- As a general rule, "long" bonds (bonds with very distant maturity dates) tend to offer higher yields than "short" bonds of the same quality. The spot rate s_{t} is the rate of interest, expressed in yearly terms, charged for money held from the present time $(t=0)$ until time t. Typically, spot rates are expressed in yearly basis. If the interest is compounded yearly, and an amount A is deposited for a year in a bank, the bank pays back $\left(1+s_{1}\right) A$ after a year. Moreover, if your bank promises to pay a rate of s_{2} for a 2-year deposit of an amount A compounded yearly, it will repay $\left(1+s_{2}\right)^{2} A$ at the end at 2 years.
More generally, under a convention of compounding m periods per year, if an amount A is deposited for t years, the capital has grown to $\left(1+s_{t} / m\right)^{m t} A$ after t years.
- Under a continuous compounding convention, $\lim _{m \rightarrow \infty}\left(1+s_{t} / m\right)^{m t} A=e^{s t} t$, which applies to all values of t.
- Spot rates can be determined either from the prices of a series of zero-coupon bonds with various maturity dates, or from the prices of coupon-bearing bonds by beginning with short maturities and working toward longer maturities.
- Constructing spot rates from coupon bearing bonds of increasing maturities works as follows. Consider a 1-year bond that has price P_{1}, makes a coupon payment of amount C_{1} at the end of year 1 , and has a face value F_{1}. First, define s_{1} from a 1-year bond by solving it from the equality

$$
P_{1}=\frac{C_{1}+F_{1}}{1+s_{1}}
$$

Then, consider a 2-year bond with price P_{2}, coupon C_{2}, and face value F_{2}. Using the s_{1} solved in the previous phase, we can then solve s_{2} from the identity

$$
P_{2}=\frac{C_{2}}{1+s_{1}}+\frac{C_{2}+F_{2}}{\left(1+s_{2}\right)^{2}}
$$

Working forward this way, by next considering 3 -year bonds, then 4 -year bonds, and so forth, we can determine the spot rate curve s_{3}, s_{4}, \ldots, step by step. When working forward in this manner, the general price formula for a bond with maturity n is

$$
P_{n}=\frac{F_{n}}{\left(1+s_{n}\right)^{n}}+\sum_{k=1}^{n} \frac{C_{n}}{\left(1+s_{k}\right)^{k}}
$$

- A zero-coupon bond is a bond that pays no coupons, with price P that is smaller than the face value F of the bond. The price P and the face value F of a zero-coupon bond are related by $P=F /(1+r)^{n}$, where r is the yield of the bond and n the maturity.
- The set of available zero-coupon bonds is typically rather sparse. Nevertheless, two bonds of different coupon rates but identical maturity dates can be used to construct the equivalent of a zero-coupon bond with a replicating portfolio. Let bonds A and B have maturity n, face value $F=100$, prices P_{A} and P_{B}, and coupon rates c_{A} and c_{B}, such that $c_{A}<c_{B}$. A zero-coupon bond can be constructed by purchasing an amount N_{A} of bond A and selling (or shorting) an amount $N_{B}(<0)$ of bond B such that

$$
N_{A} c_{A}+N_{B} c_{B}=0
$$

The price of the replicating portfolio can be found by first scaling the par value of the bond to 100 through

$$
N_{A} \cdot 100+N_{B} \cdot 100=100,
$$

and then solving N_{A} and N_{B} from the two equations to calculate $P=N_{A} P_{A}+N_{B} P_{B}$. Using the price of the replicating portfolio, the spot rate s_{n} can be solved from equation

