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• As a general rule, ”long” bonds (bonds with very distant maturity dates) tend to offer higher yields than
”short” bonds of the same quality. The spot rate st is the rate of interest, expressed in yearly terms,
charged for money held from the present time (t = 0) until time t. Typically, spot rates are expressed in
yearly basis. If the interest is compounded yearly, and an amount A is deposited for a year in a bank, the
bank pays back (1 + s1)A after a year. Moreover, if your bank promises to pay a rate of s2 for a 2-year
deposit of an amount A compounded yearly, it will repay (1 + s2)

2A at the end at 2 years.
More generally, under a convention of compounding m periods per year, if an amount A is deposited for t
years, the capital has grown to (1 + st/m)mtA after t years.

• Under a continuous compounding convention, lim
m→∞

(1 + st/m)mtA = esttA, which applies to all values of t.

• Spot rates can be determined either from the prices of a series of zero-coupon bonds with various maturity
dates, or from the prices of coupon-bearing bonds by beginning with short maturities and working toward
longer maturities.

• Constructing spot rates from coupon bearing bonds of increasing maturities works as follows. Consider a
1-year bond that has price P1, makes a coupon payment of amount C1 at the end of year 1, and has a face
value F1. First, define s1 from a 1-year bond by solving it from the equality

P1 =
C1 + F1

1 + s1
.

Then, consider a 2-year bond with price P2, coupon C2, and face value F2. Using the s1 solved in the
previous phase, we can then solve s2 from the identity

P2 =
C2

1 + s1
+

C2 + F2

(1 + s2)2

Working forward this way, by next considering 3-year bonds, then 4-year bonds, and so forth, we can
determine the spot rate curve s3, s4, . . . , step by step. When working forward in this manner, the general
price formula for a bond with maturity n is

Pn =
Fn

(1 + sn)n
+

n∑
k=1

Cn
(1 + sk)k

.

• A zero-coupon bond is a bond that pays no coupons, with price P that is smaller than the face value F of
the bond. The price P and the face value F of a zero-coupon bond are related by P = F/(1 + r)n, where
r is the yield of the bond and n the maturity.

• The set of available zero-coupon bonds is typically rather sparse. Nevertheless, two bonds of different
coupon rates but identical maturity dates can be used to construct the equivalent of a zero-coupon bond
with a replicating portfolio. Let bonds A and B have maturity n, face value F = 100, prices PA and PB,
and coupon rates cA and cB, such that cA < cB. A zero-coupon bond can be constructed by purchasing
an amount NA of bond A and selling (or shorting) an amount NB(< 0) of bond B such that

NAcA +NBcB = 0.
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The price of the replicating portfolio can be found by first scaling the par value of the bond to 100 through

NA · 100 +NB · 100 = 100,

and then solving NA and NB from the two equations to calculate P = NAPA +NBPB. Using the price of
the replicating portfolio, the spot rate sn can be solved from equation

P =
F

(1 + sn)n
.
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• Forward rates are interest rates for money to be borrowed between two dates in the future, but under
terms agreed upon today. Suppose a 2-year situation, and that s1 and s2 are known. If we leave 1e in
a 2-year account it will grow to (1 + s2)

2 e. Alternatively, we might place the 1e in a 1-year account
and simultaneously make arrangements that the proceeds (1 + s1) e will be lent for 1 year starting a year
from now. That loan will accrue interest at a prearranged rate (agreed upon now) of f . The rate f is
the forward rate for money to be lent in this way. The final amount of money we receive at the end of
2 years under this compound plan is (1 + s1)(1 + f). Moreover, through no arbitrage theorem, it can be
shown that (1 + s2)

2 = (1 + s1)(1 + f), and hence f = (1 + s2)
2/(1 + s1)− 1. More generally, under yearly

compounding, the (implied) forward rate fi,j between times i and j > i satisfies the following equation:

(1 + sj)
j = (1 + si)

i(1 + fi,j)
j−i ⇔ fi,j =

[
(1 + sj)

j

(1 + si)i

] 1
j−i

− 1.

• Consider a parallel shift in the spot rates, that is, s1, s2, . . . , sn → s1 + λ, s2 + λ, . . . , sn + λ, and then
consider the changes in a value of a bond. The present value of the bond is

PV (λ) =

n∑
k=0

xk

(1 + sk+λ
m )k

.

First order change in the spot rates in the present value depends on the derivative at λ = 0:

dP (λ)

dλ

∣∣∣
λ=0

= −
n∑
k=0

k

m

xk
(1 + sk

m )k+1
.

