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• Capital budgeting problems can be solved based on, for example, the benefit-cost ratio (that is, present
value of benefits per present value of the costs) or the net present value (the present value of benefits -
present value of the costs). According to the benefit-cost ratio, a project is beneficial if the ratio is greater
than one, i.e., the present value of the benefits is greater than that of the costs. Similarly, when evaluating
projects based on net present value, a project is worth carrying out if NPV> 0.

• If there are more projects available than there is capital to fund them, an approximate solution to the
capital budgeting problem is obtained by ordering the projects by their benefit-cost ratio and selecting
them one-by-one until the budget limit is reached.

• If the benefits aj of the projects are independent, the capital budgeting can be written as

max
m∑
i=1

aixi

s.t. xi ∈ {0, 1} , i = 1, . . . ,m
x ∈ XF ,

where x = [x1 x2 . . . xm] represents the project portfolio such that xi = 1 if project i will be implemented
and xi = 0 if not. XF is the feasible set of the projects, which is defined by, for example, budget limits and
project interdependencies. If the project interdependencies affect the benefits of the projects, the object
function of the optimization problem has to be modified correspondingly.

• For example, if the only constraint is the budget C and the cost of each project i is ci, the feasible set
is defined as XF = {x ∈ {0, 1}m |

∑m
i=1 cixi ≤ C}, and if projects i and j are mutually exclusive (that is,

only one of them can be implemented), a constraint xi + xj ≤ 1 has to be subjected.

• A firm can be evaluated by, for example, based on the paid dividends. Using a constant-growth dividend
model, the value of a firm can be defined as the present value of the dividend stream. Suppose a constant
growth rate g and interest rate r and the first dividend D1 paid at the end of first period. The present
value of the dividends is

V0 =
D1

1 + r
+
D1(1 + g)

(1 + r)2
+
D1(1 + g)2

(1 + r)3
+ · · · = D1

∞∑
k=1

(1 + g)k−1

(1 + r)k
⇔ V0 =

D1

r − g
,

where the last equation is the Gordon formula.
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4.1 (L5.1) (Capital budgeting) A firm is considering funding several proposed projects that have the financial
properties shown in Table 1. The available budget is 600 000e. What set of projects would be recommended
by the approximate method based on benefit-cost ratios? What is the optimal set of projects (using net
present value)?

Table 1: Financial properties of the proposed projects.

Outlay Present value of benefits

Project (1 000e) (1 000e)

1 100 200

2 300 500

3 200 300

4 150 200

5 150 250

Solution:
The projects can be ranked based on their benefit-cost ratio φ or their net present value, defined as

φ =
Present value of benefits

Investment cost
, NPV=Present value of benefits - Investment cost

The projects ranked by their benefit-cost ratios are presented in Table 2 below. Based on the benefit-cost

Table 2: Projects ranked by the benefit-cost ratios φ.

Outlay Present value of benefits φ

Project (1 000e) (1 000e)

1 100 200 2.00

2 300 500 1.67

5 150 250 1.67

3 200 300 1.50

4 150 200 1.33

ratios, projects 1,2 and 5 are selected, having total investment cost of 550 000 < 600 000 e. The total net
present value of the projects of this approximate solution is NPV=400 000e.

Those projects that create the greatest total net present value of the project portfolio comprise the optimal
project portfolio. The project selection can be formulated as an optimization problem as follows:

max
5∑

i=1
NPVixi

s.t.
5∑

i=1
cixi ≤ 600000 e,

xi ∈ {0, 1} , i = 1, . . . , 5,

where x = [x1 x2 . . . xm] (xi = 1 if i selected and 0, otherwise) presents the selections of projects in the
project portfolio, NPVi is the net present value and ci the investment cost of project i. This optimization
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problem can be solved with, for example, Solver of Excel. We find the solution to this problem to be
the projects 1,2 and 5. Thus, the approximate solution using benefit-cost ratios provided the optimal
solution in this case.

4.2 (L5.3) (Two-period budget) A company has identified a number of promising projects, as indicated in
Table 3. The cash flows for the first 2 years are shown (they are all negative).

Table 3: A list of projects.

Cash flow (1 000e)

Project year 1 year 2 NPV (1 000e)

1 -90 -58 150

2 -80 -80 200

3 -50 -100 100

4 -20 -64 100

5 -40 -50 120

6 -80 -20 150

7 -80 -100 240

The cash flows in later years are positive, and net present value of each project is shown. The company
managers have decided that they can allocate up to 250 000e in each the first 2 years to fund these projects.
If less than 250 000e is used the first year, the balance can be invested at 10% and used to augment the
next year’s budget. Which projects should be funded? Formulate the problem as an optimization problem.