$$
P=\frac{F}{\left(1+s_{n}\right)^{n}} .
$$

- Forward rates are interest rates for money to be borrowed between two dates in the future, but under terms agreed upon today. Suppose a 2 -year situation, and that s_{1} and s_{2} are known. If we leave $1 €$ in a 2 -year account it will grow to $\left(1+s_{2}\right)^{2} €$. Alternatively, we might place the $1 €$ in a 1 -year account and simultaneously make arrangements that the proceeds $\left(1+s_{1}\right) €$ will be lent for 1 year starting a year from now. That loan will accrue interest at a prearranged rate (agreed upon now) of f. The rate f is the forward rate for money to be lent in this way. The final amount of money we receive at the end of 2 years under this compound plan is $\left(1+s_{1}\right)(1+f)$. Moreover, through no arbitrage theorem, it can be shown that $\left(1+s_{2}\right)^{2}=\left(1+s_{1}\right)(1+f)$, and hence $f=\left(1+s_{2}\right)^{2} /\left(1+s_{1}\right)-1$. More generally, under yearly compounding, the (implied) forward rate $f_{i, j}$ between times i and $j>i$ satisfies the following equation:

$$
\left(1+s_{j}\right)^{j}=\left(1+s_{i}\right)^{i}\left(1+f_{i, j}\right)^{j-i} \Leftrightarrow f_{i, j}=\left[\frac{\left(1+s_{j}\right)^{j}}{\left(1+s_{i}\right)^{i}}\right]^{\frac{1}{j-i}}-1
$$

- Consider a parallel shift in the spot rates, that is, $s_{1}, s_{2}, \ldots, s_{n} \rightarrow s_{1}+\lambda, s_{2}+\lambda, \ldots, s_{n}+\lambda$, and then consider the changes in a value of a bond. The present value of the bond is

$$
P V(\lambda)=\sum_{k=0}^{n} \frac{x_{k}}{\left(1+\frac{s_{k}+\lambda}{m}\right)^{k}} .
$$

First order change in the spot rates in the present value depends on the derivative at $\lambda=0$:

$$
\left.\frac{d P(\lambda)}{d \lambda}\right|_{\lambda=0}=-\sum_{k=0}^{n} \frac{k}{m} \frac{x_{k}}{\left(1+\frac{s_{k}}{m}\right)^{k+1}}
$$

Dividing the derivative with $-P V(0)$ gives the quasi-modified duration as

$$
-\left.\frac{1}{P V(0)} \frac{d P(\lambda)}{d \lambda}\right|_{\lambda=0}=\frac{1}{P V(0)} \sum_{k=0}^{n} \frac{k}{m} \frac{x_{k}}{\left(1+\frac{s_{k}}{m}\right)^{k+1}}=D_{Q}
$$

- Suppose an obligation stream and a portfolio that is used pay these obligation as soon as they rise. By matching durations as well as present values of the portfolio and the obligation stream, the cash value of the portfolio and the present value of the obligation stream will respond identically (to first order) to a change in interest rates. This procedure is called immunization, which means protecting a (bond) portfolio against interest rate risk.
- When the present value of a cash flow stream is calculated in the term structure framework, one multiplies each cash flow by the discount factor associated with the period of the flow and then sums these discounted values. That is, $P V(k=0)=x_{0}+d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{n} x_{n}$. A simple modification of this formula gives $P V(0)=x_{0}+d_{1}\left[x_{1}+\left(d_{2} / d_{1}\right) x_{2} \cdots+\left(d_{n} / d_{1}\right) x_{n}=x_{0}+d_{1}\left[x_{1}+d_{1,2} x_{2} \cdots+d_{1, n} x_{n}\right]=P V(0)=x_{0}+d_{1} P V(1)\right.$, where the discount factors $d_{1, i}=d_{i} / d_{1}$ are the discount factors 1 year from now. More generally, it can be shown that the running present values satisfy the recursion

$$
P V(k)=x_{k}+d_{k, k+1} P V(k+1) .
$$

To carry out the computation of $P V(0)$ in a recursive manner, the process is initiated by starting at the final time n. One first calculates $P V(n)$ as $P V(n)=x_{n}$, then $P V(n-1)=x_{n-1}+d_{n-1, n} P V(n)$, and so forth, until $P V(0)$ is found.
3.1 (Construction of a zero-coupon bond and forward rates) Consider two 4 -year and 5 -year bonds as presented in table below.
a) Find the prices of 4 - and 5 -year zero-coupon bond.
b) Find the short rate at year 4 .

