Power consumption

- Power system loads need for proper operation
 - real power
 - (inductive) reactive power
- · Real power is used in
 - load resistances
 - network component series resistances
 - network component shunt admittances

Power production

- Real power is produced by
 - generators in power plants
- Reactive power is produced by
 - synchronous machines (~ exitation)
 - capacitors (thyristor controlled ?)
 - line shunt capacitances
- Real power must be transmitted from power plant to the site of consumption

Generators

- Mostly produce real power
- Reactive power generation / absorption in disturbance situations
- · VAr absorption ability is limited
- VAr control = voltage control = exitation current control

Parallel capacitors

Overcompensated if VAr produced > load VAr demand

Series capacitors

- Series capacitor reduces the line reactance
- Main goal is to improve the stability (X reduction)

Dependence of (P, Q) ~ (δ, V)

In transmission systems δ is usually small and $\mbox{ R }<<\mbox{ X }$

Power angle equation :

$$P = \frac{U_1 U_2}{X_2} \sin \delta$$
$$Q = \frac{U_1^2}{X} - \frac{U_1 U_2}{X} \cos \delta$$

$$\frac{\partial P}{\partial \delta} = \frac{U_1 U_2}{X} \cos \delta \quad \cos \delta \approx 1 \quad \text{Real power mostly} \\ \frac{\partial P}{\partial U_1} = \frac{U_2}{X} \sin \delta \quad \sin \delta \approx 0 \\ \frac{\partial Q}{\partial \delta} = \frac{U_1 U_2}{X} \sin \delta \\ \frac{\partial Q}{\partial \delta} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{2U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{U_1}{X} - \frac{U_2}{X} \cos \delta \quad \text{Reactive power mostly} \\ \frac{\partial Q}{\partial U_1} = \frac{U_1}{X} - \frac{U_2}{X} - \frac{U_$$

Large generation deficiencies

- Frequency starts to fall (rate depends on stiffness)
- Automatic power control tries to increase production
- If frequency still falls, loads are disconnected
 - two 10 % steps
- Power system is divided into parts
 large cities may be isolated networks
- Turbogenerators disconnected, when f = 47...48 Hz (risk of mechanical resonance)

Frequency control of a power system

- Frequency is the same for the whole power system
- When the load exceeds production, the frequency starts to fall
- All the frequency controllers of generators react simultaneously
- The share of power plants in power control depends on
 - plant size
 - existing reserve capacity
 - droop settings

Power system real power control

The kinetic energy in rotating masses :

1.
$$W_k = \frac{1}{2} J \omega^2$$

Nordic system: $W_k \approx 300\ 000\ MWs$

Change of load balance & frequency :

2.
$$\Delta P = \frac{\partial W_k}{\partial t} = \omega J \frac{d\omega}{dt}$$

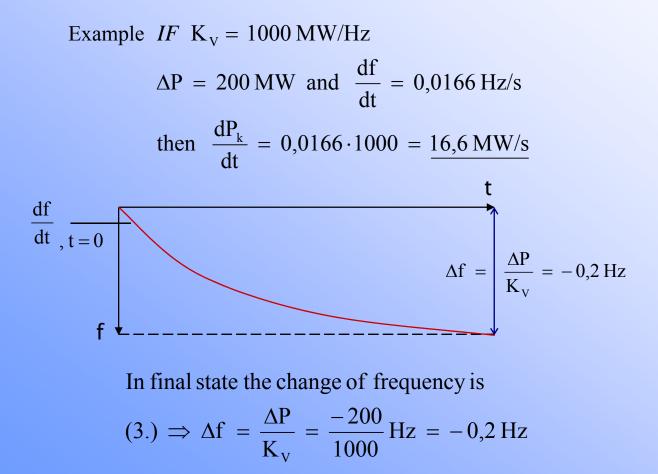
solving 1. $\omega J = \frac{2W_k}{\omega}$ and substituting in 2.
 $\Rightarrow \Delta P = \frac{2W_k}{\omega} \frac{d\omega}{dt}$
 $\Rightarrow \frac{d\omega}{dt} = \frac{\omega \Delta P}{2W_k}$; $\omega = 2\pi f$
 $\Rightarrow \frac{df}{dt} = \frac{f\Delta P}{2W_k}$
Example $\Delta P = 200 \text{ MW}$
 $W_k = 300 000 \text{ MWs}$
 $\Rightarrow \frac{df}{dt} = 0,0166 \text{ Hz/s}$

Frequency characteristics of load

- load is decreased with frequency

3.
$$P_k = P_{k0} + K_V \Delta f$$

In Finland K_V max ≈ 150 MW/Hz (K_V is stiffness of the system) In Nordic system 1000 - 2000 MW/Hz



