
ELEC-E8413 power systems

Lectures

Lecture 1 Network componentsReferring, p.u. computation
Lecture 2 p.u. computation Load flows
Lecture 3 Power stationsLoad modeling
Lecture 4 Stability
Lecture 5 Faults
Lecture 6 P and Q control
Lecture 7 Power Quality
Lecture 8 High voltage engineering
Lecture 9 Substation equipment Transformers
Lecture 10 Lines
Lecture 11 Protection
Lecture 12 Earthings, hazard voltages

Course materials

- Course books:
- 7 B. M. Weedy, B. J. Cory , N. Jenkins, J. B. Ekanayake, G. Strbac, "Electric Power Systems" fifth edition, December 26, 2012 , ISBN-10: 047068268X, ISBN-13: 9780470682685.
- John J. Grainger, William D. Stevenson, Jr., "Power System Analysis, " Singapore, 1994. ISBN-10: 0070612935, ISBN-13: 978-0070612938.
- Harrison, John Anthony, "The essence of electric power systems" Prentice Hall, 1996, ISBN 0133975142,9780133975147
- Kirtley, James, "Electrical Power Principles: Sources, Conversion, Distribution \& Use", Wiley, 2010. ISBN: 9780470686362 . (Available at Aalto ebrary) http://site.ebrary.com/lib/aalto/docDetail.action?docID=10411610
- Books in Finnish: Liisa Haarla \& Jarmo Elovaara, Sähköverkot 1\&2, Otatieto
- Slides and exercise materials available in MyCourses

Transmission and distribution

Power station

- generator (10,5 kV, 20 kV)
- generator transformer (20/400 kV) systems

Low voltage distribution

- $0,4 \mathrm{kV}$ lines and customers

Nordic transmission system

Nordel

Alternating current \& phasors

3-phase system

Phase voltage is Between phase And neutral N

Neutral is in Ground (= zero) potential

Phase voltage $U_{P} U_{R} U_{S} U_{T}$
Line voltage $U_{L} U_{R S} U_{S T} U_{T R}$

Single line diagram of a 3-ph system

In a three phase system, phase quatities Up and Ip cancel when summed
Hence the voltages and currents in neutrals behind the load and source are zero
A single line diagram of a three phase system is made by connecting neutrals Hence only one phase is analysed, and the other two exhibit similar behavior

Powers \& single line diagram of a 3-ph system

Power: $S=3 U_{P} I_{P}=\sqrt{3} U_{L} I_{P}$

Impedance Z :

$$
\begin{aligned}
Z & =\frac{U_{P}}{I_{P}}=U_{P} \cdot \frac{3 U_{P}}{S} \\
& =\frac{3 U_{P}^{2}}{S}=\frac{U_{L}^{2}}{S}
\end{aligned}
$$

Powers in a 3-ph system

$$
\begin{aligned}
& \mathrm{S}=3 \mathrm{U}_{\mathrm{P}} \mathrm{I}=\sqrt{3} \mathrm{U}_{\mathrm{L}} \mathrm{I} \\
& \mathrm{P}=\mathrm{S} \cos \phi \\
& \mathrm{Q}=\mathrm{S} \sin \phi \\
& \mathrm{~S}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}} \\
& \underline{\mathrm{~S}}=\mathrm{P}+\mathrm{jQ}
\end{aligned}
$$

$P / S=\cos \phi$ is power factor
a)

b)

$$
\begin{aligned}
& P=3 U_{p} I \cos 90^{\circ}=0 \\
& \mathrm{Q}=3 U_{p} I \sin 90^{\circ}=3 * 230 * 23 \mathrm{var}=15,9 \mathrm{kVAr}
\end{aligned}
$$

Powers in a 3-ph system (continued)

Another way

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathrm{S}=3 \mathrm{U}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}}^{*}=3 \mathrm{U}_{\mathrm{p}} \angle 0^{\circ} \cdot \mathrm{I}_{\mathrm{P}} \angle 45^{\circ}=3 \mathrm{U}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \angle 45^{\circ} \\
=3 \cdot 230 \cdot 16,26 \angle 45^{\circ} \mathrm{VA}=11,2 \angle 45^{\circ} \mathrm{kVA} \\
=7,9+\mathrm{j} 7,9 \mathrm{kVA} \\
\text { Computation usually using line voltages } \\
\Rightarrow \mathrm{S}=3 \mathrm{U}_{\mathrm{P}} I_{\mathrm{P}} \\
\\
\quad \mathrm{~S}=\sqrt{3} \mathrm{U}_{\mathrm{L}} \mathrm{I}_{\mathrm{P}}^{*}
\end{array}
\end{aligned}
$$

