CS-A113 Basics in
Programming Y1

Lecture 27.9.2022

Function Call Parameters Return Values

TOplCS TOd ay And a tiny bit about

software engineering

Functions

You already used them:
int(), print(), range()

Whatever you defined with def became a function

def superLoop():
for i in range(0,50,3):
print(1)

def main():

superLoop()

But Why?

Functions: But Why?

Because we are lazy To structure our Code

something ug e way | come

;) towel that

Do you ALWAYS
have to reinvent
the wheel?

¥ In some cases yes
you do, but in

B most cases it's a
big NOOOO!

Functions: But Why?

Because we are lazy

Do you ALWAYS
have to reinvent
the wheel?

In some cases yes
you do, but in
most cases it's a
big NO00O!

To structure our Code

def cleanApartment()
while(notClean):
stuff=pickUp()
if stuff== book:
if bookshelf = full:
putToBookshelf(stuff)
else:

elif stuff == laundry:
putToLaundryBasket

if LaundryBasket == full:

doLaundry:
elif stuff == food:

def cleanApartment()
while(notClean):

stuff = pickUp()
putAway (stuff)

def putAway(object)
if object == book:

elif object == laundry:

Functions

def carGas():
price = 1.39
print(’gas costs”,price, "Euros / 17)

def carMaintenance():
lowPrice = 200
highPrice = 450

print(’maintanence costs ca.”’,lowPrice,”-” highPrice)

def carCosts(): e def parkingSpot():
carGas() / price = 120
parkingSpot() G print ("parking spot costs” price, “Euros / year”)
carlnsurance() =
carMaintenance% ,

print(’Do not forget these costs!”)

def carlnsurance():
lowPrice = 200
highPrice = 450

print(’insurance costs ca.”’ lowPrice,”’-" highPrice)

Functions

def carGas():
price = 1.39
print(’gas costs”,price, "Euros / 17)

def carCosts(): &= def parkingSpot():
carGasO / price = 120
parkingSpot() G print ("parking spot costs” price, “Euros / year”)
#carInsurance\ =
#carMaintenance ' def carMaintenance():

lowPrice = 200
highPrice = 450

print(’maintanence costs ca.”’,lowPrice,”-” highPrice)

print(’Do not forget these costs!”)

def carlnsurance():
lowPrice = 200
highPrice = 450

print(’insurance costs ca.”’ lowPrice,”’-" highPrice)

Functions

def carGas():
price = 1.39
print(’gas costs”,price, "Euros / 17)

def carCosts(): def parkingSpot():

#HcarGas() price = 120. .

#parkingSpot() print (’parking spot costs” price, ”Euros / year”)
carlnsurance()
carMaintenance() def carMaintenance():

lowPrice = 200
highPrice = 2000

print(’maintanence costs ca.”’,lowPrice,”’-” highPrice)

—
$8——E4
. By = ‘
v
\ l J
«
)
\ ’

print(’Do not forget these costs!”)

def carlnsurance():
lowPrice = 200
highPrice = 450

print(’insurance costs ca.”’ lowPrice,”’-"" highPrice)

Functions

def carGas():
price = 1.39
print(’gas costs”,price, "Euros / 17)

def carCosts(): def parkingSpot():

#HcarGas() price = 120. .

#parkingSpot() print (’parking spot costs” price, ”Euros / year”)
carlnsurance()
carMaintenance() def carMaintenance():

lowPrice = 200
highPrice = 2000

print(’maintanence costs ca.”’,lowPrice,”’-” highPrice)

—
$8——E4
. By = ‘
v
\ l J
«
)
\ ’

print(’Do not forget these costs!”)

def carlnsurance():
lowPrice = 200
highPrice = 450

print(’insurance costs ca.”’ lowPrice,”’-"" highPrice)

* A named subprogram

def function_name():

code... Independent blocks of

program code

def another_function():
code...

code...

def function_name():
code...

deffano’gher_function(): Functions can be called from
unction_name()

code... elsewhere in the code

main()
function_name()
another_function()

Parameters

def myFunction(a):
print(3*a)

myFunction

def main():
b=5
myFunction(7)
myFunction(b)

21
15

Parameters

Car example

def carGas(distance):

) asPrice = 1.39
def carCosts(): mPerl. = 15
: _ cost = way/kmPerl *gasPrice

distance = 15 print(”Gas costs” cost,”’for driving” way)
location = cityCenter”
type = full” def parkingSpot(place):
carAge = 3 if place == "cityCenter”:
place = ”’to be” _cost = 450

elif place == "forest™:

| cost =0

else:
carGas(distance) cost = 200 ¥ . - N
parkingSpot (location) print (’your parking spot costs”,cost, “Euros / yeat”)
carlnsurance(type) — L —> def carlnsurance(level):

carMaintenance(carAge) —

—> def carMaintenance(age)
print(’Do not forget these costs!”)

Parameters

Car example

def carGas(distance):

def carCosts(): ?gggrcf - 11 539 .
: cost = distance/kmPerL*gasPrice
distance = 15 print(”Gas costs”,cost,”’for driving” distance)
location = cityCenter”
type = full” def parkingSpot(place):
carAge = 3 if place == cityCenter”:
=7 &) cost = 450
place to be elif place == "forest™:
cost =0
_ else:
carGas(distance) cost =200 . ., .,
parkingSpot (1(')Cati(')n) print (’your parking spot costs”,cost, “Euros / yeat”)
carlnsurance(type) — — —> def carlnsurance(level):
carMaintenance() — :

—> def carMaintenance(aoc)
print(’Do not forget these costs!”)

