
CS-A113 Basics in
Programming Y1

7th Lecture
2.11.2021

Topics Today

Read Files

Exeption Handling

Programming so far

• A program is a series of commands that manipulate data
• a = b * c

• Basic structures
• Loop (for and while)
• Branch (if, elif, and else)

• Data can be
• Text or numbers
• Single variables or structured (lists and dictionaries)

• Today we start to read data from files

Reading a File

What are Files

• Named data storage on the mass media
• The disk, non-volatile memory

• Can have many different formats
• File formats is a larger issue, which we do not discuss

• Today we assume files have lines of data
• Text or numbers written as text, separated by newlines

How to Open and Close a File

sourceFile = open(”text.txt”,”r”)

sourceLine = sourceFile.readline()
while sourceLine != ””:

print(sourceLine)
sourceLine = sourceFile.readline()

sourceFile.close()

Open the file

Close the file

Do some reading

How to Read a File

sourceFile = open(”text.txt”,”r”)

read line by line
sourceLine = sourceFile.readline()

while sourceLine != ””:
print(sourceLine)
sourceLine = sourceFile.readline()

sourceFile.close()

sourceFile = open(”text.txt”,”r”)

read through all lines
for sourceLine in sourceFile:

print(sourceLine)

sourceFile.close()

sourceFile = open(”text.txt”,”r”)

store all the lines in a list
lineList = sourceFile.readlines()

sourceFile.close()

for sourceLine in lineList:
print(sourceLine)

Reading Files

• open tells the operating system to open the file for reading
• Data from the beginning of the file is buffered into memory
• OS knows that file is open

• open returns a file object
• It knows how far the file has been read (position)
• It can be asked for the next line

• After reading the file should be closed
• Releases resources

Files are Objects

• my_file = open("filename")
• open returns an object

• line = my_file.readline()
• readline is a method of the my_file object

• my_file.close()
• So is close

• The methods used to handle the file are connected to the file object
• We'll discus the object model a bit later on the course

Processing the File

• readline() returns a line of text as a string ending in the newline
character \n
• "line of text\n"
• numbers are text, too

• Python has tools for manipulating strings
• Methods of the str class

Good to Know

• line = line.rstrip()
(removes whitespace characters at the end of the line, like newline, tab etc.)
example: ”Hi, how are you? \n” à ”Hi, how are you?”

• parts = line.split(”,”)
splits the string into several parts with ”,” as delimiter
example: ”Barbara, Keller,123, ,52” à (”Barbara” , ” Keller” , ”123”, ”” , ”52”)

• myFile.readline() returns the empty string, once its finished
example: ””
keep in mind, an empty line is not the same: ”\n”

Example 1

def main1():

myFile = open("lines.txt","r")
myLine = myFile.readline()
print(myLine)
i = 0

for theLine in myFile:
print(theLine)
if i==1:

test=myFile.readline()
i += 1

myFile.close()

Content of lines.txt

Line0
Line1
Line2
Line3
Line4

Output
A: Line0, Line0, Line1, Line2, Line3, Line4
B: Line0, Line2, Line3, Line4
C: Line0, Line1, Line3, Line4
D: Line0, Line1, Line2, Line4

Example 2

def main1():

myFile = open("lines.txt","r")
myLine = myFile.readline()
print(myLine)
i = 0

for theLine in myFile:
print(theLine)
if i==1:

test=myFile.readlines()
i += 1

myFile.close()

Content of lines.txt

Line0
Line1
Line2
Line3
Line4

Output
A: Line0, Line0, Line1, Line2, Line3, Line4
B: Line0, Line1, Line2, Line3, Line4
C: Line0, Line1, Line2
D: Line0, Line1

Break: Move your
Shoulders

What if the File you
want to read does not
exist in this directory?

0

Exception Handling

Exception Handling
try:

#Here comes the code that maybe leads to an error
except ERROR:

What should you do in case of such an error

try:
#Here comes the code that maybe leads to an error
sourceFile = open(”text.txt”,”r”)
sourceLine = sourceFile.readline()

except OSError:
What should you do in case of such an error
print(”Error in reading the file.")
print("Maybe the file is in another directory.”)

Example

def main1():
name = input("Enter file name:")
sum = 0
count = 0

try:
tempfile = open(name, "r")
for line in tempfile:

parts = line.split(",")
temperature = float(parts[1])
sum += temperature
count += 1

tempfile.close()
except OSError:

print("Error in reading file ", name)
except ValueError:

print("Incorrect temperature in file ", name)

def main2():
name=input("Enter file name:")
sum = 0
count = 0

try:
tempfile = open(name, "r")
sum = 0
count = 0
for line in tempfile:

parts = line.split(",")
try:

temperature = float(parts[1])
sum += temperature
count += 1

except ValueError:
print("Incorrect temperature in file ", name)

tempfile.close()
except OSError:

print("Error in reading file ", name)

Exceptions

• Unexpected things can happen when running a program
• The operating environment may throw surprises

• Missing files
• Errors in input data

• These are called exceptions
• Exceptions can be caught and processed
• Try-catch is usual name for this
• In Python try-except

Exceptions in Python

• Suspectful part of code is executed in a try: block
• Indentation marks the block

• After the block are except: statements that handle different cases
• Generally try: should be used sparingly
• Large try: blocks become hard to understand
• File operations are typical cases for using try

• Open, read, convert data…

More about Errors and Exceptions

• Syntax errors are Python language errors
• E.g., a === 1
• Usually caught when the program starts

• Exceptions are various conditions that can be caught and resolved
• E.g., int("five")
• Python has dozens of specific exceptions

• Out of memory, division by zero…

• Your program can also raise an exception
• Way for a subroutine to tell the calling program that it can not perform

§§

