School of Engineering

Power Electronics

ELEC-E8412 Power Electronics, 5 ECTS

By: Edris Pouresmaeil
Department of Electrical Engineering and Automation (EEA)
Aalto University, 02150 Espoo, Finland
Office 3563, Maarintie 8
E-Mail : edris.pouresmaeil@aalto.fi

Chapter 1: Introduction

Learning Outcomes:

At the end of this session, you will be able to:

- describe different types of power electronics converters
- describe the role of power electronics in various applications
- calculate the different power calculations (instantaneous, average, and apparent power)
- calculate the average voltage, current, and power over different components
- calculate the RMS value of voltage and current
- calculate the power factor
- calculate the total harmonic distortion (THD)

Role of Power Electronics

Power conversions in power systems:

- The power electronics interface facilitates the transfer of power from the source to the load/grid by converting voltages and currents from one form to another, in which it is possible for the source and load to reverse roles.
- Typical applications of power electronics include conversion of AC to DC, conversion of DC to AC , conversion of an unregulated DC voltage to a regulated DC voltage, and conversion of an AC power source from one amplitude and frequency to another amplitude and frequency.
- The controller shown in Figure 1-1 allows management of the power transfer process in which the conversion of voltages and currents should be achieved with as high energy-efficiency and high power density as possible.

Figure 1-1: Power conversion between the source and the load by power electronics interfaces.

Power Electronics Applications

1. You want to charge your cellphone:

- They use lithium ion battery with 3.7 V (load side)
- Source is an AC power supply with 230 V (rms)
- They are 2 kinds of stiff voltages which you can not directly hook them up together; otherwise, you blow up your cellphone
- You need a conversion mechanism to convert AC power to a DC power

Figure 1-2: General model of conversion mechanism for charging a cellphone.

Power Electronics Applications

2. You want to charge your cellphone in your car:

- A 12 V lead acid battery is input
- The 3.7 V lithium ion battery is considered as a load
- The nature of these 2 voltages are the same (both DC), but their level are different and we can not directly hook them up
- You need a step down DC/DC convert

Figure 1-3: General model of conversion mechanism for charging a cellphone in a car.

Power Electronics Applications

3. You want to use flash in your camera:

- The battery of camera is 3.7 V lithium ion battery
- There is a capacitor which we need to charge it up to a certain amount of voltage
- You need a step up DC/DC convert to increase the voltage level

Figure 1-4: General model of conversion mechanism for providing required level of voltage to flash a camera.

Power Electronics Applications

4. You want to inject power from a solar panel to the power grid:

- The nature of these 2 voltages are not the same (DC-AC), as well as the level of voltages
- First, boost up the level of the voltage of PV panel by a DC-DC boost converter
- You need a DC/AC invert to invert DC signal to a sinusoidal AC signal and send some current back to the grid

Figure 1-5: General model of conversion mechanism for power injection from a solar panel into the power grid.

Power Electronics Applications

5. You want to supply your electrical motor by a DC power supply:

- You have a battery bank 300 V as a source of power
- Load is a permanent magnet synchronous motors (PMSM) provides mechanical power to push the vehicle forward
- You need to have a 3phase DC-AC inverter (motor drive)

Figure 1-6: General model of conversion mechanism to supply electrical motor by a DC power supply.

Power Electronics Applications

6. You want to supply your electrical motor by a 3 phase AC power supply:

- You have a 3phase AC source as input power
- Load is a permanent magnet synchronous motors (PMSM) provides mechanical power to push the vehicle forward
- Nature of voltage are the same (both AC). In source side, both amplitude and frequency are fixed. But in load side, both of the voltage's amplitude and frequency are variable
- You need to have a 3phase rectifier, and a DC-AC inverter to convert a DC input to an AC output

Figure 1-7: General model of conversion mechanism to supply electrical motor by a AC power supply.

Power Electronics Applications

7. You want to generate power from wind and inject it to power grid or local power

source:

- You have a 3phase AC source as input power which is not very regulated in terms of frequency and amplitude
- You need to have a 3phase rectifier, and a DC-AC inverter to convert a DC input to an AC output

Figure 1-8: General model of conversion mechanism to inject power from wind turbine into the power grid or local power source.