Dividing the derivative with −PV (0) gives the quasi-modified duration as

− 1

PV (0)

dP (λ)

dλ

∣∣∣
λ=0

=
1

PV (0)

n∑
k=0

k

m

xk
(1 + sk

m )k+1
= DQ

• Suppose an obligation stream and a portfolio that is used pay these obligation as soon as they rise. By
matching durations as well as present values of the portfolio and the obligation stream, the cash value of
the portfolio and the present value of the obligation stream will respond identically (to first order) to a
change in interest rates. This procedure is called immunization, which means protecting a (bond) portfolio
against interest rate risk.

• When the present value of a cash flow stream is calculated in the term structure framework, one multiplies
each cash flow by the discount factor associated with the period of the flow and then sums these discounted
values. That is, PV (k = 0) = x0 + d1x1 + d2x2 + · · ·+ dnxn. A simple modification of this formula gives

PV (0) = x0+d1[x1+(d2/d1)x2 · · ·+(dn/d1)xn = x0+d1[x1+d1,2x2 · · ·+d1,nxn] = PV (0) = x0+d1PV (1),

where the discount factors d1,i = di/d1 are the discount factors 1 year from now. More generally, it can be
shown that the running present values satisfy the recursion

PV (k) = xk + dk,k+1PV (k + 1).

To carry out the computation of PV (0) in a recursive manner, the process is initiated by starting at the
final time n. One first calculates PV (n) as PV (n) = xn, then PV (n − 1) = xn−1 + dn−1,nPV (n), and so
forth, until PV (0) is found.
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3.1 (Construction of a zero-coupon bond and forward rates) Consider two 4-year and 5-year bonds as presented
in table below.
a) Find the prices of 4- and 5-year zero-coupon bond.
b) Find the short rate at year 4.

Bond Coupon rate Maturity (years) Price

A 8% 4 98.30
B 7% 4 95.00
C 9% 5 101.00
D 7% 5 93.20

Solution:

Bond\Year 1 2 3 4 5 P

A 8 8 8 108 98.30
B 7 7 7 107 95.00
C 9 9 9 9 109 101.00
D 7 7 7 7 107 93.20

nAA+ nBB 0 0 0 100 ?
nCC + nDD 0 0 0 0 100 ?

a) We find the prices of zero-coupon bonds that have the par value scaled to F = 100. For this par value,
the price is denoted as percentage of the par value. We solve nA,nB,nC and nD from:

8nA + 7nB = 0

100nA + 100nB = 100

9nC + 7nD = 0

100nC + 100nD = 100

We find a solution nA = −7, nB = 8, nC = −3.5, nD = 4.5. Thus, bonds A and C will be sold and bonds
B and D will be purchased. The price of such zero-coupon bonds (the replicating portfolio) are

P4 = nAPA + nBPB = −7 · 98.30 + 8 · 95.00 ≈ 71.90 scores.

P5 = nCPC + nDPD = −3.5 · 101.00 + 4.5 · 93.20 ≈ 65.90 scores.

b) First, we calculate the spot rates using the prices of zero-coupon bond replicating portfolios as

P =
F

(1 + sn)n
⇒ sn =

(
F

P

)1/n

− 1,

and substituting the values P4 and P5 yields

s4 = 0.0860, s5 = 0.0870.

The short rate at year 4 is the forward rate from year 4 to 5. Thus

r4 = f4,5 = fi,j =

[
(1 + sj)

j

(1 + si)i

] 1
j−i

− 1 =
(1 + s5)

5

(1 + s4)4
− 1 = 0.910.
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3.2 (L4.13) (Stream immunization) A company faces a stream of obligations over the next 8 years as shown
in the table below: where the numbers denote thousands of dollars. The spot rate curve is also presented
in this table. The company has decided to invest in two bonds. Bond 1 has a maturity of 12 years, 6%
coupon and price P1 = 65.95 and bond 2 has maturity of 5 years, 10% coupon and price P2 = 101.66. Find
a portfolio, consisting of the two bonds, that has the same present value as the obligation stream and is
immunized against an additive shift in the spot rate curve.

Year 1 2 3 4 5 6 7 8 9 10 11 12

Payment 500 900 600 500 100 100 100 50 0 0 0 0

Spot rate 7.67 8.27 8.81 9.31 9.75 10.16 10.52 10.85 11.15 11.42 11.67 11.89

Solution:
To construct and immunized portfolio we first calculate the present value and the quasi-modified duration
of the obligation stream.