Reactance (ind)

$$
\underline{X}=\mathrm{j} \omega \mathrm{~L}
$$

Capacitance

$$
-\underset{\mathrm{C}}{-11}
$$

$$
\underline{X}=\frac{1}{j \omega C}=-j \frac{1}{\omega C}
$$

EXAMPLE: RESISTIVE-INDUCTIVE LOAD

In a 0.4 kV three phase system there is a load, which takes 10 A with power factor $\cos \phi=0.9$. Calculate real power P , reactive power Q and apparent power S .
$\mathrm{UL}=400 \mathrm{~V} \Leftrightarrow U_{P}=\frac{400}{\sqrt{3}} \mathrm{~V}=230 \mathrm{~V}$

Power per phase: $\mathrm{P}=\mathrm{UPIP} \cos \phi=230 * 10 * 0.9 \mathrm{~W}=2070 \mathrm{~W}=2.07 \mathrm{~kW}$
Three phase power: $\mathrm{P}=3$ UPIP $\cos \phi=6.2 \mathrm{~kW}$

Using line voltages
$P=\sqrt{3} U_{L} I_{P} \cos \emptyset=\sqrt{3} * 400 * 10 * 0.9 \mathrm{~W}=6.2 \mathrm{~kW}$

Three phase reactive power: $\mathrm{P}=3$ UpIp $\sin \phi=3 \mathrm{kvar} \quad(\phi=26 \mathrm{deg})$
Using line voltages
$\mathrm{Q}=\sqrt{3} U_{L} I_{P} \sin \emptyset=\sqrt{3} * 400 * 10 * 0.44 \mathrm{var}=3 \mathrm{kvar}$

Example (continued)

In a 0.4 kV three phase system there is a load, which takes 10 A with power factor $\cos \phi=0.9$. Calculate real power P , reactive power Q and apparent power S .
$P=\sqrt{3} U_{L} I_{P} \cos \emptyset=\sqrt{3} * 400 * 10 * 0.9 \mathrm{~W}=6.2 \mathrm{~kW}$
$\mathrm{Q}=\sqrt{3} U_{L} I_{P} \sin \emptyset=\sqrt{3} * 400 * 10 * 0.44 \mathrm{var}=3 \mathrm{kvar}$

Apparent power S:
$S=P+j Q=6.2+j 3 k V A$
$S=\sqrt{P^{2}+Q^{2}}=6.9 \mathrm{kVA}$
$S=\sqrt{3} U_{L} I_{P}=\sqrt{3} * 400 * 10 \mathrm{VA}=6.9 \mathrm{kVA}$

Example (continued)

In a 0.4 kV three phase system there is a load, which takes 10 A with power factor $\cos \phi=0.9$. Calculate real power P , reactive power Q and apparent power S .
$P=\sqrt{3} U_{L} I_{P} \cos \emptyset=\sqrt{3} * 400 * 10 * 0.9 \mathrm{~W}=6.2 \mathrm{~kW}$
$\mathrm{Q}=\sqrt{3} U_{L} I_{P} \sin \emptyset=\sqrt{3} * 400 * 10 * 0.44 \mathrm{var}=3 \mathrm{kvar}$

Apparent power S:

$$
\begin{aligned}
& S=3 U_{P} I_{P}^{*}=3 * 230 \angle 0^{0} * 10 \angle 26^{0} \mathrm{VA}=6.9 \angle 26^{0} \mathrm{kVA} \\
& S=\sqrt{3} U_{L} I_{P}^{*}=\sqrt{3} * 400 \angle 0^{0} * 10 \angle 26^{0} \mathrm{VA}=6.9 \angle 26^{0} \mathrm{kVA} \\
& S=6.9 \angle 26^{0} \mathrm{kVA}=6.9 \cos 26^{0} \mathrm{~kW}+j 6.9 \sin 26^{0} \mathrm{kvar}=6.2 \mathrm{~kW}+j 3 \mathrm{kvar}
\end{aligned}
$$

DELTA AND STAR CONNECTIONS

In 3-phase system loads and equipment (like generator or transformer windings) can be connected either in delta (between phases) or star (between phase and neutral)

Power in delta and star connection

Let consider a set of three 10Ω resistors connected in star or delta in low voltage network.

In star connection, the voltage of resistors is $230 \mathrm{~V} \Leftrightarrow \mathrm{I}=\mathrm{U} / \mathrm{R}=23 \mathrm{~A}$ Three phase power $\mathrm{P}=3 \mathrm{UI}=3 * 230 * 23 \mathrm{~W}=16 \mathrm{~kW}$

In delta connection, the voltage of resistors is $400 \mathrm{~V} \Leftrightarrow \mathrm{I}=\mathrm{U} / \mathrm{R}=40 \mathrm{~A}$ Three phase power $\mathrm{P}=3 \mathrm{UI}=3 * 400 * 40 \mathrm{~W}=48 \mathrm{~kW}$

In delta-connection both the current and the voltage is $\sqrt{3}$ - fold, and hence the power will be 3 -fold compared to star connection.