Bond	Coupon rate	Maturity (years)	Price
A	8%	4	98.30
B	7%	4	95.00
C	9%	5	101.00
D	7%	5	93.20

Solution:

Bond \backslash Year	1	2	3	4	5	P
A	8	8	8	108		98.30
B	7	7	7	107		95.00
C	9	9	9	9	109	101.00
D	7	7	7	7	107	93.20
$n_{A} A+n_{B} B$	0	0	0	100		$?$
$n_{C} C+n_{D} D$	0	0	0	0	100	$?$

a) We find the prices of zero-coupon bonds that have the par value scaled to $F=100$. For this par value, the price is denoted as percentage of the par value. We solve n_{A}, n_{B}, n_{C} and n_{D} from:

$$
\begin{aligned}
8 n_{A}+7 n_{B} & =0 \\
100 n_{A}+100 n_{B} & =100 \\
9 n_{C}+7 n_{D} & =0 \\
100 n_{C}+100 n_{D} & =100
\end{aligned}
$$

We find a solution $n_{A}=-7, n_{B}=8, n_{C}=-3.5, n_{D}=4.5$. Thus, bonds A and C will be sold and bonds B and D will be purchased. The price of such zero-coupon bonds (the replicating portfolio) are

$$
\begin{gathered}
P_{4}=n_{A} P_{A}+n_{B} P_{B}=-7 \cdot 98.30+8 \cdot 95.00 \approx \underline{71.90} \text { scores. } \\
P_{5}=n_{C} P_{C}+n_{D} P_{D}=-3.5 \cdot 101.00+4.5 \cdot 93.20 \approx \underline{65.90} \text { scores. }
\end{gathered}
$$

b) First, we calculate the spot rates using the prices of zero-coupon bond replicating portfolios as

$$
P=\frac{F}{\left(1+s_{n}\right)^{n}} \Rightarrow s_{n}=\left(\frac{F}{P}\right)^{1 / n}-1
$$

and substituting the values P_{4} and P_{5} yields

$$
s_{4}=0.0860, \quad s_{5}=0.0870
$$

The short rate at year 4 is the forward rate from year 4 to 5 . Thus

$$
r_{4}=f_{4,5}=f_{i, j}=\left[\frac{\left(1+s_{j}\right)^{j}}{\left(1+s_{i}\right)^{i}}\right]^{\frac{1}{j-i}}-1=\frac{\left(1+s_{5}\right)^{5}}{\left(1+s_{4}\right)^{4}}-1=0.910 .
$$

3.2 (L4.13) (Stream immunization) A company faces a stream of obligations over the next 8 years as shown in the table below: where the numbers denote thousands of dollars. The spot rate curve is also presented in this table. The company has decided to invest in two bonds. Bond 1 has a maturity of 12 years, 6% coupon and price $P_{1}=65.95$ and bond 2 has maturity of 5 years, 10% coupon and price $P_{2}=101.66$. Find a portfolio, consisting of the two bonds, that has the same present value as the obligation stream and is immunized against an additive shift in the spot rate curve.

Year	1	2	3	4	5	6	7	8	9	10	11	12
Payment	500	900	600	500	100	100	100	50	0	0	0	0
Spot rate	7.67	8.27	8.81	9.31	9.75	10.16	10.52	10.85	11.15	11.42	11.67	11.89

Solution:

To construct and immunized portfolio we first calculate the present value and the quasi-modified duration of the obligation stream.

The present value, after a parallel shift λ in the spot rates, is:
$P(\lambda)=\sum_{k=1}^{n} x_{k}\left(1+\frac{s_{k}+\lambda}{m}\right)^{-k}$
Quasi-modified duration is the relative (first order) change in the present value of a bond under a parallel shift λ in the spot rates. It is formally defined as:
$D_{Q} \equiv-\left.\frac{1}{P(0)} \frac{d P(\lambda)}{d \lambda}\right|_{\lambda=0}=\frac{1}{P(0)} \sum_{k=1}^{n}\left(\frac{k}{m}\right) x_{k}\left(1+\frac{s_{k}}{m}\right)^{-(k+1)}$
In the tables below, duration factor denotes the summed terms in the quasi-modified duration formula, without the payments x_{k}. Duration term denotes same terms, but including the payments x_{k}.

