Power system stability

- Ability to maintain operation during and after situations such as:
- large load changes
- Large generation changes
- Network switching operations
- Network faults
- Equilibrium: production = demand
- In transmission system $X \gg R$
-> real power balance \sim frequency reactive power balance ~ voltage
- After disturbance an oscillation of energy follows:
- is the oscillation attenuated?
- decisive factor is the synchronization of generators:

Steady-state stability \& Transient stability

Steady state stability

- The ability to maintain the synchronization in normal state - when frequency decreases the generators increase their production
- when frequency increases the generators decrease their production
- When load is increased the generators must be able to control U and f
- Synchronizing power:
- defines the change of power when frequency is increased
- in stable case:
- positive when frequency is decreased
- negative when frequency is increased
- in unstable case:
- negative when frequency is decreased
- frequency will be further decreased
- positive when frequency is increased
- frequency will be further increased
- Steady-state maximum power:
- theoretical maximum limit for a stable power transmission
- synchronizing power is zero at steady-state maximum power
- Steady-state stability can be lost with no oscillation of power

The power-angle equation

$$
\begin{aligned}
& \underline{U}_{1 \mathrm{P}}=\mathrm{U}_{1 \mathrm{P}} \angle 0^{\circ} \\
& \underline{\mathrm{U}}_{2 \mathrm{P}}=\mathrm{U}_{2 \mathrm{P}} \angle-\delta
\end{aligned}
$$

$$
\begin{aligned}
& \underline{S}=3 \underline{U}_{1 P} \underline{I}^{*} \\
& I=\frac{\underline{\mathrm{U}}_{1 \mathrm{P}}-\underline{\mathrm{U}}_{2 \mathrm{P}}}{j X}=\frac{\mathrm{U}_{1 \mathrm{P}} \angle 0^{\circ}-\mathrm{U}_{2 \mathrm{P}} \angle-\delta}{j X} \\
& =\frac{\mathrm{U}_{1 \mathrm{P}}}{\mathrm{jX}}-\frac{\mathrm{U}_{2 \mathrm{P}} \cos (-\delta)+\mathrm{j} \mathrm{U}_{2 \mathrm{P}} \sin (-\delta)}{j X} \\
& =\frac{\mathrm{U}_{1 \mathrm{P}}}{\mathrm{jX}}-\frac{\mathrm{U}_{2 \mathrm{P}} \cos \delta-\mathrm{j}_{2 \mathrm{P}} \sin \delta}{j X} \\
& =\frac{\mathrm{U}_{2 \mathrm{P}} \sin \delta}{X}+\mathrm{j}\left(\frac{-U_{1 p}}{X}+\frac{\mathrm{U}_{2 \mathrm{p}} \cos \delta}{\mathrm{X}}\right) \\
& \Rightarrow \underline{\mathrm{S}}=3 \underline{\mathrm{U}}_{\mathrm{IP}} \underline{I}^{*} ; \quad \underline{\mathrm{U}}_{\mathrm{IP}}=\mathrm{U}_{\mathrm{IP}} \angle 0^{\circ} \\
& =\frac{3 \mathrm{U}_{1 P} U_{2 P}}{\mathrm{X}} \sin \delta+\mathrm{j}\left(\frac{3 \mathrm{U}_{1 P}{ }^{2}}{\mathrm{X}}-\frac{3 U_{1 P} U_{2 P}}{\mathrm{X}} \cos \delta\right)
\end{aligned}
$$

Static stability

$$
P=\frac{\mathrm{U} E_{q}}{X_{g}+X_{j}} \sin \delta
$$

The power-angle equation

$$
\mathrm{P}=\frac{\mathrm{U}_{1} \mathrm{U}_{2}}{\mathrm{X}} \sin \delta
$$

Pmax is the biggest stable power

The effect of voltage control

Phase angle versus power

Static stability and maximum power

$$
\begin{aligned}
& \delta=\delta_{\max }=90^{\circ} \\
& \mathrm{P}_{\max }=\frac{\mathrm{E}_{1} \mathrm{E}_{2}}{\sum \mathrm{X}} \sin 90^{\circ}
\end{aligned}
$$

$$
P_{\max }=\frac{E_{1} E_{2}}{\sum X}
$$

In practice the max phase angle $\delta_{\max } \approx 45^{\circ}<90^{\circ}$, since:

- reactive power production limitations in generators
- margin for dynamic changes in network
- margin for voltage control

Synchronizing power

When load increases the angular frequency tends to decrease. This leads to the increase in power-angle δ.

