
CS-A113 Basics in
Programming Y1

Lecture 27.9.2022

Topics Today

Function Call Parameters Return Values

And a tiny bit about
software engineering

Functions

You already used them:
int(), print(), range()

Whatever you defined with def became a function
def superLoop():

for i in range(0,50,3):

print(i)

def main():

superLoop()

But Why?

superLoop

Functions: But Why?
Because we are lazy To structure our Code

Functions: But Why?
Because we are lazy To structure our Code

def cleanApartment()
while(notClean):

stuff=pickUp()
if stuff== book:

if bookshelf != full:
putToBookshelf(stuff)

else:
....

elif stuff == laundry:
putToLaundryBasket
if LaundryBasket == full:

doLaundry:
elif stuff == food:
...

def cleanApartment()
while(notClean):

stuff = pickUp()
putAway(stuff)

def putAway(object)
if object == book:

....
elif object == laundry:

Functions

def carCosts():
carGas()
parkingSpot()
carInsurance()
carMaintenance()

print(”Do not forget these costs!”)

def carGas():
price = 1.39
print(”gas costs”,price, ”Euros / l”)

def parkingSpot():
price = 120
print (”parking spot costs”,price, ”Euros / year”)

def carMaintenance():
lowPrice = 200
highPrice = 450
print(”maintanence costs ca.”,lowPrice,”-”,highPrice)

def carInsurance():
lowPrice = 200
highPrice = 450
print(”insurance costs ca.”,lowPrice,”-”,highPrice)

Functions

def carCosts():
carGas()
parkingSpot()
#carInsurance()
#carMaintenance()

print(”Do not forget these costs!”)

def carGas():
price = 1.39
print(”gas costs”,price, ”Euros / l”)

def parkingSpot():
price = 120
print (”parking spot costs”,price, ”Euros / year”)

def carMaintenance():
lowPrice = 200
highPrice = 450
print(”maintanence costs ca.”,lowPrice,”-”,highPrice)

def carInsurance():
lowPrice = 200
highPrice = 450
print(”insurance costs ca.”,lowPrice,”-”,highPrice)

Functions

def carCosts():
#carGas()
#parkingSpot()
carInsurance()
carMaintenance()

print(”Do not forget these costs!”)

def carGas():
price = 1.39
print(”gas costs”,price, ”Euros / l”)

def parkingSpot():
price = 120
print (”parking spot costs”,price, ”Euros / year”)

def carMaintenance():
lowPrice = 200
highPrice = 2000
print(”maintanence costs ca.”,lowPrice,”-”,highPrice)

def carInsurance():
lowPrice = 200
highPrice = 450
print(”insurance costs ca.”,lowPrice,”-”,highPrice)

Functions

def carCosts():
#carGas()
#parkingSpot()
carInsurance()
carMaintenance()

print(”Do not forget these costs!”)

def carGas():
price = 1.39
print(”gas costs”,price, ”Euros / l”)

def parkingSpot():
price = 120
print (”parking spot costs”,price, ”Euros / year”)

def carMaintenance():
lowPrice = 200
highPrice = 2000
print(”maintanence costs ca.”,lowPrice,”-”,highPrice)

def carInsurance():
lowPrice = 200
highPrice = 450
print(”insurance costs ca.”,lowPrice,”-”,highPrice)

Functions

• A named subprogram

def function_name():
code…

def another_function():
code…

code…

Independent blocks of
program code

Functions

def function_name():
code…

def another_function():
function_name()
code…

main()
function_name()
another_function()

Functions can be called from
elsewhere in the code

Parameters

a

print(3*a)

def main():
b = 5
myFunction(7)
myFunction(b)

myFunction

21
15

def myFunction(a):
print(3*a)

Parameters

Car example
def carGas(distance):

gasPrice = 1.39
kmPerL = 15
cost = way/kmPerL*gasPrice
print(”Gas costs”,cost,”for driving”,way)

def parkingSpot(place):

if place == ”cityCenter”:
cost = 450

elif place == ”forest”:
cost = 0

else:
cost = 200

print (”your parking spot costs”,cost, ”Euros / year”)
def carInsurance(level):

...
def carMaintenance(age)

....

def carCosts():

distance = 15
location = ”cityCenter”
type = ”full”
carAge = 3
place = ”to be”

carGas(distance)
parkingSpot(location)
carInsurance(type)
carMaintenance(carAge)

print(”Do not forget these costs!”)

Parameters

Car example
def carGas(distance):

gasPrice = 1.39
kmPerL = 15
cost = distance/kmPerL*gasPrice
print(”Gas costs”,cost,”for driving”,distance)

def parkingSpot(place):

if place == ”cityCenter”:
cost = 450

elif place == ”forest”:
cost = 0

else:
cost = 200

print (”your parking spot costs”,cost, ”Euros / year”)
def carInsurance(level):

...
def carMaintenance(age)

....

def carCosts():

distance = 15
location = ”cityCenter”
type = ”full”
carAge = 3
place = ”to be”

carGas(distance)
parkingSpot(location)
carInsurance(type)
carMaintenance(carAge)

print(”Do not forget these costs!”)

