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User authentication

▪ Verifying user identity

▪ Needed for access control and auditing

access control = authentication + authorization

▪ User authentication is based on credentials

– Password, key, smart card etc.

Something you know,
something you have, or
something you are
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Username and password

▪ Password and PIN code are the most common types of 
authentication credentials

▪ Password is a shared secret between the user and computer 
system

– Limitations arise from the reliance on human memory and input 
methods, and from the lack of cryptographic computing capability in 
humans

▪ What attacks are there against passwords?
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PASSWORD STORAGE ON SERVER
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Storing passwords on server

▪ Assume that your password database is public!

– Unix /etc/passwd is traditionally world readable

– Attackers often read server files or database tables 
e.g. with SQL injection 

▪ How to store in a public database? 
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Storing passwords on server

– Store a one-way hash 
value of the password

– When user enters a 
password, compute its 
hash and compare

– Use a slow hash function,
e.g. PBKDF2, Argon2 

– Include salt: a user-
specific random string. 
not secret
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Storing passwords on server

▪ How to store passwords in a public database?
Database record:

username, salt, slowhash( password | salt)

– Store a cryptographic hash i.e. one-way hash value of the password

– When user enters a password, compute its hash and compare

– Use a slow hash function to make brute-force cracking slower

– Include salt: user-specific random string, not secret
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One-way function

▪ Cryptographic hash functions have the one-way property: 
Easy to compute the hash h(M) for a given message M, but 
difficult to compute M given h(M)

– Attacker can only guess M and compare the hashes

▪ Examples: SHA-256, SHA-3 (old ones: SHA-1, MD5)
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Slow hash function

▪ Standards hash functions are unnecessarily fast!

▪ Iterative hash: 

– hash(pw|hash(pw|salt)) takes twice as long as hash(pw|salt)

– Iterate N times (N > 100 000) for desired delay

▪ Why? Not a significant cost when verifying user login, but 
increases a brute-force attacker’s work by factor N

▪ Slow functions designed specifically for password hashing: 
PBKDF2, Argon2
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Salt in password hash

▪ Why salt? 

username, salt, slow_hash( password | salt)

▪ Salt prevents

– Simultaneous brute-force cracking of many passwords

– Pre-computation attacks including rainbow tables

– Equality comparison between passwords
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PBKDF2
▪ PBKDF2 (P, S, c, dkLen)

P = password
S = salt
c = iteration count
dkLen = length of the result
PRF = keyed pseudorandom function 

i.e.  keyed hash function

F (P, S, c, i) = U1 xor U2 xor ... xor Uc

U1 = PRF (P, S || i)  
U2 = PRF (P, U1)
... 
Uc = PRF (P, Uc-1) 
Repeat for i=1,2,3... until dkLen output bytes produced

13

Standard function for 
slow hashing of 
passwords

Many iterations to make 
the computation slower

Used in WPA2-Personal 
for deriving keys from 
Wi-Fi passphrase 
(makes offline cracking 
more difficult)

https://tools.ietf.org/ht
ml/rfc2898

Extra 
material

https://tools.ietf.org/html/rfc2898


Password hashing details
▪ Password-based key derivation function PBKDF2 [PKCS#5,RFC2898]*

– Good practical function; uses any standard hash function, at least 64-bit salt, any number of iterations

▪ Argon2 uses a configurable amount of memory and data-dependent memory access patterns 
– harder to crack with GPUs and vector processors

▪ Unix crypt(3) [Morris and Thompson 1978]*
– Historical function for hashing passwords stored in /etc/passwd

aura:lW90gEpaf4wuk:19057:100:Tuomas Aura:/home/aura:/bin/zsh

– Password = eight 7-bit characters = 56-bit DES key (too short, can be brute-forced)
– Encrypt a zero block 25 times with modified DES
– 12-bit salt used to modify DES key schedule (rainbow tables work because the salt is too short)
– Stored value includes the salt and encryption result
– Too short salt enables e.g. rainbow table attacks

▪ Shadow passwords: crypt(3) is replaced by more modern hash functions and the file /etc/shadow is 
read-protected
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Extra 
material

http://www.rsa.com/rsalabs/node.asp?id=2127
http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps


PASSWORD GUESSING ATTACKS
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Offline cracking

▪ Attacker obtains the password hashes or other data for 
verifying password guesses, then starts guessing

▪ Brute-force attacks vs. intelligent dictionary attacks

– Most password crackers combine both strategies

▪ Attacker has great advantages:

– Unlimited number of guesses

– Can rent elastic computing capacity for quick results

▪ To resist cracking, passwords must have cryptographic 
strength (~128 bits of entropy)
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Easy to crack some 
passwords; hard to 
crack them all. Why?