For the frequency change $\Delta f(t)$, the following applies:

$$\Delta f(t) = -\frac{\Delta P}{K_V} (1 - e^{-t/T})$$

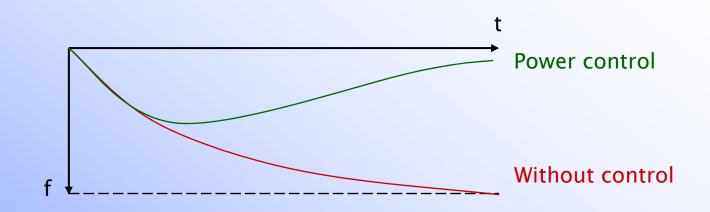
T is the time constant $\frac{2W_k}{f_0 K_V}$

In the example case $T = \frac{2 \cdot 300\,000}{50 \cdot 1000} \text{ s} = 12 \text{ s}$

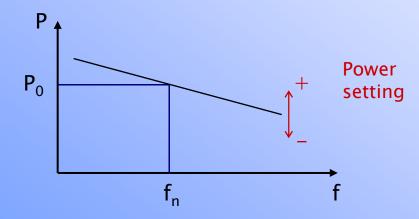
Example 2: 1300 MW plant disconnected in Nordic system

$$\begin{cases} \Delta P = 1300 \text{ MW} \\ K_{V} = 1000 \text{ MW/Hz} \\ W_{k} = 300 000 \text{ MWs} \end{cases}$$
$$\frac{\partial f}{\partial t} = \frac{1}{2} f \frac{\Delta P}{W_{k}} = \frac{1}{2} 50 \frac{1300}{300 000} \text{ Hz/s} = 0,11 \text{ Hz/s} \end{cases}$$
Frequency change if no frequency control:
$$\Delta P = K_{V} \Delta f$$
$$\Rightarrow \Delta f = \frac{+\Delta P}{K_{V}} = \frac{-1300}{1000} \text{ Hz} = -1,3 \text{ Hz}$$

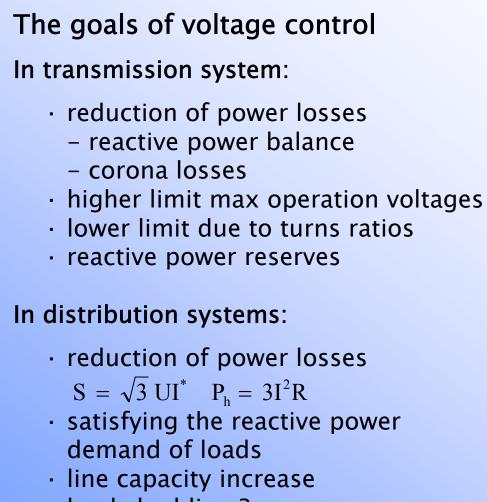
The effect of power (frequency) control:



The characteristics of the power controller (droop):

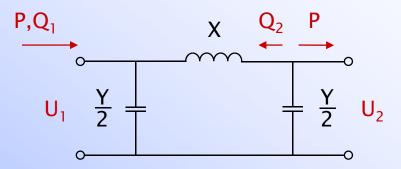


Voltage control of power systems



load shedding ?

Reactive power balance of a power line



Reactive power flowing into the line:

 $U_1 = U_2 = U = \text{constant}$ $Q_1 = \frac{U_1^2}{X} - \frac{U_1 U_2}{X} \cos \delta = \frac{U^2}{X} (1 - \cos \delta)$ $Q_2 = \frac{U_2^2}{X} - \frac{U_1 U_2}{X} \cos \delta = \frac{U^2}{X} (1 - \cos \delta)$

Reactive power produced by the shunt capacitance:

$$Q_{\rm C} = YU^2$$

The reactive power balance in the line is:

$$Q_{h} = Q_{1} + Q_{2} - Q_{C}$$

= $\frac{2U^{2}}{X}(1 - \cos \delta) - YU^{2}$

The natural load of the line

= power angle δ such that the reactive power consumed in X equals the reactive power produced in C

$$\Rightarrow \frac{2U^{2}}{X}(1-\cos \delta) = YU^{2}$$

$$\Rightarrow 2(1-\cos \delta) = XY$$
for small angles $\cos \delta \approx 1 - \frac{\delta^{2}}{2}$

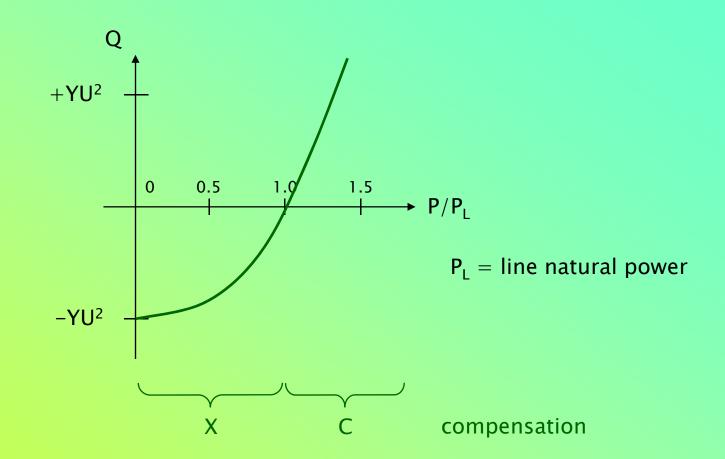
$$\Rightarrow \delta \approx \sqrt{XY}$$
Corresponding P: $P = \frac{U_{1}U_{2}}{X} \sin \delta$