- As we can see, although the frequency and amplitude of input power were variable, the frequency and amplitude of output power is fixed.

Challenges with industry based on Power Electronics Converters

- Assuming you have a solar panel and you are going to harvest as much energy as you can from it. For this case efficiency of power electronics interfaces are highly important
- Cost is another important issue. For example, you need a converter for your TV. If the price for a normal TV is 1000 euros, the price of converter can not be 2000 euros
- Size and volume is important issues. For example, you have converter in your laptop. Everywhere you carry your laptop, this converter is with it
- Dynamic response. How quickly your power electronic converter reply to your request. For example, if we ask them to increase the speed of a drive from 1500 rpm to 2000 rpm , we should be able very quickly to do that
- Reliability is an important issue to guarantee a secure power for load/grid

Efficiency in Power Electronics Converters

$$
\eta=\frac{P_{0}}{P_{0}+P_{\text {loss }}} \quad \longrightarrow \quad P_{0}=\frac{\eta}{1-\eta} P_{\text {loss }}
$$

Figure 1-9: Power output capability as a function of efficiency.

Power Calculations

- Energy is the integral of instantaneous power.
- The energy absorbed by a component in the time interval from t_{1} to t_{2} is:

$$
w=\int_{t_{1}}^{t_{2}} p(t) d t=\int_{t_{1}}^{t_{2}} v(t) \cdot i(t) d t
$$

Example: for the above element energy absorbed from 0 to 1 is:

$$
w=\int_{0}^{1} p(t) d t=1 \quad(J)
$$

Figure 1-10

Power Calculations

- Average Power: It is the average value of instantaneous power.

The average power absorbed by a component in the time interval from t_{1} to t_{2} is:

$$
P=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} p(t) d t=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} v(t) \cdot i(t) d t
$$

Example 1: The average power for the Figure 1-10 from 0 to 1 is:

$$
P=\frac{1}{1-0} \int_{0}^{1} p(t) d t=1(\mathrm{~W})
$$

Example 2: The average power for the Figure 1-10 from 1 to 2 is:

$$
P=\frac{1}{2-1} \int_{1}^{2} p(t) d t=-1(\mathrm{~W})
$$

Example 3: The average power for the Figure 1-10 from 0 to 2 is:

$$
P=\frac{1}{2-0} \int_{0}^{2} p(t) d t=0(\mathrm{~W})
$$

- Average Power in Periodic Signals

If the current and voltage signals of a circuit element are both periodic and have the same period, the average power absorbed by that element over one period is:

$$
P=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} p(t) d t=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v(t) . i(t) d t
$$

to could be anytime instant, we just need to study the circuit element for a time interval of length T .

Calculation of Average Voltage and Current of Inductor

- Inductor with Periodic Currents

If iL is periodic $\longrightarrow i_{L}(t+T)=i_{L}(t)$

$P_{L}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} p(t) d t=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v(t) i(t) d t=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} L \frac{d i}{d t} \times i(t) d t=\frac{L}{2 T}\left[i_{L}(t)^{2}\right]_{t_{0}}^{t_{0}+T}=\frac{L}{2 T}\left[i_{L}\left(t_{0}+T\right)^{2}-i_{L}\left(t_{0}\right)^{2}\right]=0$

* The average power absorbed or supplied by an inductor is zero for periodic currents.
- Calculation of the Average Value of Voltage over the Inductor

$$
\begin{array}{ll}
V_{L}=L \frac{d i}{d t} \Rightarrow i_{L}\left(t_{0}+T\right)=\frac{1}{L} \int_{t_{0}}^{t_{0}+T} V_{L}(t) d t+i_{L}\left(t_{0}\right) & 0=\overline{V_{L}(t)} \\
\frac{L}{T}\left(i_{L}\left(t_{0}+T\right)-i_{L}\left(t_{0}\right)\right)=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} V_{L}(t) d t & 0=\left\langle V_{L}(t)>\right. \\
& 0=\operatorname{avg}\left[V_{L}(t)\right]
\end{array}
$$

* For periodic currents, the average voltage across an inductor is zero.

