
CS-A113 Basics in
Programming Y1

9th Lecture
8.11.2021

1. Don’t forget to register in SISU for the exam at least 1 week before the exam

2. Don’t forget to also register for your EXAM slot.
3. You find information on our myCourses page

• Onsite

• Finnish Keyboard

• No stuff (ID & water bottle without labels)

• First login with the login provided at the EXAM computer

• Remember your Aalto login – you need to login with this after

Topic Today:
OO-Programming

Recap

A student has
• a name
• a student number
• courses they are enrolled in
• grades

Recap:
class Student:

def _ _ init_ _(self, myName, myNumber):
self._ _ name = myName
self._ _id = myNumber
self._ _grades = []
self._ _courses = []

def add_course(self,course):
self._ _courses.append(course)

main():
student1 = Student(”Barbara”,123)
student2 = Student(”Angelina”,564)
studentRegistry = (student1,student2,student3)
name = read_input()
student1.add_course(”Basics in Programming”)
student2.add_course(”Algorithms and Datastructures”)

How to Make Large Programs?

• Complexity grows very fast when solving real problems
• Every little feature on a web page or an app needs its own code and

data and is related to everything else
• Solution:
• Divide the software to modules that have defined interfaces to use

• Interface: functions, data structures, network protocols
• Use object oriented model to hide the actual data structures
• Store modules in separate files and divide up the work among developers

Put Classes to their own File (Module)

Put Classes to their own File (Module)

Implement your class once and use it everywhere!

A module is a file containing Python definitions and statements. The file name is
the module name with the suffix “.py” appended.
Place your module files in the same directory as the main program.

In our Example:

Class = Student
Module = student
Filename (of the module with the class Student) = student.py

Concept Example

Module student

Class Student

Constructor
initializer method

def _ _ init_ _ (self, myName)
self._ _name = myName

Initialization Student1 = student.Student(“Barbara”, 123)

instance student1 = student.Student(“Barbara”, 123)
student1

attribute _ _ name

Method def add_course(self,course):
self._ _courses.append(course)

Method call student1.add_course(“A”)

Function def read_input():
return(input(“Enter your input\n”))

Function call myInput = read_input()

Recap:
class Student:

def _ _ init_ _(self, myName, myNumber):
self._ _ name = myName
self._ _id = myNumber
self._ _grades = []
self._ _courses = []

def add_course(self,course):
self._ _courses.append(course)

main():
student1 = Student(”Barbara”,123)
student2 = Student(”Angelina”,564)
studentRegistry = (student1,student2,student3)
name = read_input()
student1.add_course(”Basics in Programming”)
student2.add_course(”Algorithms and Datastructures”)

Module: student
File: student.py
class Student:

def _ _ init_ _(self, myName, myNumber):
self._ _ name = myName
self._ _id = myNumber
self._ _grades = []
self._ _courses = []

def add_course(self,course):
self._ _courses.append(course)

import student

student1 = student.Student(”Barbara”,123)
student2 = student.Student(”Angelina”,564)
student1.add_course(”Basics in Programming”)
student2.add_course(”Algorithms and Datastructures”)

Main program

Note the module name when creating an object,
but not when using the object

Think of class definition as a recipe and
the object as the cake

Good to Know

• Guidelines:
• Imports always at the start of the file
• Import is only happening once per interpreter session,

if you make changes to the module, you need to restart the interpreter
(PyCharm does an automatic reload)

• There is much more, like packages à not part of this course
• The module does NOT need to be in the same directory, for our purpose it is

easier to keep it that way

Break:
Move your Shoulders

Whats up with all the _ _ _ _ _ _ _ _ _ _ _

It is about who has access to what
_ _birthyear hides the attribute “birthyear” from the world outside of your class

student1._ _birthyear = 1999 is not valid in your main():

But Why?

It makes it way easier to structure and maintain
your code. If there are changes, you only need to
update the Class, not every program that uses it.

Example

Class Student2:

def _ _init_ _(self, myName):
self._ _name = myName
self._ _age = 0

def get_age(self):
return self._ _ age

def set_age(self, myAge):

if (-0.75 <myAge<150):
self._ _ age = myAge

main():

myStudent.set_age(15)

........
age = myStudent.get_age()

if age < 18:

print(“sorry, you are underage”)

Class Student1:

def _ _init_ _(self, myName):
self.name = myName
self.age = 0

def get_age(self):
return self.age

main():

myStudent.age = 15

........
if myStudent.age < 18:

print(“sorry, you are underage”)

Example

Class Student2:

def _ _init_ _(self, myName):
self._ _name = myName
self._ _age = 0

def get_age(self):
return self._ _ age

def set_age(self, myAge):

if (-0.75 <myAge<150):
self._ _ age = myAge

main():

myStudent.set_age(15)

........
age = myStudent.get_age()

if age < 18:

print(“sorry, you are underage”)

Class Student1:

def _ _init_ _(self, myName):
self.name = myName
self.age = 0

def get_age(self):
return self.age

main():
myStudent.age = 15

........
if myStudent.age < 18:

print(“sorry, you are underage”)