Year	1	2	3	4	5	6	7	8	9	10	11	12
Spot rate	7.67	8.27	8.81	9.31	9.75	10.16	10.52	10.85	11.15	11.42	11.67	11.89
Discount factor	0.93	0.85	0.78	0.70	0.63	0.56	0.50	0.44	0.39	0.34	0.30	0.26
Duration factor	0.86	1.58	2.14	2.56	2.86	3.05	3.14	3.17	3.13	3.04	2.93	2.79

Year	1	2	3	4	5	6	7	8	9	10	11	12
Obligation	500	900	600	500	100	100	100	50	0	0	0	0
PV term	464	768	466	350	63	56	50	22	0	0	0	0
Duration term	431	1418	1284	1282	286	305	314	158	0	0	0	0

Present value of the obligation stream is $P_{O}=$ sum of present value terms $=2238.44$. Quasi-modified duration of the obligation stream is $D_{O}=$ sum of duration terms $/$ present value $=2.45$. We then construct similar tables for bond 1 and 2.

MS-E2114 Investment science
Leevi Olander, Jaakko Wallenius

Table 1: Duration calculation of bond 1.

Year	1	2	3	4	5	6	7	8	9	10	11	12
Bond 1	6	6	6	6	6	6	6	6	6	6	6	106
Duration term	5.18	9.45	12.84	15.38	17.17	18.29	18.87	18.99	18.76	18.26	17.55	295.26

QM-duration is $D_{1}=$ sum of duration terms / price of the bond $=7.07$.

Table 2: Duration calculation of bond 2.

Year	1	2	3	4	5	6	7	8	9	10	11	12
Bond 2	10	10	10	10	110	0	0	0	0	0	0	0
Duration term	8.63	15.76	21.40	25.63	314.73	0	0	0	0	0	0	0

QM-duration is $D_{2}=$ sum of duration terms / price of the bond $=3.80$.

We solve equation system
$x_{1} P_{1}+x_{2} P_{2}=P_{O}$
$x_{1} P_{1} D_{1}+x_{2} P_{2} D_{2}=P_{O} D_{O}$

3.3 (L4.5) (Instantaneous rates) Let $s(t), 0 \leq t \leq \infty$ denote a spot rate curve; that is, the present value of a dollar to be received at time t is $e^{-s(t) t}$. For $t_{1}<t_{2}$, let $f\left(t_{1}, t_{2}\right)$ be the forward rate between t_{1} and t_{2} implied by the given spot rate curve.
a) Find an expression for $f\left(t_{1}, t_{2}\right)$ (using $s(t)$).
b) Let $r(t)=\lim _{t_{2} \rightarrow t} f\left(t, t_{2}\right) . r(t)$ is the instantaneous interest rate at time t. Show that $r(t)=s(t)+s^{\prime}(t) t$.
c) If an amount x_{0} is invested at $t=0$ in a bank which pays the instantaneous rate of interest $r(t)$ at all t (compounded), the bank balance $x(t)$ will satisfy $\mathrm{d} x(t) / \mathrm{d} t=r(t) x(t)$. Find an expression for $x(t)$.

Solution:

a) By the definition of the forward rate:

$$
\begin{aligned}
e^{s\left(t_{2}\right) t_{2}}=e^{s\left(t_{1}\right) t_{1}} e^{f\left(t_{1}, t_{2}\right)\left(t_{2}-t_{1}\right)} & =e^{s\left(t_{1}\right) t_{1}+f\left(t_{1}, t_{2}\right)\left(t_{2}-t_{1}\right)} \\
\Leftrightarrow s\left(t_{2}\right) t_{2}=s\left(t_{1}\right) t_{1}+f\left(t_{1}, t_{2}\right)\left(t_{2}-t_{1}\right) & \Leftrightarrow f\left(t_{1}, t_{2}\right)=\frac{s\left(t_{2}\right) t_{2}-s\left(t_{1}\right) t_{1}}{t_{2}-t_{1}}
\end{aligned}
$$