Parameters

Car example

def carGas(distance):

asPrice = 1.39
def carCosts(): moPerl. = 15 |
: cost = distance/kmPerL*gasPrice
distance = 15 print(”Gas costs”,cost,”’for driving” distance)
location = cityCenter”
type = full” def parkingSpot(place):
carAge = 3 it place == "cityCenter”

p— 4

place = "’to be” cost = 450

elif place == "forest™:
| cost =0
else:
carGas(distance) cost =200 y . y
parkingSpot (1(')C”1ti(')n) print (’your parking spot costs”,cost, “Euros / yeat”)
Hearlnsurance (tYpC\T - —> def carlnsurance(level):
#carMaintenance(o

—> def carMaintenance(aoc)

#print(’Do not forget these costs!’

* Input for the function

* Can be none, one or more

def my function(a, b, c):
print(a, b, c)

Return Values

def main():
startAge = 5
education] =6
education2 = 6
birthYear = 1996
masterDuration = 5
ageAtUni = mySum(startAge,education],education?)
graduationYear = mySum(birthYear,age AtUni,masterDuration)
print(’I was born” birthYear,”and graduated in”, graduationYear)

def mySum(a,b,c): I was born 1996 and graduated in 2018

sum = a+b+c
return sum

Return Value

Car example

def carCosts():

distance = 15

location = cityCenter”
type = "tull”

carAge = 3

place = "forest”

cost=0

cost += carGas(distance)

cost += parkingSpot(location)
cost += carlnsurance(type)

cost += carMaintenance(carAge)

print(”Your car costs:”; cost)

def carGas(distance):

asPrice = 1.39

mPerlL =15
cost = distance/kmPerl.*gasPrice
return(cost)

def parkingSpot(place):
if place == "cityCenter’:
Eost =450 v
elif place == "forest™:
cost =0

else:
cost = 200
return(cost)

def carlnsurance(level):

def carMaintenance(age)

Return Value

AR N et i
3 pozri s ROOD SI alddo TR = Ve e R A A e OSER CLNTE Haarr
S . S0 A ‘é;,ﬁg,{' l!“ ks

 Function can return a result
e Usually should, too, at least a status code

* The value can be any variable

e Command "return" ends the function
* return(5)

def is_equal(a, b):

ifa==>b:

return(True) \

else: - Two return statements,
return(False) < of type boolean
print(a, b)

\ print is never reached,

bad code

Think:

Is this function
needed at all?

S
-
O
>
W
>
O
>
\
(O
©
S
8

Shoulders

def carCosts():

distance = 15
location = "cityCenter”

cost =0
cost += carGas(distance)
cost += parkingSpot(location)

print(’Your car costs:”, cost)

det carGas(way):

gasPrice = 1.39
kmPerl. = 15
cost = distance/kmPerl*gasPrice

return(cost)

def parkingSpot(place):
if place == "cityCenter’:
price = 450
elif place == "forest™
price =0
else:
price = 200

return(price)

def carCosts():
distance = 15

location = "cityCenter”
type = "full”
carAge = 3

place = "forest”

cost =0

cost += carGas(30)

cost += parkingSpot(location)
cost += carMaintenance(carAge)

print(”Your car costs:”; cost)

def carGas(distance):

asPrice = 1.39

mPerlL =15
cost = distance/kmPer] *gasPrice
return(cost)

def parkingSpot(place):

it place == "cityCenter”
price = 450 v

elit place == forest™:
price = 0

else:
price = 200

return(price)

def carMaintenance(age):
cost = age*100

return(cost)

Break:
Move your Neck!

* A named subprogram

* Input: parameters
* Code processes input
e Qutput: returned value

Why Functions?

. e - ekl N SRR e i, ~
R . =T T ¥ 2 Sl "‘—‘.nc‘im—kmu}:\ﬁ-"' i 4 e R Al o - g
s i ,

-

* Reusability
* Same code needed in many places
* E.g., validating social security number

* Modularity
e Organize a program to separate sections
* Reliability
* Re-using well tested and well defined functions avoids problems

* Use descriptive names
e car_cost_gas(), car_cost_parking()

* Follow a style
* Shared projects usually have a style guide
* With Python, lowercase names with underscores common

e Using good names makes programs easier to understand and
maintain

* Not: my_function_1(), my_functio_1(), my_function2()...

 Larger programs have lots of code
10 000 lines not unusual, 1 000 000 not unheard

e Sub-parts of the program are called modules
e Usually kept in separate files and maintained by separate programmers

* Modules communicate through interfaces
e E.g. function calls

* A module often has some functions that should be called and others
that are internal

* This is the start of architecture

R

-

What Goes Where?

e How to know what each function should do?

* Analysis, understanding the problem the program solves
* Stop writing code and start to think

* Look for commonalities, related tasks, independent tasks

e Skill grows with experience

* Pen and paper or a whiteboard are common tools

* Also formal modeling tools, like Unified Modeling Language

My Code is a Mess

e

~ - . .- PRI gRT . L T g T e
T b s i 1A Ay o e AT ey s 4 v raak L O i L
st O g ,

* Working without a plan
* Or requirements change, plan was not complete

* Time to refactor
e Re-arrange the code and functions differently

» Refactoring is (or should be) common in agile projects
* A sprint is used to clean up the code
* No functionality is added
* reduces maintenance debt