$$P = \frac{U_{1}U_{2}}{X} \sin \delta \approx \frac{U^{2}}{X} \delta \quad (\sin \delta \approx \delta; \delta \text{ is small})$$

$$\Rightarrow P \approx \frac{U^{2}}{\sqrt{\frac{X}{Y}}} = \frac{U^{2}}{Z_{0}}$$

P is the natural load power of the line Z_0 is the surge impedance of the line

Reactive power balance versus load



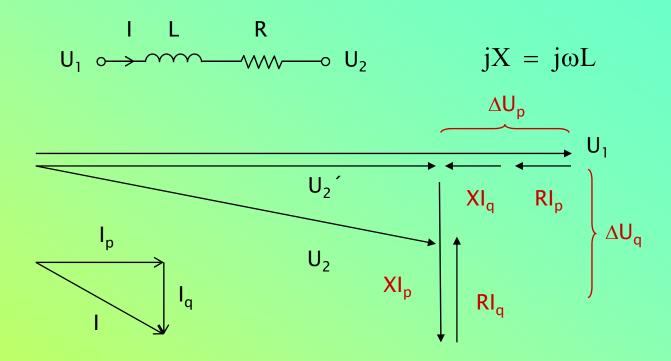
- for small load, the voltage in the line end tends to rise

- for large load, the voltage in the line end tends to fall

Natural power of some lines

Rated voltage kV	OH–line 3–ph (MW)	Cables 3-ph (MW)
10	0,26	2,6
20	1,0	10
45	5,4	54
110	32	320
110 (2 conductors)	43	
220	130	1300
380	390	
380 (2 conductors)	475	
380 (3 conductors)	540	

Voltage drop of a distribution line



Longitudinal component : $\Delta U_p = RI_p + XI_q$ Transverse component : $\Delta U_q = RI_q + XI_p$ For small small ΔU (< 10%)

it holds approximately :

 $|U1| - |U2| \approx \Delta U_p = RI_p + XI_q$

Distribution network and reactive power compensation

3 motivations:

- reduce losses
- increase load capacity
- reduce ∆U

Example, long distribution line :

 X
 R

 0
 -----000

 0,3 Ω/km
 0,3 Ω/km

$$\underline{Z} = 12 + j12 \ \Omega$$

$$U = 20 \ kV$$

$$I = 50 \ A$$

$$\cos \varphi = 0.9$$

$$\Rightarrow I_{p} = 45 \ A ; I_{q} = 21.8 A$$

Compensation capacitor (shunt):

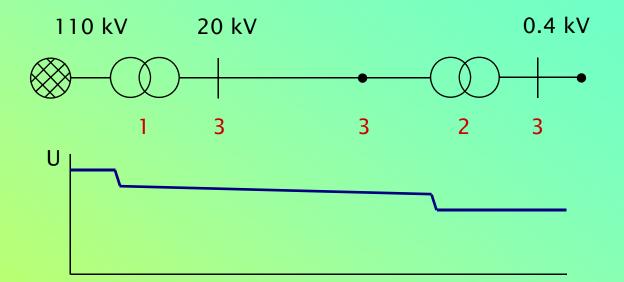
$$Q_c = 600 \text{ kVAr}$$

 $\Rightarrow I_c = \frac{Q}{\sqrt{3} U} = 17,32 \text{ A}$

Distribution network and reactive power compensation

No compensation	With shunt capacitor	
I _p 45 A I _q 21,8 A I 50 A	I _p 45 A I _q 21,8 A – 17,3 A = 4,48 A I 45,22 A	
Losses : $P_h = 3RI^2$		
$P_L = 90 \text{ kW}$	$P_{L} = 73,6 \text{ kW}$	
Load current :		
50 A	45,22 A (-10%)	
Voltage drop : $\Delta U \approx RI_p + XI_q$		
∆U = 12 · 45 + 12 · 21,8 V = 801,6 V <u>^</u> 6,94 %	∆U = 12 · 45 + 12 · 4,48 V = 593,8 V <u>^</u> 5,14 %	

Distribution network and voltage control



Voltage control:

- 1. On-load tap-changer Eg. 110 ± 9 · 1,67 % / 21 kV
- 2. Off-load tap-changer Eg. 20 ± 2 · 2,5 % / 0,4 kV
- **3.** Compensation (capacitor)

 $\Delta U_{p} = RI_{p} + XI_{q}$

reduces the reactive current and thus voltage drop

