Macaulay duration is defined as the duration in which the present values are calculated using the yield of the bond (yield to maturity). Specifically, suppose a financial instrument makes m payments in a year, with payment k being c_{k} (both coupon payment and possibly the face value), and there are n periods remaining. Then the payment times are $t_{k}=k / m$ and the Macaulay duration can be calculated as

$$
D=\frac{\sum_{k=1}^{n} \frac{k}{m} \frac{c_{k}}{\left(1+\frac{\lambda}{m}\right)^{k}}}{P V}, \text { where } P V=\sum_{k=1}^{n} \frac{c_{k}}{\left(1+\frac{\lambda}{m}\right)^{k}} .
$$

If the coupon payments are identical $\left(c_{k}=C / m \forall k<n\right.$ and $c_{n}=C / m+F$, where F is the face value of the bond and C the annual coupon payment), noting the coupon rate as $c=C /(m F)$, the explicit formula for the Macaulay duration is

$$
D=\frac{1+y}{m y}-\frac{1+y+n(c-y)}{m c\left[(1+y)^{n}-1\right]+m y}, \text { where } y=\frac{\lambda}{m} .
$$

This formula can be derived as follows. Assume coupon rate $c=C /(m F)$, when the periodical coupon payment is $c F$, and yield $y=\lambda / m$ per period.
The present value of the bond is $P=\sum_{k=1}^{n} \frac{c_{k}}{\left(1+\frac{\lambda}{m}\right)^{k}}=\frac{c F}{(1+y)}+\frac{c F}{(1+y)^{2}}+\cdots+\frac{c F}{(1+y)^{n}}+\frac{F}{(1+y)^{n}}$. Differentiating the present value yields

$$
\begin{align*}
\frac{d P}{d y} & =-\frac{1}{1+y}\left[\frac{c F}{(1+y)}+\frac{2 c F}{(1+y)^{2}}+\cdots+\frac{n c F}{(1+y)^{n}}+\frac{n F}{(1+y)^{n}}\right] \\
& =-\frac{P m}{1+y} \frac{1}{P}\left[\frac{1}{m} \frac{c F}{(1+y)}+\frac{2}{m} \frac{c F}{(1+y)^{2}}+\cdots+\frac{n}{m} \frac{(c F+F)}{(1+y)^{n}}\right] \tag{1}\\
& =-\frac{P m}{1+y} D\left(=-m D_{M} P, \text { as it should be }\right) .
\end{align*}
$$

The present value can also be written with the annuity formula as $P=\frac{c F}{y}\left[1-\frac{1}{(1+y)^{n}}\right]+\frac{F}{(1+y)^{n}}$.
Differentiating this yields

$$
\begin{equation*}
\frac{d P}{d y}=-\frac{c F}{y^{2}}\left[1-\frac{1}{(1+y)^{n}}\right]+\frac{c F}{y} \frac{n}{(1+y)^{n+1}}-F \frac{n}{(1+y)^{n+1}}=-\frac{c F}{y^{2}}\left[1-\frac{1}{(1+y)^{n}}\right]-\frac{(1-c / y) n F}{(1+y)^{n+1}} \tag{2}
\end{equation*}
$$

Setting the two formulas (??) and (??) for $d P / d y$ equal then gives

$$
\begin{equation*}
-\frac{P m}{1+y} D=-\frac{c F}{y^{2}}\left[1-\frac{1}{(1+y)^{n}}\right]-\frac{(1-c / y) n F}{(1+y)^{n+1}} \tag{3}
\end{equation*}
$$

Then, we multiply both sides of (??) with the denominators y^{2} and $(1+y)^{n+1}$ to get

$$
\begin{equation*}
y^{2}(1+y)^{n} P m D=\left[c(1+y)^{n+1}+n y^{2}-c(1+y+n y)\right] F \tag{4}
\end{equation*}
$$

We see that the annuity formula form of the value P of the bond can be modified into

$$
\begin{equation*}
P=\frac{c F}{y}\left[1-\frac{1}{(1+y)^{n}}\right]+\frac{F}{(1+y)^{n}}=\frac{c\left[(1+y)^{n}-1\right]+y}{y(1+y)^{n}} F, \tag{5}
\end{equation*}
$$

and substituting P from (??) into (??) yields

$$
\begin{equation*}
y\left[c\left[(1+y)^{n}-1\right]+y\right] F m D=\left[c(1+y)^{n+1}+n y^{2}-c(1+y+n y)\right] F \tag{6}
\end{equation*}
$$

Now, we eliminate F and divide the factor of $m D$ into the right side of the above equation to get

$$
\begin{equation*}
m D=\frac{c(1+y)^{n+1}+n y^{2}-c(1+y+n y)}{y\left\{c\left[(1+y)^{n}-1\right]+y\right\}} \tag{7}
\end{equation*}
$$

Last step of the proof is to take the partial fraction decomposition of the right side of (??). We solve $A(y)$ and $B(y)$ from

$$
\begin{equation*}
\frac{c(1+y)^{n+1}+n y^{2}-c(1+y+n y)}{y\left\{c\left[(1+y)^{n}-1\right]+y\right\}}=\frac{A(y)}{y}+\frac{B(y)}{c\left[(1+y)^{n}-1\right]+y} \tag{8}
\end{equation*}
$$

and get (detailed steps of solving these skipped here) $A(y)=1+y$ and $B(y)=-[1+y+n(c-y)]$. Substituting (??) with the previous formulas for $A(y)$ and $B(y)$ into (??) and dividing m into the right side yields

$$
\begin{equation*}
D=\frac{1+y}{m y}-\frac{1+y+n(c-y)}{m c\left[(1+y)^{n}-1\right]+m y}, \tag{9}
\end{equation*}
$$

which completes the proof.