Online trials – much harder

▪ Online trials: attacker tries to login many times
– Try PIN codes on a phone or cash machine

– Guess passwords for a web site

– Port scan ssh servers and guess root password

▪ System can limit the number or rate of login attempts
– Possible in online services, smartcards, phone, Microsoft account

– Huge improvement in security:   success probability  
≈ number of allowed guesses / number of possible passwords

– Denial of service (DoS) is a danger, e.g. bricking a phone; use delay 
rather than a fixed limit on the number of trials when possible
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Cost of offline password cracking

▪ Time to crack a random 10-character (printable ASCII) 
password from its SHA-256 hash?

– High-end multi-core CPU on a PC computes up to 500 MH/s

– High-end graphics card computes up to 7 GH/s, same cost

– Bitcoin miner computes 15 TH/s

▪ Always measure cracking cost in money, not in time, because 
brute-force cracking parallelizes easily and computing capacity 
can be rented on demand

– One CPU or GPU day ≈ $1   (cloud CPUs may be cheaper)
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Cost of password cracking - continued
▪ How long does it take / how much does it cost to crack a random 10-character password 

(printable 8-bit ASCII) from its SHA-256 hash?
▪ 9510 = 265.7 = 6.0∙1019 possible passwords. Thus, brute-force cracking takes at most this many 

trials (50% on average)
▪ High-end CPU on a PC computes up to 0.5 GH/s (SHA-256)

– Thus, cracking the password takes 6.0∙1019 / 0.5∙109 = 1.2∙1011 CPU seconds = 1.3M CPU days
– One CPU day on PC ≈ $1; Thus, cost of cracking the password is about $1.3M

▪ High-end gaming graphics card computes up to 7 GH/s and costs about the same as PC
– Thus, cracking the password takes about 90000 GPU days and costs about $90000  

▪ Bitcoin mining rig can compute 15 TH/s (but supports only a specific hash function)
– Thus, cracking the password takes 6.0∙1019 / 15∙1012 = 4.0M seconds = 46 days
– Rig rental online costs $1.50 per day = $69 per password

▪ Time can be shortened by parallelizing; cost remains the same!
▪ What is the effect of 1000 hash iterations? Changing password length to 8 or 20 characters?

http://hashcat.net/oclhashcat/
https://www.miningrigrentals.com/rigs/sha256
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Cost data 
updated 2020

http://hashcat.net/oclhashcat/
https://www.miningrigrentals.com/rigs/sha256


Calculations with powers of 2 and 10

▪ Converting between bases 2 and 10:
kilo k = 210 ≈ 103

mega M = 220 ≈ 106

giga G = 230 ≈ 109

tera T = 240 ≈ 1012

▪ Conversion examples: 
300M ≈ 300 ∙ 106 (< 256 ∙ 220 = 228,  > 128 ∙ 220 = 227)
234 = 24 ∙ 230 = 16G ≈ 16 ∙ 109

▪ Approximate mental arithmetic example:
– Number of passwords: 958 ≈ 100 8  = 1016

– Hashing speed: 100 MH/s = 108 hash/s
– Cracking time: 1016 / 108 = 108 CPU seconds 

= 108 / (24∙60∙60) = 108 / 86400 = 108 ≈ 108 / 105 = 1000 CPU days
– The exact results with a calculator is 770 CPU days, so we got close

▪ Convert to base 2 or 10, depending on which is easier
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Mental arithmetic for 
every computer scientist!