b) By the definition of derivative and using the product rule (of derivatives):

$$
r(t)=\lim _{t_{2} \rightarrow t} f\left(t, t_{2}\right)=\lim _{t_{2} \rightarrow t} \frac{s\left(t_{2}\right) t_{2}-s(t) t}{t_{2}-t}=\frac{\mathrm{d}}{\mathrm{~d} t}[s(t) t]=s(t) \cdot 1+s^{\prime}(t) \cdot t=s(t)+s^{\prime}(t) t
$$

Note that for conventional term structure, $s^{\prime}(t)>0 \Rightarrow r(t)>s(t)$.
c) Part b) gives $r(t)=\mathrm{d}[s(t) t] / \mathrm{d} t$, and using this, the differential equation can be written as

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}[s(t) t] x(t) \Leftrightarrow \frac{1}{x(t)} \frac{\mathrm{d} x(t)}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}[s(t) t] .
$$

Note that using the chain rule and derivative rule for natural logarithm, the derivative of $\ln x(t)$ is

$$
\frac{\mathrm{d} \ln x(t)}{\mathrm{d} t}=\frac{x^{\prime}(t)}{x(t)}=\frac{1}{x(t)} \frac{\mathrm{d} x(t)}{\mathrm{d} t} .
$$

Hence, we can write the differential equation as

$$
\frac{\mathrm{d} \ln (x(t))}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}[s(t) t] .
$$

This can be solved by integrating both sides to get

$$
\ln x(t)=s(t) t+C \Leftrightarrow e^{\ln x(t)}=e^{s(t) t+C}=e^{s(t) t} e^{C}=D e^{s(t) t} \Leftrightarrow x(t)=D e^{s(t) t}
$$

where C and D are constants. Using the initial condition $x(0)=x_{0}$ we get $D=x_{0}$, and hence $x(t)=x_{0} e^{s(t) t}$. Note that the solution is equal to the balance of an account that according to spot rates

3.4 (L4.7) (Bond taxes) An investor is considering the purchase of 10-year US Treasury bonds and plans to hold them to maturity. Federal taxes on coupons must be paid during the year they are received, and tax must also he paid on the capital gain realized at maturity (defined as the difference between face value and original price). Federal bonds are exempt from state taxes. This investor's federal tax bracket rate is $t=30 \%$, as it is for most individuals. There are two bonds that meet the investor's requirements. Bond 1 is a 10 -year, 10% bond with a price (in decimal form) of $P_{1}=92.21$. Bond 2 is a 10 -year, 7% bond with a price of $P_{2}=75.84$. Based on the price information contained in those two bonds, the investor would like to compute the theoretical price of a hypothetical 10-year zero-coupon bond that has no coupon payments and requires tax payment only at maturity equal in amount to 30% of the realized capital gain (the face value minus the original price). This theoretical price should be such that the price of this bond and those of bonds 1 and 2 are mutually consistent on an after-tax basis. Find this theoretical price, and show that it does not depend on the tax rate t. (Assume all cash flows occur at the end of each year.)

Solution:

Let t be the tax rate,
x_{i} be the number of bond i bought,
c_{i} be the coupon of bond i, and
p_{i} be the price of of i.
The after tax coupon payments are $(1-t) c_{i}$ and the after tax final cash flows (which is only taxed by the difference between face value and the original price) are $100-\left(100-p_{i}\right) t$ (for face value 100).
To create a zero-coupon bond, we require first that the after tax coupons match. Hence

