while loops
• If-else structure
• Named variables and functions
• These have some variation, but are fundamentally same

• Print formatting and pretty printing is very common
• However, very much variation in implementation

Break:
Move your Neck!

Coding Style

We will Look at Your Style on Some Point!

Keep it clean ;)

Naming, Commenting, Structuring

• Programs are written:
• For the computer to run mechanically
• For other programmers to maintain and develop further

• Computers will eat anything
• See the “Obfuscated C Contest”, https://www.ioccc.org/

• Humans are different
• Names should be distinguishable and meaningful
• Comments should describe the intent and significant design decisions
• Code should be structured in independent functions and modules

• Uniformity and readability matter

https://www.ioccc.org/

Naming, Naming, Naming
• variables: use reasonable and self-describing names, not

too long
• index variables: i,j,k
• x,y are usually used for axes in a plot
• Structure your program, keep similar things together
• Use variables for values you need several times
• Read a style Guide
Comment your code
What does your code do?
What does it expect as input, which format?
Write your code for someone else
(you will be someone else in a few months ;))
Try not to swear or be inappropriate ;)

Always code as if the person who ends up maintaining your
code is a violent psychopath who knows where you live.

Coding Style Examples

def main():
a = int(input("Enter your age!\n"))
if (a < 18):

print(“You cannot legally drink in Finland!")
else:

print(“Enjoy your drink!")

Coding Style Examples

def main():
a = float(input("Enter number!\n"))
b = float(input("Enter number!\n"))
c = a*b
print(“Your result is: “+c)

This program calculates the product of two input factors
def main():

factor1 = float(input("Enter your first factor!\n"))
factor2 = float(input("Enter your second factor!\n"))
product = factor1*factor2
print(“Your product is: “+product)

Coding Style Examples

def main():

aFloatNumberToCalculateTheProduct =float(input("Enter a floating point number!\n"))

anotherFloatNumberToCalculateTheProduct = float(input("Enter a floating point number!\n"))

variableToStoreTheProductOfTheNumbers = aFloatNumberToCalculateTheProduct*
anotherFloatNumberToCalculateTheProduct

print(“Your product from your two floating point numbers is” + variableToStoreTheProductOfTheNumbers)

Coding Style Examples

def example1():

nofYears = 10

startCapital = 50

interest = 0.01

currentCapital = startCapital

for i in range(nofyears):

currentCapital += currentCapital*interest

print(“after ” + nofYears + “ your starting capital of “+startCapital+”
has become “+currentCapital)

def example2():

while i<10:

if i==0:

money=50

money += money*0.01

print(“after 10 years your starting capital of 50 has
become “+money)