Upper and lower bound

Warning! Potentially big error
when approximating the base
in exponentiation



ENTROPY AND PASSWORD STRENGTH
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Measuring password strength

▪ Many possible metrics:

– Number of possible passwords

– Entropy = amount of missing information

– Average/median cost to crack a specific password / any one password

– Success probability / number of cracked passwords as function of cost

▪ Metrics are useful for system designers and setting policies

▪ Measuring strength of user-chosen passwords is impossible
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Password entropy
▪ Entropy = the amount of missing information

Entropy H =  - ∑ x ∈ passwords (P(x) ⋅ log2 P(x))

≤  log2(number of possible passwords)

▪ With even probability distribution:
H = log2(number of possible passwords)

– Example: random 8-character alphanumeric passwords:
H = log2(628) = 8 ⋅ log2(62) = 47.6 bits

▪ One-bit increase in entropy approximately halves the success 
probability or doubles the cost of guessing attacks (exactly so with 
even probability distribution)
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Sufficient PIN and password entropy
▪ What is sufficient entropy to resist online guessing?

1. Determine the maximum number of guesses, e.g. K = 3
2. Decide acceptable success probability, e.g. P = 10-6

3. Required entropy H = log2(K/P)   = 21.5 bits 

▪ What is sufficient entropy to resist offline cracking?
1. Estimate maximum hash rate, e.g. Bitcoin network R = 1.2∙1020 H/s (SHA-

256) in 2020
2. Decide how long the attack could take, e.g. T = 1 year = 31.5∙106 s
3. Decide acceptable success probability, e.g. P = 10-6 

4. Required entropy H = log2(R∙T/P) = 66.7+24.9+20 bits = 111.6 bits
➔ Human effort can crack 92-bit passwords and threaten 112-bit ones. 

– Traditionally, 128 bits has been considered 
cryptographically strong. 
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Human-chosen passwords

25https://xkcd.com/936/

https://xkcd.com/936/


PIN entropy examples

▪ PIN entropy examples:
– Random 4-digit PIN:  H = - ∑ 1…10000(1/10000⋅log2(1/10000)) = log2(10000) = 13.3 bits

– PIN with a date (format DDMM): H = log2(365) = 8.5 bits

– Assume only 30% of users replace the random PIN with a date:

Pdate = 30%⋅1/365 + 70%⋅1/10000 = 0.00089,   Pother = 70%⋅1/10000 = 0.00007

H = - 365⋅Pdate ⋅log2(Pdate) - (10000-365) ⋅Pother⋅log2(Pother) = 12.6 bits

▪ Password entropy examples:

– Random 18-character (printable ASCII) passwords: H = log2(9510) = 119.3 bits  - Resist offline cracking!

– Random 10-character (printable ASCII) passwords: H = log2(9510) = 65.7 bits

– Random 22-character alphanumeric passwords: H = log2(628) = 125.0 bits    - Resist offline cracking!

– Random 8-character alphanumeric passwords: H = log2(628) = 47.6 bits

– Random 8 lower-case characters: H = log2(268) = 37.6 bits

– Random 6 lower-case characters + two digits (e.g. okwrsn91): H = log2(266⋅102) = 34.8 bits

– Random 6-character English word + two digits  (e.g. banana28): H = log2(15222⋅102) = 20.5 bits
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Note: Entropy is not a perfect metric for password strength, but 
it is such a fundamental concept in security - and computer-
science in general - that you should have a feel of it. 
(Please point out any errors in the examples.)



Password entropy examples
▪ Random 8-character (printable ASCII) passwords: H = log2(958) = 52.6 bits
▪ Random 8-character passwords with exactly two upper case, two lower case, two digits, two 

special characters:
– 26 capitals, 26 non-capitals, 10 digits, 33 other
– Orderings 8!/(2!⋅2!⋅2!⋅2!) = 2520
– Different passwords: 262⋅262⋅102⋅332⋅2520
– H = log2(262⋅262⋅102⋅332⋅2520) = 46.8 bits

▪ Random 8-character alphanumeric password with at least one upper case and at least one digit:
– All 8-character alphanumeric passwords: 628

– Those with no upper case: (62-26)8 = 368

– Those with no digit: (62-10)8 = 528

– Those with with no upper case and no digit: (62-26-10)8 = 268

– Allowed passwords: 628 – (368 + 528) + 268 (inclusion exclusion principle)  
– H = log2(628 – (368 + 528) + 268) = 47.2 bits

▪ Random alphanumeric passwords with one special character:
– 7-character alphanumeric passwords: 627

– 33 special characters to choose from, 8 possible locations to insert it
▪ H = log2(627 ⋅ 33  ⋅ 8) = 49.7 bits

▪ So what? The rules have different effect on user-chosen and random passwords
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Password entropy and humans

▪ Human-selected passwords have less entropy than random 
ones because some are chosen more often than others

▪ Should banks allow the customer to choose the PIN?