Capacitor with Periodic Voltage

* The average power absorbed by a capacitor is zero for periodic voltages.

If Vc is periodic, the stored energy is the same at the end of a period as at the beginning. Therefore, the average power absorbed by the capacitor is zero for steady-state periodic operation; then, $\mathbf{P c}=\mathbf{0}$

From the voltage-current relationship for the capacitor,

$$
i_{c}=c \frac{d v_{c}}{d t} \rightarrow v\left(t_{0}+T\right)=\frac{1}{c} \int_{t_{0}}^{t_{0}+T} i_{c}(t) d t+v\left(t_{0}\right)
$$

Rearranging the preceding equation and recognizing that the starting and ending values are the same for periodic voltages, we get

$$
v\left(t_{0}+T\right)-v\left(t_{0}\right)=\frac{1}{c} \int_{t_{0}}^{t_{0}+T} i_{c}(t) d t=0
$$

Multiplying by C / T yields an expression for average current in the capacitor over one period.

$$
\overline{i_{C}(t)}=<i_{C}(t)>=\operatorname{avg}\left[i_{C}(t)\right]=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} i_{c}(t) d t=0
$$

* For periodic voltages, the average current in a capacitor is zero.

Root Mean Square (RMS) Value

RMS value of a periodic signal is:

Not a function of time

$$
X_{r m s}=\sqrt{\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t)^{2} d t}
$$

Example: Find the RMS value for a periodic voltage waveform $v(t)$ with period T.

$$
V_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T}[v(t)]^{2} d t}
$$

For a sinusoidal voltage:

$$
\begin{aligned}
V_{\mathrm{rms}} & =\sqrt{\frac{1}{T} \int_{0}^{T}\left[V_{p} \sin (\omega t+\phi)\right]^{2} d t} \\
& =V_{p} \sqrt{\frac{1}{2 T} \int_{0}^{T}[1-\cos (2 \omega t+2 \phi)] d t} \\
& =V_{p} \sqrt{\frac{1}{2 T} \int_{0}^{T} d t} \\
& =\frac{V_{p}}{\sqrt{2}}
\end{aligned}
$$

If a voltage is the sum of more than two periodic voltages, the rms value is

$$
V_{\mathrm{rms}}=\sqrt{V_{1, \mathrm{rms}}^{2}+V_{2, \mathrm{rms}}^{2}+V_{3, \mathrm{rms}}^{2}+\ldots}=\sqrt{\sum_{n=1}^{N} V_{n, \mathrm{rms}}^{2}}
$$

The rms value of $f(t)$ can be computed from the Fourier series:

$$
V_{r m s}=\sqrt{\sum_{n=0}^{\infty} V_{n, r m s}^{2}}=\sqrt{V_{0}^{2}+\sum_{n=1}^{\infty}\left(\frac{V_{n}}{\sqrt{2}}\right)^{2}}
$$

Example: Determine the RMS value of the current

$$
i(t)=8+15 \cos \left(377 t+30^{\circ}\right)+6 \cos \left[2(377) t+45^{\circ}\right]+2 \cos \left[3(377) t+60^{\circ}\right]
$$

Solution

$$
I_{r m s}=\sqrt{8^{2}+\left(\frac{15}{\sqrt{2}}\right)^{2}+\left(\frac{6}{\sqrt{2}}\right)^{2}+\left(\frac{2}{\sqrt{2}}\right)^{2}}=14
$$

Power Calculations

- Apparent Power (S): It is the power which is not consumed exactly in the system.

