MS-E2114 Investment science
Leevi Olander, Jaakko Wallenius Exercise 2: Macaulay

Macaulay duration is defined as the duration in which the present values are calculated using the yield of the
bond (yield to maturity). Specifically, suppose a financial instrument makes m payments in a year, with payment
k being ci (both coupon payment and possibly the face value), and there are n periods remaining. Then the
payment times are t; = k/m and the Macaulay duration can be calculated as
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If the coupon payments are identical (¢ = C/mV k < n and ¢, = C/m + F, where F is the face value of the
bond and C' the annual coupon payment), noting the coupon rate as ¢ = C'//(mF), the explicit formula for the
Macaulay duration is
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This formula can be derived as follows. Assume coupon rate ¢ = C'/(mF'), when the periodical coupon payment
is ¢F', and yield y = A\/m per period.
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The present value of the bond is P = = + +- -+ + . Differentiating
; 142k A4y (1+y)? Q+y)" A4y
the present value yields
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The present value can also be written with the annuity formula as P = — |1 — + .
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Differentiating this yields
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Setting the two formulas (??) and (??) for dP/dy equal then gives
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Then, we multiply both sides of (??) with the denominators y? and (1 + y)"*! to get
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We see that the annuity formula form of the value P of the bond can be modified into
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and substituting P from (??) into (?7) yields
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Now, we eliminate F' and divide the factor of mD into the right side of the above equation to get
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Last step of the proof is to take the partial fraction decomposition of the right side of (??). We solve A(y) and
B(y) from
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and get (detailed steps of solving these skipped here) A(y) = 14y and B(y) = — [1 +y + n(c — y)]. Substituting
(??) with the previous formulas for A(y) and B(y) into (??7) and dividing m into the right side yields
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which completes the proof.