Change
attribute age
to birthyear

Example

Class Student2:

def _ _init_ _(self, myName):
self._ _name = myName
self._ _birthyear = 0

def get_age(self):

age = CUR_YEAR – self._ _birthyear
return age

def set_age(self, myAge):

if (-0.75 <myAge<150):
self._ _ birthyear = CUR_YEAR - myAge

main():

myStudent.set_age(15)

........
age = myStudent.get_age()
if age < 18:

print(“sorry, you are underage”)

Class Student1:

def _ _init_ _(self, myName):
self.name = myName
self.birthyear = 0

def get_age(self):

age = CUR_YEAR -self.birthyear
return age

main():

myStudent.age = 15

........
if myStudent.age < 18:

print(“sorry, you are underage”)

Change
attribute age
to birthyear

Example

Class Student2:

def _ _init_ _(self, myName):
self._ _name = myName
self._ _birthyear = 0

def get_age(self):

age = CUR_YEAR – self._ _birthyear
return age

def set_age(self, myAge):

if (-0.75 <myAge<150):
self._ _ birthyear = CUR_YEAR - myAge

main():

myStudent.set_age(15)

........
age = myStudent.get_age()
if age < 18:

print(“sorry, you are underage”)

Class Student1:

def _ _init_ _(self, myName):
self.name = myName
self.birthyear = 0

def get_age(self):

age = CUR_YEAR -self.birthyear
return age

main():

myStudent.age = 15

........
if myStudent.age < 18:

print(“sorry, you are underage”)

Change
attribute age
to birthyear

Getters and Setters

Use for every attribute set- and get-methods!

def set_age(self,myAge):
self._ _age = myAge

def get_age(self):
return self._ _ age

Adding Attributes
to a List
class Student

def _ _init_ _(self, myName):
self._ _name = myName
self._ _grades = []

def add_grade(self,myGrade):
if 0 <= myGrade <= 5:

self._ _grades.add(myGrade)

main():
student1 = Student(“Barbara”)
student1.add_grade(5)

class Student

def _ _init_ _(self, myName):
self._ _name = myName
self._ _grades = []

def add_grade(self,myGrade):
if 0 <= myGrade <= 5:

self._ _grades.append(myGrade)
return True

else:
return False

main():
student1 = Student(“Barbara”)

if student1.add_grade(5):
print(“grade added successfully”)

else:
print(“could not add grade to “, student1.get_name())

Adding Attributes
to a List

You like print()?
Do your own for your classes

class Student
def _ _init_ _(self, myName, myNumber):

self._ _name = myName
self._ _ number = myNumber
self._ _grades = []

def _ _str_ _(self):

printString = “Student ” + self._ _name + “, ID:” + self._ _number
return printString

main():
student1 = Student(“Barbara”,123)
print(student1)

Student Barbara, ID: 123

_ _ methods _ _
cannot be called directly,
except by Python itself

What is Supposed to be in a Class

_ _ init_ _ ß this is how you get an object of this class
_ _str_ _ ßto make life easier for others using your class

for all attributes (usually):
set_attribute(attribute_value):
get_attribute():

methods that are useful with your object / everyone needs with your
object

Eg, calculate average degree

Good to Know

• If you hide your attributes _ _
• It is easier to update your class without updating other programs
• It is cleaner
• It is easier to ensure, that nothing fishy happens with your attribute (student.age = -5),

as one can only set the age with the set_age method and you have control over that
• It is not really true, that it cannot be accessed from outside your class,

but it is not as easy

• Use separate set_attribute(value) and get_attribute() for all your
attributes

• Use return True/False with setters

Objects in Lists

def main():
studDirectory = ()
newStudent = Student(”Visa”,568)
studDirectory.append(newStudent)
newStudent = Student(”Victoria”,784)
studDirectory.append(newStudent)
studDirectory.append(Student(”Taige”,778))
thisName =studDirectory[1].get_name()

for person in studDirectory:
print(person)

Lists are a way to keep
track of your objects

Why so Complicated?

• Why student1 = student.Student("Tim",1)?

• Why getters and setters?

• Why _ _variables?

• Why add_something has to return True or False?

• Reason: large systems, long life spans

• Code is written to be read and understood by other people
• Need to maintain and update software
• (Computer also reads code, but it does not need to understand)

• Modules and data hiding isolate components and allow re-use and
independent maintenance

OO-programming and procedural
programming can be mixed
def main():

studDirectory = ()

newStudent = Student(”Visa”,568)

studDirectory.append(newStudent)

newStudent = Student(”Victoria”,784)

studDirectory.append(newStudent)

studDirectory.append(Student(”Taige”,778))

thisName =studDirectory[1].get_name()

bestStudent = findBestInClass(studDirectory, ”Basics in Programming”)

for person in studDirectory:

print(person)

def findBestInClass(studDir,myClass):

curbestGrad = 0

for myStudent in studDir:

if myClass in myStudent.get_courses():

if myStudent.get_grade() > curbestGrad:

curBestGrade = myStudent.get_grade()
curBestStudent = myStudent

return curBestStudent

So, What is the Object Oriented?

• A way to
• think about the subjects of our programs
• model reality with abstractions
• separate tasks to manageable modules and re-use the modules for

various needs
• hide the details of implementation and provide specific services
• allow improving different parts of software at the same time

§§