Delta-Star transformation in a 3-ph system

In three phase systems, the analytical solutions are made using single line diagrams where impedances are between phase and neutral, i.e. in star

Hence, the delta connection must be transformed to star.
This is done by dividing the impedances by three.
(proof: the powers are the same in both cases)

Lines

$$
\begin{aligned}
& \underline{\mathrm{Z}}=(\mathrm{r}+\mathrm{j} \omega \mathrm{l}) \mathrm{s} \\
& \underline{\mathrm{Y}}=(\mathrm{g}+\mathrm{j} \omega \mathrm{c}) \mathrm{s}
\end{aligned}\left\{\begin{array}{l}
\mathrm{s}=\text { length } \\
\mathrm{r}=\text { resistance } / \mathrm{s} \\
\mathrm{l}=\text { inductance } / \mathrm{s} \\
\mathrm{~g}=\text { conductance } / \mathrm{s} \\
\mathrm{c}=\text { capacitance } / \mathrm{s}
\end{array}\right.
$$

Long lines

$$
\begin{aligned}
& {\left[\begin{array}{l}
\underline{\mathrm{U}}_{\mathrm{a}} \\
\underline{\mathrm{I}}_{\mathrm{a}}
\end{array}\right]=\left[\begin{array}{lc}
\cos \underline{\beta} \mathrm{s} & \mathrm{j} \underline{\mathrm{Z}}_{\mathrm{c}} \sin \underline{\beta} \mathrm{~s} \\
\mathrm{j} \frac{1}{\underline{Z}_{\mathrm{c}}} \sin \underline{\beta} \mathrm{~s} & \cos \underline{\beta} \mathrm{~s}
\end{array}\right]\left[\begin{array}{l}
\underline{\mathrm{U}}_{\mathrm{b}} \\
\underline{\underline{L}}_{\mathrm{b}}
\end{array}\right]} \\
& \underline{\beta}=\sqrt{(\mathrm{r}+\mathrm{j} \omega \mathrm{l}) \cdot(\mathrm{g}+\mathrm{j} \mathrm{\omega c})} \\
& \underline{\mathrm{Z}}_{\mathrm{c}}=\sqrt{(\mathrm{r}+\mathrm{j} \omega \mathrm{l}) /(\mathrm{g}+\mathrm{j} \omega \mathrm{c})}
\end{aligned}
$$

Generators

synchronous, transient, subtransient reactance

Feeding transmission grid

$$
\mathrm{S}_{\mathrm{k}}=\text { short circuit power MVA }
$$

$$
\begin{aligned}
& \underline{Z}_{\mathrm{k}} \approx j X_{\mathrm{k}} \\
& X_{\mathrm{k}}=\frac{\mathrm{U}^{2}}{S_{\mathrm{k}}}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
U_{N}=\text { rated voltage }(\mathrm{kV}) \\
\mathrm{S}_{\mathrm{N}}=\text { rated power (MVA) } \\
\mathrm{X}_{\mathrm{d}}=\text { p.u. synchronous reactance }
\end{array}\right.
$$

Transformer

Voltage over a turn is constant

$$
\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}
$$

Power is constant

$$
\begin{aligned}
& \mathrm{S}=\sqrt{3} \mathrm{U}_{2} \mathrm{I}_{2}=\sqrt{3} \mathrm{U}_{1} \mathrm{I}_{1} \\
& \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{U}_{2}}{\mathrm{U}_{1}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}
\end{aligned}
$$

Secondary impedance Z_{2} referred to primary ?

in secondary $Z_{2}=\frac{U_{2}}{I_{2}}$
in primary $\mathrm{Z}_{2}^{\prime}=\frac{\mathrm{U}_{1}}{\mathrm{I}_{1}}=\frac{\mathrm{U}_{2} \cdot \frac{N_{1}}{N_{2}}}{I_{2} \cdot \frac{N_{2}}{N_{1}}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \cdot \mathrm{Z}_{2}$
usually we write $\frac{N_{1}}{N_{2}}=\frac{U_{1 n}}{U_{2 n}}$