If $i(t) \times v(t)$ are both periodic, apparent power will be:

$$
S=V_{r m s} \times I_{r m s}
$$

- Power Factor (PF):

$$
P F=\frac{\text { average power }}{\text { apparent power }}=\frac{P}{V_{r m s} \cdot I_{r m s}}=\frac{\frac{1}{T} \int_{t_{0}}^{t_{0}+T} v(t) \cdot i(t) d t}{V_{r m s} \cdot I_{r m s}}
$$

Power Calculations

- Power Computations for Sinusoidal AC Circuit

$$
\left\{\begin{array}{r}
+\downarrow i(t)=I_{m} \cos (\omega t+\phi) \\
v(t)=V_{m} \cos (\omega t+\theta)
\end{array}\right.
$$

$$
I_{r m s}=\frac{I_{m}}{\sqrt{2}}
$$

$$
V_{r m s}=\frac{V_{m}}{\sqrt{2}}
$$

$$
\begin{aligned}
& \sin (A) \cos (B)=\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
& \cos (A) \sin (B)=\frac{1}{2}[\sin (A+B)-\sin (A-B)] \\
& \cos (A) \cos (B)=\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
& \sin (A) \sin (B)=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
\end{aligned}
$$

Instantaneous power: $\quad p(t)=v(t) \times i(t)=\frac{V_{m} I_{m}}{2}[\cos (2 \omega t+\theta+\phi)+\cos (\theta-\phi)]$

Average power:

$$
\begin{aligned}
& P=\frac{1}{T} \int_{0}^{T} p(t) d t=\frac{V_{m} I_{m}}{2 T} \int_{0}^{T}[\overbrace{\cos (2 \omega t+\theta+\phi)}^{\text {avrage value }=0}+\cos (\theta-\phi)] d t \\
& P=\frac{V_{m} I_{m}}{2} \cos (\theta-\phi)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos (\theta-\phi)=V_{r m s} \times I_{r m s} \times \cos (\theta-\phi) \\
& P F=\frac{\text { average power }}{\text { apparent power }}=\frac{P}{V_{r m s} \cdot I_{r m s}}=\frac{V_{r m s} \times I_{r m s} \times \cos (\theta-\phi)}{V_{r m s} \cdot I_{r m s}}=\cos (\theta-\phi)
\end{aligned}
$$

Power Calculations

Total harmonic distortion (THD)

(THD): is a term used to quantify the nonsinusoidal property of a waveform.
THD is the ratio of the rms value of all the nonfundamental frequency terms to the rms value of the fundamental frequency term.

$$
\mathrm{THD}=\sqrt{\frac{\sum_{n \neq 1} I_{n, \mathrm{~ms}}^{2}}{I_{1, \mathrm{rms}}^{2}}}=\frac{\sqrt{\sum_{n \neq 1} I_{n, \mathrm{mss}}^{2}}}{I_{1, \mathrm{rms}}}
$$

THD is equivalently expressed as:

$$
\mathrm{THD}=\sqrt{\frac{I_{\mathrm{mms}}^{2}-I_{1, \mathrm{rms}}^{2}}{I_{1, \mathrm{rms}}^{2}}}
$$

Example: A sinusoidal voltage source of $v(t)=100 \cos (314 t) \mathrm{V}$ is applied to a nonlinear load, resulting in a nonsinusoidal current which is expressed in Fourier series form as:

$$
i(t)=8+15 \cos \left(314 t+30^{\circ}\right)+6 \cos \left[2(314) t+45^{\circ}\right]+2 \cos \left[3(314) t+60^{\circ}\right]
$$

Determine the total harmonic distortion of the load current.

Solution

$$
\begin{aligned}
& I_{r m s}=\sqrt{8^{2}+\left(\frac{15}{\sqrt{2}}\right)^{2}+\left(\frac{6}{\sqrt{2}}\right)^{2}+\left(\frac{2}{\sqrt{2}}\right)^{2}}=14 \\
& T H D=\sqrt{\frac{I_{r m s}^{2}-I_{1, r m s}^{2}}{I_{1, r m s}^{2}}}=\sqrt{\frac{14^{2}-\left(\frac{15}{\sqrt{2}}\right)^{2}}{\left(\frac{15}{\sqrt{2}}\right)^{2}}}=0.86=86 \%
\end{aligned}
$$

Questions and comments are most welcome!