$$
x_{1}(1-t) c_{1}+x_{2}(1-t) c_{2}=0
$$

which reduces to

$$
x_{1} c_{1}+x_{2} c_{2}=0
$$

We scale the face value of the replicating portfolio to 100 through

$$
100 x_{1}+100 x_{2}=100
$$

Next, we require that the after tax final cash flow matches. Hence

$$
\begin{aligned}
x_{1}\left[100-\left(100-p_{1}\right) t\right]+x_{2}\left[100-\left(100-p_{2}\right) t\right] & =\left[100-\left(100-p_{0}\right) t\right] \\
\Leftrightarrow 100 x_{1}+100 x_{2}-\left(100-p_{1}\right) x_{1} t-\left(100-p_{2}\right) x_{2} t & =100-\left(100-p_{0}\right) t \\
\Leftrightarrow\left(100-p_{1}\right) x_{1} t+\left(100-p_{2}\right) x_{2} t & =\left(100-p_{0}\right) t \\
\Leftrightarrow 100 x_{1}+100 x_{2}-p_{1} x_{1}-p_{2} x_{2} & =100-p_{0} \\
\Leftrightarrow p_{0} & =x_{1} p_{1}+x_{2} p_{2}
\end{aligned}
$$

where we used the identity $100 x_{1}+100 x_{2}=100$ twice and eliminated t. We note that the price of the replicating portfolio is a weighted sum of the prices of bonds 1 and 2, where the numbers of bonds 1 and 2 can be solved from equation system

$$
x_{1} c_{1}+x_{2} c_{2}=0 \text { and } x_{1}+x_{2}=1
$$

to be $x_{1}=-7 / 3=-2.33$ and $x_{2}=10 / 3=3.33$. Hence the price of the hypothetical 10-year zero-coupon bond is $p_{0}=x_{1} p_{1}+x_{2} p_{2}=-2.33 \cdot 92.21+3.33 \cdot 75.84 \approx \underline{37.6}$.
3.5 (L4.15) (Short rate sensitivity) The quasi-modified duration measures the sensitivity of a price of an asset to a parallel shift in the spot rate curve. A measure for the sensitivity of an asset's price to a parallel shift in the short rates (that is, $r_{k} \rightarrow r_{k}+\lambda$.) can also be useful. This can be solved using the running present value method. Specifically, letting P_{k} be the present value as seen at time k and $S_{k}=\mathrm{d} P_{k} /\left.\mathrm{d} \lambda\right|_{\lambda=0}$, the S_{k} 's can be found recursively by an equation of the form $S_{k-1}=-a_{k} P_{k}(\lambda=0)+b_{k} S_{k}$, while P_{k} 's are found by the running method. Find a_{k} and b_{k}.

Solution:

Let the present value of bond at time k be P_{k} and parallel in short rates be λ. Under a parallel shift in short rates, the running present value formula becomes
$P_{k-1}(\lambda)=x_{k-1}+\frac{P_{k}(\lambda)}{1+r_{k-1}+\lambda}$
Differentiation at $\lambda=0$ leads to

$$
\begin{aligned}
& \frac{\mathrm{d} P_{k-1}(\lambda)}{\mathrm{d} \lambda}=\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(x_{k-1}+\frac{P_{k}(\lambda)}{1+r_{k-1}+\lambda}\right)=0+\frac{1}{1+r_{k-1}+\lambda} \frac{\mathrm{d} P_{k}(\lambda)}{\mathrm{d} \lambda}-\frac{1}{\left(1+r_{k-1}+\lambda\right)^{2}} P_{k}(\lambda) \\
\Leftrightarrow & \left.\frac{\mathrm{d} P_{k-1}(\lambda)}{\mathrm{d} \lambda}\right|_{\lambda=0}=\left.\frac{1}{1+r_{k-1}} \frac{\mathrm{~d} P_{k}(\lambda)}{\mathrm{d} \lambda}\right|_{\lambda=0}-\frac{1}{\left(1+r_{k-1}\right)^{2}} P_{k}(0) \\
\Leftrightarrow & S_{k-1}=-\frac{1}{\left(1+r_{k-1}\right)^{2}} P_{k}(0)+\frac{1}{1+r_{k-1}} S_{k} \\
\Leftrightarrow & a_{k}=\frac{1}{\left(1+r_{k-1}\right)^{2}} \text { and } b_{k}=\frac{1}{1+r_{k-1}}
\end{aligned}
$$