Solution:
We define binary variables xi, i = 1, . . . , 7 so that xi = 1, if project i is selected and xi = 0, otherwise.
The project selection problem can be formulated as and optimization problem. The objective of the opti-
mization problem is

max f(x) =
7∑

i=1

NPVixi = 150x1 + 200x2 + 100x3 + 100x4 + 120x5 + 150x6 + 240x7.

where NPVi is the net present value of project i, and the unit is 1000e.

In general, inequalities can be written as equations by introducing slack variables. For example, we can
write x ≤ C as C − x− s+ = 0, where s+ ≥ 0. Using this method, the budget constraints for the first two
years can be set using slack variables s+i (i = 1, 2), which define the amount of budget remaining in each
years. Hence, we write the budget constraint for the first year as

250− 90x1 − 80x2 − 50x3 − 20x4 − 40x5 − 80x6 − 80x7 − s+1 = 0.

The remaining balance s+1 from the first year can be invested at 10% interest to be added to the budget
250 000e of the second year. The budget for the second year is then 250 + 1.1s+1 (1000e). We can then
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write the budget constraint for the second year as

250 + 1.1s+1 − 58x1 − 80x2 − 100x3 − 64x4 − 50x5 − 20x6 − 100x7 − s+2 = 0.

We formulate the optimization problem of the project selection as follows:

max
x

f(x)

s.t.
250− 90x1 − 80x2 − 50x3 − 20x4 − 40x5 − 80x6 − 80x7 − s+1 = 0

250 + 1.1s+1 − 58x1 − 80x2 − 100x3 − 64x4 − 50x5 − 20x6 − 100x7 − s+2 = 0
xi ∈ {0, 1} i = 1, . . . , 7

s+1 , s
+
2 ≥ 0.

s+1 is the remaining budget from the total budget 250 000e after the expenses of the first year, and which
can be invested at 10% interest. s+2 is the excess capital that remains unused after two years.

We solve this optimization problem using Solver of Excel. There are two solutions,

x4 = x5 = x6 = x7 = 1, and x1 = x2 = x3 = 0,

at a cost of 220 in the first year and 234 in the second year,and

x1 = x4 = x5 = x7 = 1, and x2 = x3 = x6 = 0,

at a cost of 230 in the first year and 272 in the second year. Both these have a total net present value of
610 and are under the budget, but the first costs less.
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4.3 (L5.4) (Bond matrix) Suppose that we face a known sequence of future monetary obligations. In cash
matching problem, we design a portfolio that will provide the necessary cash as required for the obligations.
We formulate this optimization problem in matrix form as follows. Let the number of bonds be m and
the time horizon be n. The cash flow stream of bond j can be denoted as cj ∈ Rn×1 and the yearly
obligations as b ∈ Rn×1. We denote the bond matrix that has columns of the cash flows cj as C ∈ Rn×m.
Furthermore, the prices of the bonds can be denoted as p ∈ Rm×1 and the numbers of the bonds in the
portfolio as x ∈ Rm×1. The cash matching problem can be expressed as

min pTx

s.t. Cx ≥ b

x ≥ 0.

a) The cash flow structure of a cash flow matching problem is presented in Table 3. Define C, b, p and x.
b) Suppose the bonds are priced according to a conventional spot rate curve. The price vector p can be
then written as

CTv = p,

where v ∈ Rn×1 is a vector of the discount rates. Moreover, if the portfolio x∗ matches the obligations
exactly, we have

Cx∗ = b.

Show that the price pTx∗ of the portfolio is vTb and interpret this.
c) The optimization problem presented above seeks a solution that matches the obligations each year
exactly. If the cash flows cannot be matched exactly, the present value of the portfolio is greater than the
present value of the obligations. How does this model differ from immunization of a portfolio? What factor
of portfolio immunization is neglected in this approach? Which approach is better?

Table 4: Bonds of exercise 3.