For stable operation, the power transmission must be able to increase when power angle is increased.

$$
\begin{aligned}
& \frac{\partial P}{\partial \delta}>0 \quad \mathrm{P}= \frac{\mathrm{E}_{\mathrm{g}} \mathrm{E}_{\mathrm{m}}}{\sum \mathrm{X}} \sin \delta \\
& \frac{\partial \mathrm{P}}{\partial \delta}=\frac{\mathrm{E}_{\mathrm{g}} \mathrm{E}_{\mathrm{m}}}{\sum \mathrm{X}} \cos \delta>0 \\
& \text { when } \delta<90^{\circ}
\end{aligned}
$$

An example

$$
\begin{array}{ll}
25 \mathrm{MVA} & \mathrm{~S}_{\mathrm{kv}}=50 \mathrm{MVA} \\
105 \% & \mathrm{U}_{\mathrm{g}}=\mathrm{U}_{\mathrm{v}}=1.0
\end{array}
$$

$$
10 \text { kV }
$$

Maximum power with regard static stability ? $\mathrm{P}_{\max }$

Let's select $\mathrm{S}_{\mathrm{b}}=25 \mathrm{MVA} \quad \mathrm{U}_{\mathrm{b}}=10 \mathrm{kV}$
$\Rightarrow X_{d}=1,05$ p.u. $\quad X_{v}=\frac{25}{50}=0,5$ p.u.

$\left\{\frac{X_{v}}{X_{d}}=\frac{a}{b}\right.$
$\mathrm{a}+\mathrm{b}=\mathrm{U}_{\mathrm{v}}=1,0$
$\Rightarrow \mathrm{a}=0,323 ; \mathrm{b}=0,677$
$\Rightarrow \mathrm{c}=\sqrt{\mathrm{U}_{\mathrm{g}}{ }^{2}-\mathrm{b}^{2}}=0,736$

$$
\begin{aligned}
\Rightarrow \frac{E}{c} & =\frac{X_{d}+X_{v}}{X_{v}} \Rightarrow E=2,282 \\
\Rightarrow P_{\max } & =\frac{E U_{v}}{X_{v}+X_{d}}=\frac{2,282 \cdot 1,0}{0,5+1,05} \text { p.u. } \\
& =1,472 \text { p.u. }=36,8 \mathrm{MW}
\end{aligned}
$$

Example 2

25 MVA

 105 \%$\mathrm{S}_{\mathrm{b}}=25 \mathrm{MVA}$

$$
P=15 M W=0,6 \text { p.u. }
$$

$$
P=\frac{U_{g} U_{v}}{X_{v}} \sin \delta^{\prime} \quad \begin{aligned}
& \text { Compute Q, E, } \delta^{\prime}, \delta \\
& \left(X_{v}=0,5 \text { p.u. } \quad X_{d}=1,05 \text { p.u. }\right)
\end{aligned}
$$

$\Rightarrow \sin \delta^{\prime}=\frac{X_{v} P}{U_{g} U_{v}} \Rightarrow \underline{\delta^{\prime}=17,46^{\circ}}$
$\mathrm{Q}=\frac{\mathrm{U}_{\mathrm{g}}{ }^{2}}{\mathrm{X}_{\mathrm{v}}}-\frac{\mathrm{U}_{\mathrm{g}} \mathrm{U}_{\mathrm{v}}}{\mathrm{X}_{\mathrm{v}}} \cos \delta^{\prime}=0,092$ p.u. $\hat{=} \underline{2,3 \mathrm{MVAr}}$
$\underline{E}=\frac{X_{d}+X_{v}}{X_{v}} \Delta \underline{U}_{\mathrm{gv}}+\underline{U}_{v}$
$=\frac{X_{d}+X_{v}}{X_{v}}\left(\underline{U}_{g}-\underline{U}_{v}\right)+\underline{U}_{v}$
$=\frac{X_{d}+X_{v}}{X_{v}}\left(U_{g} \cos \delta^{\prime}-U_{v}+j U_{g} \sin \delta^{\prime}\right)+U_{v}$
$=\left(\frac{X_{d}+X_{v}}{X_{v}} U_{g} \cos \delta^{\prime}-\frac{X_{d}}{X_{v}} U_{v}\right)+j \frac{X_{d}+X_{v}}{X_{v}} U_{g} \sin \delta^{\prime}$

$$
\begin{aligned}
& =0,8572+\mathrm{j} 0,9301=1,265 \angle 47,3^{\circ} \\
& \left\{\begin{array}{l}
\mathrm{E}=1,265 \text { p.u. }=12,65 \mathrm{kV} \\
\delta=47,3^{\circ}
\end{array}\right.
\end{aligned}
$$

Check:

$$
\begin{aligned}
P & =\frac{E U_{v}}{X_{d}+X_{v}} \sin \delta \\
& =\frac{1,265 \cdot 1,0}{1,05+0,5} \sin 47,3^{\circ} \\
& =0,6!
\end{aligned}
$$

Example 3

Loads in the end of line $P, Q=$?