Parameters

Car example
def carGas(distance):

gasPrice = 1.39
kmPerL = 15
cost = distance/kmPerL*gasPrice
print(”Gas costs”,cost,”for driving”,distance)

def parkingSpot(place):

if place == ”cityCenter”:
cost = 450

elif place == ”forest”:
cost = 0

else:
cost = 200

print (”your parking spot costs”,cost, ”Euros / year”)
def carInsurance(level):

...
def carMaintenance(age)

....

def carCosts():

distance = 15
location = ”cityCenter”
type = ”full”
carAge = 3
place = ”to be”

carGas(distance)
parkingSpot(location)
#carInsurance(type)
#carMaintenance(carAge)

#print(”Do not forget these costs!”)

Parameters

• Input for the function
• Can be none, one or more

def my_function(a, b, c):
print(a, b, c)

Return Values

a,b,c

sum = a+b+c

sum

mySum
def main():

startAge = 5
education1 = 6
education2 = 6
birthYear = 1996
masterDuration = 5
ageAtUni = mySum(startAge,education1,education2)
graduationYear = mySum(birthYear,ageAtUni,masterDuration)
print(”I was born”,birthYear,”and graduated in”, graduationYear)

I was born 1996 and graduated in 2018def mySum(a,b,c):
sum = a+b+c
return sum

Return Value

Car example

def carCosts():

distance = 15
location = ”cityCenter”
type = ”full”
carAge = 3
place = ”forest”

cost=0
cost += carGas(distance)
cost += parkingSpot(location)
cost += carInsurance(type)
cost += carMaintenance(carAge)

print(”Your car costs:”, cost)

def carGas(distance):
gasPrice = 1.39
kmPerL = 15
cost = distance/kmPerL*gasPrice
return(cost)

def parkingSpot(place):

if place == ”cityCenter”:
cost = 450

elif place == ”forest”:
cost = 0

else:
cost = 200

return(cost)
def carInsurance(level):

...
def carMaintenance(age)

....

Return Value

• Function can return a result
• Usually should, too, at least a status code

• The value can be any variable
• Command "return" ends the function
• return(5)

Return Value

def is_equal(a, b):
if a == b:

return(True)
else:

return(False)
print(a, b)

Two return statements,
of type boolean

print is never reached,
bad code

Think:
Is this function
needed at all?

Break: Move your
Shoulders

Coding Examples

def carCosts():

distance = 15
location = ”cityCenter”

cost =0
cost += carGas(distance)
cost += parkingSpot(location)

print(”Your car costs:”, cost)

def carGas(way):
gasPrice = 1.39
kmPerL = 15
cost = distance/kmPerL*gasPrice
return(cost)

def parkingSpot(place):

if place == ”cityCenter”:
price = 450

elif place == ”forest”:
price = 0

else:
price = 200

return(price)

Coding Examples

def carCosts():
distance = 15
location = ”cityCenter”
type = ”full”
carAge = 3
place = ”forest”
cost =0
cost += carGas(30)
cost += parkingSpot(location)
cost += carMaintenance(carAge)

print(”Your car costs:”, cost)

def carGas(distance):
gasPrice = 1.39
kmPerL = 15
cost = distance/kmPerL*gasPrice
return(cost)

def parkingSpot(place):

if place == ”cityCenter”:
price = 450

elif place == ”forest”:
price = 0

else:
price = 200

return(price)

def carMaintenance(age):
cost = age*100
return(cost)

Break:
Move your Neck!

Function

• A named subprogram
• Input: parameters
• Code processes input
• Output: returned value

Why Functions?

• Reusability
• Same code needed in many places
• E.g., validating social security number

•Modularity
• Organize a program to separate sections

• Reliability
• Re-using well tested and well defined functions avoids problems

How to Name?

• Use descriptive names
• car_cost_gas(), car_cost_parking()

• Follow a style
• Shared projects usually have a style guide
• With Python, lowercase names with underscores common

• Using good names makes programs easier to understand and
maintain
• Not: my_function_1(), my_functio_1(), my_function2()…

Modular Architecture

• Larger programs have lots of code
• 10 000 lines not unusual, 1 000 000 not unheard

• Sub-parts of the program are called modules
• Usually kept in separate files and maintained by separate programmers

• Modules communicate through interfaces
• E.g. function calls

• A module often has some functions that should be called and others
that are internal
• This is the start of architecture

What Goes Where?

• How to know what each function should do?
• Analysis, understanding the problem the program solves
• Stop writing code and start to think

• Look for commonalities, related tasks, independent tasks
• Skill grows with experience
• Pen and paper or a whiteboard are common tools
• Also formal modeling tools, like Unified Modeling Language

My Code is a Mess

• Working without a plan
• Or requirements change, plan was not complete
• Time to refactor
• Re-arrange the code and functions differently

• Refactoring is (or should be) common in agile projects
• A sprint is used to clean up the code
• No functionality is added
• reduces maintenance debt

§§