Bonds

Year 1 2 3 4 5 6 7 8 9 10 Required Actual

1 10 7 8 6 7 5 10 8 7 100 100 171.74

2 10 7 8 6 7 5 10 8 107 200 200.00

3 10 7 8 6 7 5 110 108 800 800.00

4 10 7 8 6 7 105 100 119.34

5 10 7 8 106 107 800 800.00

6 110 107 108 1200 1200.00

p 109 94.8 99.5 93.1 97.2 92.9 110 104 102 95.2 2381.14

x 0 11.215 0 6.807 0 0 0 6.302 0.283 0 Cost
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Solution:

a) The bond matrix C and vectors of obligations b, bond prices p and numbers of bonds in the portfolio
x can be directly read from Table 5:

C =



10 7 8 6 7 5 10 8 7 100
10 7 8 6 7 5 10 8 107 0
10 7 8 6 7 5 110 108 0 0
10 7 8 6 7 105 0 0 0 0
10 7 8 106 107 0 0 0 0 0
110 107 108 0 0 0 0 0 0 0

 ,

b =



100
200
800
100
800
1200

 , p =



109
94.8
99.5
93.1
97.2
92.9
110
104
102
95.2


, x =



0
11.2

0
6.81

0
0
0

6.3
0.28

0


b) We have CTv = p and Cx∗ = b, where elements of v are [v]k = 1/(1 + sk)k

Because (AB)T = BTAT , we can write CTv = p ⇔ pT = vTC. Hence, the price of the portfolio can be
written as:
pTx∗ = vTCx∗ = vTb.
Interpretation: If the cash flows of the portfolio match the obligations exactly, the present value of the
project portfolio (which equals the price of the portfolio) matches the present value of the obligations.

c) In immunization the present value and first order derivative (quasi-modified duration) of the portfolio is
matched with those of the obligation stream. The cash flows of an immunized portfolio do not necessarily
have to match those of the obligations, and instead the assets in the portfolio are sold when needed to pay
the obligations.

In cash flow matching, the positive cash flows from the bonds always suffice to pay the obligations, re-
gardless of the interest rates. However, the present value of the portfolio is not matched to that of the
obligations. From part b) of this exercise can be seen that if Cx > b, then pTx = vTCx > vTb, and
hence the present value (price) of the portfolio exceeds that of the obligation stream when the cash flows
received from the bonds exceed the obligations.

This problem of cash flow matching can be diminished by, for example, introducing artificial bonds that
are consistent with the forward rates, or by allowing extra cash to be put ”under the matress”.
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4.4 (L5.12) (Two-stage growth) When pricing financial instruments, the dividend discount model can be ex-
tended by taking more growth phases into account. Consider Nokia Corp. that paid 1439Me of dividends
in year 2003. Suppose that the dividends grow at a constant rate G = 1.3 in the first five years (that is,
during years 2004-2008), and the dividends grow at rate g = 1.05 from year 2009 onwards.
a) Formulate the general formula for two-stage dividend discount model for valuing a publicly traded com-
pany. The growth rate is constant G for k years and then g from year k+ 1 onwards. The dividend of the
first year D0 is paid immediately.
b) What is the market value of Nokia Corp., if it is valued solely based on the shared dividends? Assume
a constant interest rate r = 0.1 and that first dividend is paid immediately.

Solution:
a) Growth rate is G for the first k years, the first dividends are D0 and the discount factor is 1/R = 1/(1+r).
Hence, the present value of the dividends in the first k years is

PV1 = D0 +D0
G

R
+ · · ·+D0

(
G

R

)k

= D0

k∑
i=0

(
G

R

)i

(1)

After k years, the growth rate changes to g. The present value of the paid dividends from year k + 1
onwards is then

PV2 = D0

(
G

R

)k g

R
+D0

(
G

R

)k ( g
R

)2
+ · · · . (2)

Combining equations (1) and (2) yields the present value of the whole stream as

PV = D0 +D0
G

R
+ · · ·+D0

(
G

R

)k−1
+D0

(
G

r

)k [
1 +

g

R
+
( g
R

)2
+ · · ·

]
. (3)

The formula for finite geometric sum is a+ar+ · · ·+arn−1 = a(1−rn)/(1−r), and the formula for infinite
(n→∞) geometric series is a+ ar+ ar2 + · · · = a/(1− r). The first formula applies for r 6= 1 and second
for r < 1. Using these formulas (assuming G 6= R and g < R), the present value of the dividend stream
becomes

PV = D0

[
1−

(
G
R

)k
1− G

R

+

(
G

R

)k 1

1− g
R

]
(4)

b) We substitute the values G = 1.30, g = 1.05, R = 1.10, D0 = 1439, and k = 5 into (4) and get the
market value of Nokia Corp. as 83 317 Me. The price per share (the present value divided by the number
of shares) is then 17.37 e. For comparison, the average price of Nokia stocks was 14.12 e in 2003.