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{U}_{\mathrm{v}} \mathrm{U}_{\mathrm{g}}}{\mathrm{X}_{\mathrm{v}}} \sin (-\delta)=-0,6 \wedge-15 \mathrm{MW} \\
& \mathrm{Q}=\frac{\mathrm{U}_{\mathrm{v}}{ }^{2}}{\mathrm{X}_{\mathrm{v}}}-\frac{\mathrm{U}_{\mathrm{v}} \mathrm{U}_{\mathrm{g}}}{\mathrm{X}_{\mathrm{v}}} \cos (-\delta)=0,092 \wedge 2,3 \mathrm{MVAr} \\
& \Rightarrow \text { to maintain the voltage, reactive power must } \\
& \text { be fed also into the end of the line }
\end{aligned}
$$

Transient stability

- the ability to maintain operation during power swings
- in unstable situation two or more network areas lose the mutual synchronization with the consequence:
* large power swings between the areas
* overload risk for the connecting lines
* risk of damage to generators
* voltage control / power control try to stabilize

If synchronization is lost the network is split into parts

Some of the parts will lose voltage

Power swings

- In steady state, the mechanical power P_{m} and electrical power of the system P_{s} are equal.
- when the mechanical power of the turbine is constant, but the electrical power is changed by faults, disconnection etc., the difference in power balance will increase the kinetic energy of the turbine / generator

$$
\mathrm{W}_{\mathrm{kin}}=\frac{1}{2} \mathrm{~J} \omega^{2}
$$

The change of kinetic energy:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{s}}^{\prime}=\frac{\partial \mathrm{W}_{\mathrm{kin}}}{\partial \mathrm{t}} & =\mathrm{J} \omega \frac{\partial \omega}{\partial \mathrm{t}}
\end{aligned}\left|\begin{array}{l}
\omega=\omega_{\mathrm{s}}+\Delta \omega \\
\\
\\
=\mathrm{J} \omega \frac{\partial^{2} \delta^{\prime}}{\partial \mathrm{t}^{2}}
\end{array}\right| \begin{aligned}
& \Delta \omega=\frac{\partial^{2} \delta^{\prime}}{\partial \mathrm{t}^{2}}
\end{aligned}
$$

In the single machine case:

$$
P_{m}=\frac{E_{1}^{\prime} E_{2}}{X_{d 1}^{\prime}+X} \sin \delta^{\prime}+J \omega \frac{\partial^{2} \delta^{\prime}}{\partial t^{2}}
$$

The variation of power angle δ^{\prime} during a power swing

$$
\begin{array}{l|l}
\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{s}}^{\prime}=\mathrm{J} \omega \frac{\partial^{2} \delta^{\prime}}{\partial \mathrm{t}^{2}} & \begin{array}{l}
\text { No electrical power transm. during the fault: } \\
\mathrm{P}_{\mathrm{s}}^{\prime}=0
\end{array} \\
\mathrm{~J} \omega \frac{\partial^{2} \delta^{\prime}}{\partial \mathrm{t}^{2}}=\mathrm{P}_{\mathrm{m}} & \begin{array}{l}
\text { In start, the angular frequency is nominal: } \\
\Delta \omega(0)=\delta^{\prime}(0)=0 \Rightarrow \mathrm{C}_{1}=0
\end{array} \\
\mathrm{~J} \omega \frac{\partial \delta^{\prime}}{\partial \mathrm{t}}=\mathrm{P}_{\mathrm{m}} \cdot \mathrm{t}+\mathrm{C}_{1} & \begin{array}{l}
\text { Steady state power angle in the beginning: } \\
\mathrm{J} \omega \frac{\partial \delta^{\prime}}{\partial \mathrm{t}}=\mathrm{P}_{\mathrm{m}} \cdot \mathrm{t} \\
\mathrm{~J} \omega \delta^{\prime}=\frac{1}{2} \mathrm{P}_{\mathrm{m}} \cdot \mathrm{t}^{2}+\mathrm{C}_{2}
\end{array} \\
\mathrm{~J} \omega \delta^{\prime}=\frac{1}{2} \mathrm{P}_{\mathrm{m}} \cdot \mathrm{t}^{2}+\mathrm{J} \omega \delta_{0}^{\prime}
\end{array}
$$