The present value, after a parallel shift λ in the spot rates, is:

P (λ) =

n∑
k=1

xk

(
1 +

sk + λ

m

)−k
Quasi-modified duration is the relative (first order) change in the present value of a bond under a parallel
shift λ in the spot rates. It is formally defined as:

DQ ≡ −
1

P (0)

dP (λ)

dλ

∣∣∣
λ=0

=
1

P (0)

n∑
k=1

(
k

m

)
xk

(
1 +

sk
m

)−(k+1)

In the tables below, duration factor denotes the summed terms in the quasi-modified duration formula,
without the payments xk. Duration term denotes same terms, but including the payments xk.

Year 1 2 3 4 5 6 7 8 9 10 11 12

Spot rate 7.67 8.27 8.81 9.31 9.75 10.16 10.52 10.85 11.15 11.42 11.67 11.89

Discount factor 0.93 0.85 0.78 0.70 0.63 0.56 0.50 0.44 0.39 0.34 0.30 0.26

Duration factor 0.86 1.58 2.14 2.56 2.86 3.05 3.14 3.17 3.13 3.04 2.93 2.79

Year 1 2 3 4 5 6 7 8 9 10 11 12

Obligation 500 900 600 500 100 100 100 50 0 0 0 0

PV term 464 768 466 350 63 56 50 22 0 0 0 0

Duration term 431 1418 1284 1282 286 305 314 158 0 0 0 0

Present value of the obligation stream is PO = sum of present value terms = 2238.44. Quasi-modified du-
ration of the obligation stream is DO = sum of duration terms / present value = 2.45. We then construct
similar tables for bond 1 and 2.
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Table 1: Duration calculation of bond 1.

Year 1 2 3 4 5 6 7 8 9 10 11 12

Bond 1 6 6 6 6 6 6 6 6 6 6 6 106

Duration term 5.18 9.45 12.84 15.38 17.17 18.29 18.87 18.99 18.76 18.26 17.55 295.26

QM-duration is D1 = sum of duration terms / price of the bond =7.07.

Table 2: Duration calculation of bond 2.

Year 1 2 3 4 5 6 7 8 9 10 11 12

Bond 2 10 10 10 10 110 0 0 0 0 0 0 0

Duration term 8.63 15.76 21.40 25.63 314.73 0 0 0 0 0 0 0

QM-duration is D2 = sum of duration terms / price of the bond =3.80.

We solve equation system

x1P1 + x2P2 = PO
x1P1D1 + x2P2D2 = PODO

This can be solved (using, e.g., Excel) to find the amounts of the two bonds x1 = −14.0 and x2 = 31.1.
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3.3 (L4.5) (Instantaneous rates) Let s(t), 0 ≤ t ≤ ∞ denote a spot rate curve; that is, the present value of a
dollar to be received at time t is e−s(t)t. For t1 < t2, let f(t1, t2) be the forward rate between t1 and t2
implied by the given spot rate curve.
a) Find an expression for f(t1, t2) (using s(t)).
b) Let r(t) = limt2→t f(t, t2). r(t) is the instantaneous interest rate at time t. Show that r(t) = s(t)+s′(t)t.
c) If an amount x0 is invested at t = 0 in a bank which pays the instantaneous rate of interest r(t) at all t
(compounded), the bank balance x(t) will satisfy dx(t)/ dt = r(t)x(t). Find an expression for x(t).

Solution:
a) By the definition of the forward rate:

es(t2)t2 = es(t1)t1ef(t1,t2)(t2−t1) = es(t1)t1+f(t1,t2)(t2−t1)

⇔ s(t2)t2 = s(t1)t1 + f(t1, t2)(t2 − t1)⇔ f(t1, t2) =
s(t2)t2 − s(t1)t1

t2 − t1

b) By the definition of derivative and using the product rule (of derivatives):

r(t) = lim
t2→t

f(t, t2) = lim
t2→t

s(t2)t2 − s(t)t
t2 − t

=
d

dt
[s(t)t] = s(t) · 1 + s′(t) · t = s(t) + s′(t)t

Note that for conventional term structure, s′(t) > 0⇒ r(t) > s(t).

c) Part b) gives r(t) = d[s(t)t]/ dt, and using this, the differential equation can be written as

dx(t)

dt
=

d

dt
[s(t)t]x(t)⇔ 1

x(t)

dx(t)

dt
=

d

dt
[s(t)t].

Note that using the chain rule and derivative rule for natural logarithm, the derivative of lnx(t) is

d lnx(t)

dt
=
x′(t)

x(t)
=

1

x(t)

dx(t)

dt
.

Hence, we can write the differential equation as

d ln(x(t))

dt
=

d

dt
[s(t)t].