Referring over a transformer

$$
\begin{aligned}
& \text { An example } \\
& \mathrm{S}_{\mathrm{k}}=1000 \mathrm{MVA} \\
& \mathrm{X}_{\mathrm{k}}=\frac{\mathrm{U}_{1}^{2}}{\mathrm{~S}_{\mathrm{k}}}=\frac{110^{2}}{1000}=12,1 \Omega \quad(110 \mathrm{kV}) \\
& \mathrm{X}_{\mathrm{T}}=\mathrm{u}_{\mathrm{k}} \frac{\mathrm{U}_{2}{ }^{2}}{\mathrm{~S}_{\mathrm{N}}}=0,1 \cdot \frac{20^{2}}{20}=2 \Omega \quad(20 \mathrm{kV}) \\
& 20 \mathrm{kV} \text { level } \mathrm{E}=\frac{\mathrm{U}_{2}}{\sqrt{3}} \\
& \mathrm{I}_{\mathrm{k}_{2}}=\frac{\mathrm{U}_{2}}{\sqrt{3}\left(X_{k}^{\prime}+X_{T}\right)}=\frac{20 \mathrm{kV}}{\sqrt{3}\left(\left(\frac{20}{110}\right)^{2} \cdot 12,1+2\right) \Omega}=\underline{\underline{4,81 \mathrm{kA}}} \\
& 110 \mathrm{kV} \text { level } \mathrm{E}=\frac{\mathrm{U}_{1}}{\sqrt{3}} \\
& \mathrm{I}_{\mathrm{k}_{1}}=\frac{\mathrm{U}_{1}}{\sqrt{3}\left(X_{k}+X_{T}{ }^{\prime}\right)}=\frac{110 \mathrm{kV}}{\sqrt{3}\left(12,1+\left(\frac{110}{20}\right)^{2} \cdot 2\right) \Omega}=\underline{\underline{0,875} \mathrm{kA}} \\
& \text { check: } \\
& I_{k_{1}}=\frac{\mathrm{U}_{2 \mathrm{n}}}{\mathrm{U}_{1 \mathrm{n}}} \mathrm{I}_{\mathrm{k}_{2}}=\frac{20}{110} \cdot 4,81 \mathrm{kA}=0,875 \mathrm{kA}
\end{aligned}
$$

Referring and p.u. values

1. Referring over a transformer (from U_{1} to U_{2})

$$
\begin{aligned}
& \mathrm{U}_{1}^{\prime}=\left(\mathrm{U}_{2 \mathrm{n}} / \mathrm{U}_{1 \mathrm{n}}\right) \cdot \mathrm{U}_{1} \\
& \mathrm{I}_{1}^{\prime}=\left(\mathrm{U}_{1 \mathrm{n}} / \mathrm{U}_{2 \mathrm{n}}\right) \cdot \mathrm{I}_{1} \\
& \mathrm{Z}_{1}^{\prime}=\left(\mathrm{U}_{2 \mathrm{n}} / \mathrm{U}_{1 \mathrm{n}}\right)^{2} \cdot \mathrm{Z}_{1}
\end{aligned}
$$

Referring is easy when only two voltage levels

2. In case of several voltage levels p.u. computation

Select for the base values some base power S_{b} and voltage of one selected voltage level U_{b}
\Rightarrow Other base voltages by transforming ratios:

$$
\mathrm{U}_{2 \mathrm{~b}}=\left(\mathrm{U}_{2 \mathrm{n}} / \mathrm{U}_{1 \mathrm{n}}\right) \cdot \mathrm{U}_{1 \mathrm{~b}}
$$

Current base value by base power and base voltage:

$$
\mathrm{I}_{\mathrm{b}}=\mathrm{S}_{\mathrm{b}} / \sqrt{3} \mathrm{U}_{\mathrm{b}}
$$

\Rightarrow Impedance base value by base power and base voltage:

$$
\mathrm{Z}_{\mathrm{b}}=\mathrm{U}_{\mathrm{b}}^{2} / \mathrm{S}_{\mathrm{b}}
$$

Calculations using p.u. values

The actual $\mathrm{U}(\mathrm{kV}), \mathrm{I}(\mathrm{A}), \mathrm{Z}(\Omega), \mathrm{S}(\mathrm{MVA}), \mathrm{P}(\mathrm{MW}), \mathrm{Q}(\mathrm{Mvar})$ values are first scaled by corresponding base values of the voltage level in question

$$
u=\mathrm{U} / \mathrm{U}_{\mathrm{b}} \quad i=\mathrm{I} / \mathrm{I}_{b} \quad \mathrm{Z}=\mathrm{Z} / \mathrm{Z}_{\mathrm{b}} \quad s=S / S_{b}
$$

As the result we have per unit (p.u.) values. Now all the different voltage Levels have been transformed to the same general domain and no any Referring over transformers is needed any more.

The calculations are done with single line diagram. For 3 ph powers $\underline{s}=\underline{u i}{ }^{*}$
Once the calculations are done, we have the results in the form of Dimensionless p.u. values.

Finally the results are transformed back to actual physical values by Multiplying the p.u. values by the base values of the concerned voltage level.

$$
U=u U_{b} \quad I=i I_{b} \quad Z=z Z_{b} \quad S=s S_{b}
$$