Single machine model

Equal area criterion

Assessing the transient stability

$$
\begin{aligned}
& \text { Assumptions: } \\
& \qquad \begin{array}{l|l}
\left\{\begin{array}{l}
\mathrm{P}_{\mathrm{m}}=\text { constant } \\
\mathrm{P}_{\mathrm{e}}=\frac{\mathrm{E}^{\prime} \mathrm{U}}{\mathrm{X}^{\prime}} \sin \delta^{\prime}
\end{array}\right. & \begin{array}{l}
\text { areas must be equal, or the braking } \\
\text { area must be bigger }
\end{array} \\
\begin{array}{l}
\Rightarrow \begin{array}{l}
\int\left(\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{e}}\right) \mathrm{d} \delta \quad \text { Corresponds to: } \\
\quad \\
\quad \text { - accelerating energy, when } \mathrm{P}_{\mathrm{m}}
\end{array} \\
\quad \text { - braking energy, when } \mathrm{P}_{\mathrm{e}}>\mathrm{P}_{\mathrm{e}}
\end{array} & \Rightarrow \int\left(\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{e}}\right) \mathrm{d} \delta \leq 0 \quad \text { (stability condition) }
\end{array}
\end{aligned}
$$

Single machine model

- machine 2 is the stiff grid

Power angle equation \& single machine model

$\begin{array}{ll}\begin{array}{c}\text { - In continuous state: } \\ \text { (steady state stability) }\end{array} & \mathrm{P}=\frac{\mathrm{E}_{1} \mathrm{E}_{2}}{\mathrm{X}_{\mathrm{d} 1}+\mathrm{X}} \sin \delta \\ \begin{array}{c}\text { - In transient state: } \\ \text { (dynamic stability, } \\ \text { transient stability) }\end{array} & \mathrm{P}^{\prime}=\frac{\mathrm{E}_{1}^{\prime} \mathrm{E}_{2}}{\mathrm{X}_{\mathrm{d} 1}^{\prime}+\mathrm{X}} \sin \delta^{\prime}\end{array}$

In static situation the steady state power equals to the transient state power

Dynamic stability

In the stability maintained?

Compute emf E' and power angle δ_{0}^{\prime}
$P=\mathrm{UI} \Rightarrow \mathrm{I}=1,0$
$\Rightarrow\left(X+X_{d}^{\prime}\right) I=0,4$
$\Rightarrow \mathrm{E}^{\prime}=1,08 \angle 21,8^{\circ}$

$$
\underline{\delta_{0}^{\prime}=21,8^{\circ}}
$$

power angle at switching moment, $\mathrm{t}=0,3 \mathrm{~s}$

$$
\delta_{1}^{\prime}=\frac{1}{2} \frac{\mathrm{P}}{\omega \mathrm{~J}} \mathrm{t}^{2}+\delta_{0}^{\prime}=\underline{73,37^{\circ}}
$$

Power angle equation in transient case

$$
\begin{aligned}
\int_{\delta_{0}^{\prime}}^{\delta_{1}^{\prime}} \mathrm{P}_{\mathrm{m}} \mathrm{~d} \delta^{\prime} & =\int_{\delta_{1}^{\prime}}^{\delta_{2}^{\prime}}\left(\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\mathrm{m}}\right) \mathrm{d} \delta^{\prime} \\
& =\int_{\delta_{1}^{\prime}}^{\delta_{2}^{\prime}}\left(2,69 \sin \delta^{\prime}-\mathrm{P}_{\mathrm{m}}\right) \mathrm{d} \delta^{\prime}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{m}}=1,0
$$

$$
\Rightarrow \delta_{1}^{\prime}-\delta_{0}^{\prime}=2,69\left(\cos \delta_{1}^{\prime}-\cos \delta_{2}^{\prime}\right)-\delta_{2}^{\prime}+\delta_{1}^{\prime}
$$

$$
\Rightarrow \cos \delta_{2}^{\prime}=0,428-0,372 \delta_{2}^{\prime}
$$

$$
\Rightarrow \delta_{2}^{\prime}=104,5^{\circ}<\delta_{\max }^{\prime}
$$

\Rightarrow the system is stable!