This can be solved by integrating both sides to get

lnx(t) = s(t)t+ C ⇔ elnx(t) = es(t)t+C = es(t)teC = Des(t)t ⇔ x(t) = Des(t)t,

where C and D are constants. Using the initial condition x(0) = x0 we get D = x0, and hence
x(t) = x0e

s(t)t. Note that the solution is equal to the balance of an account that according to spot rates
according to term t.
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3.4 (L4.7) (Bond taxes) An investor is considering the purchase of 10-year US Treasury bonds and plans to
hold them to maturity. Federal taxes on coupons must be paid during the year they are received, and tax
must also he paid on the capital gain realized at maturity (defined as the difference between face value
and original price). Federal bonds are exempt from state taxes. This investor’s federal tax bracket rate is
t = 30%, as it is for most individuals. There are two bonds that meet the investor’s requirements. Bond 1
is a 10-year, 10% bond with a price (in decimal form) of P1 = 92.21. Bond 2 is a 10-year, 7% bond with a
price of P2 = 75.84. Based on the price information contained in those two bonds, the investor would like
to compute the theoretical price of a hypothetical 10-year zero-coupon bond that has no coupon payments
and requires tax payment only at maturity equal in amount to 30% of the realized capital gain (the face
value minus the original price). This theoretical price should be such that the price of this bond and those
of bonds 1 and 2 are mutually consistent on an after-tax basis. Find this theoretical price, and show that
it does not depend on the tax rate t. (Assume all cash flows occur at the end of each year.)

Solution:
Let t be the tax rate,
xi be the number of bond i bought,
ci be the coupon of bond i, and
pi be the price of of i.
The after tax coupon payments are (1− t)ci and the after tax final cash flows (which is only taxed by the
difference between face value and the original price) are 100− (100− pi)t (for face value 100).
To create a zero-coupon bond, we require first that the after tax coupons match. Hence

x1(1− t)c1 + x2(1− t)c2 = 0,

which reduces to
x1c1 + x2c2 = 0.

We scale the face value of the replicating portfolio to 100 through

100x1 + 100x2 = 100.

Next, we require that the after tax final cash flow matches. Hence

x1[100− (100− p1)t] + x2[100− (100− p2)t] = [100− (100− p0)t]
⇔ 100x1 + 100x2 − (100− p1)x1t− (100− p2)x2t = 100− (100− p0)t

⇔ (100− p1)x1t+ (100− p2)x2t = (100− p0)t
⇔ 100x1 + 100x2 − p1x1 − p2x2 = 100− p0

⇔ p0 = x1p1 + x2p2,

where we used the identity 100x1 + 100x2 = 100 twice and eliminated t. We note that the price of the
replicating portfolio is a weighted sum of the prices of bonds 1 and 2, where the numbers of bonds 1 and
2 can be solved from equation system

x1c1 + x2c2 = 0 and x1 + x2 = 1

to be x1 = −7/3 = −2.33 and x2 = 10/3 = 3.33. Hence the price of the hypothetical 10-year zero-coupon
bond is p0 = x1p1 + x2p2 = −2.33 · 92.21 + 3.33 · 75.84 ≈ 37.6.
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3.5 (L4.15) (Short rate sensitivity) The quasi-modified duration measures the sensitivity of a price of an asset
to a parallel shift in the spot rate curve. A measure for the sensitivity of an asset’s price to a parallel shift
in the short rates (that is, rk → rk + λ.) can also be useful. This can be solved using the running present
value method. Specifically, letting Pk be the present value as seen at time k and Sk = dPk/dλ|λ=0, the
Sk’s can be found recursively by an equation of the form Sk−1 = −akPk(λ = 0) + bkSk, while Pk’s are
found by the running method. Find ak and bk.

Solution:
Let the present value of bond at time k be Pk and parallel in short rates be λ. Under a parallel shift in
short rates, the running present value formula becomes

Pk−1(λ) = xk−1 +
Pk(λ)

1 + rk−1 + λ
Differentiation at λ = 0 leads to

dPk−1(λ)

dλ
=

d

dλ

(
xk−1 +

Pk(λ)

1 + rk−1 + λ

)
= 0 +

1

1 + rk−1 + λ

dPk(λ)

dλ
− 1

(1 + rk−1 + λ)2
Pk(λ)

⇔dPk−1(λ)

dλ

∣∣∣
λ=0

=
1

1 + rk−1

dPk(λ)

dλ

∣∣∣
λ=0
− 1

(1 + rk−1)2
Pk(0)

⇔Sk−1 = − 1

(1 + rk−1)2
Pk(0) +

1

1 + rk−1
Sk

⇔ak =
1

(1 + rk−1)2
and bk =

1

1 + rk−1