▪ Do password quality guidelines and checks increase entropy?

▪ Passwords rely on human memory → password entropy 
cannot grow over time→ human memory cannot compete 
with brute-force cracking by computers
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Human-chosen 4-digit PINs
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Bonneau, Joseph: 
Guessing Human-
Chosen Secrets, PhD 
Thesis, University of 
Cambridge, 2012.

http://www.jbonneau.com/doc/jcb82-thesis.pdf


NIST Password Guidelines
▪ NIST Special Publication 800-63 Digital Identity Guidelines: 

B: Authentication and Lifecycle Management (June 2017)
– “Verifiers SHALL require subscriber-chosen memorized secrets to be at least 8 characters 

in length. Verifiers SHOULD permit subscriber-chosen memorized secrets at least 64 
characters in length.”

– “When processing requests to establish and change memorized secrets, verifiers SHALL 
compare the prospective secrets against a list that contains values known to be 
commonly-used, expected, or compromised.”

– “Verifiers SHOULD NOT impose other composition rules (e.g., requiring mixtures of 
different character types or prohibiting consecutively repeated characters) for 
memorized secrets.”

– “Verifiers SHOULD NOT require memorized secrets to be changed arbitrarily (e.g., 
periodically). However, verifiers SHALL force a change if there is evidence of compromise 
of the authenticator.”

– “In order to assist the claimant in successfully entering a memorized secret, the verifier 
SHOULD offer an option to display the secret — rather than a series of dots or asterisks 
— until it is entered.”
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https://pages.nist.gov/800-63-3/sp800-63b.html

Extra 
material

https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html


OTHER PASSWORD SECURITY ISSUES
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Sniffing and key loggers

▪ Password sniffing on the local network is prevented by 
cryptographic authentication (SSH, HTTPS, MS-CHAPv2,…)

▪ Key logger: software or hardware that stores all keystrokes 
typed on the computer

– Problem in public-access computers 

– Malware can sniff passwords on any infected computer
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http://upload.wikimedia.org/wikipedia/commons/1/11/Keylogger-hardware-PS2.jpg


Shoulder surfing

▪ Keyboards and screens are highly visible 
→ Others may see what you are typing

▪ Password and PIN inputs are usually masked

– Does masking always make sense? 
Increasingly, option to show the characters if in a safe place

▪ Remember also hidden 
cameras and telephoto lenses
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Spoofing and phishing attacks

▪ For console login, attacker tries to spoof the login dialog; how do you 
know when it is safe to type in the password?

▪ For web login, attacker tries to spoof the login page for a web site

▪ For mobile apps, one app tries to  spoof the login interface of another 
(e.g. online bank)
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Trusted path

▪ What if attacker spoofs the login dialog?

▪ Trusted path is any mechanism that ensures direct and secure 
communication between user and a trusted part of the system 

– Crtl+Alt+Del in Windows (secure attention key / sequence)

– Reset button in all kinds of devices

– Web browser address bar

▪ With malware, virtualization and full-screen apps, it is 
increasingly hard to know what is real
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Password reuse

▪ Same or related passwords on multiple accounts 
→ compromise of one system or account leads to compromise 
of the user’s other accounts

Solutions:

▪ Password manager that stores and generates random 
passwords 

▪ Single sign-on (SSO)
– Shibboleth SSO to university web pages

– Microsoft AD, IBM Tivoli Access Manager, etc.

– Facebook, Google, etc. login on many websites
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User solution

Organization 
solution



Password recovery
▪ Humans are prone to forget things → need a process for recovering from 

password loss

Failure-recovery often enables new attacks! 
This applies to security mechanisms in general

▪ Some password recovery methods:
– Physical visit to helpdesk
– Security question or memorable secret, e.g. mother’s maiden name, birthdate
– Email or text message with authorization code or link
– Paper notebook, sticky note under the keyboard
– USB memory stick with a password recovery file
– Print recovery code as QR code

38

What are the 
advantages and 
disadvantages?



Other threats
▪ No system is perfectly secure: system designers have a specific 

threat model in mind, but the attacker can break these rules

“The attacker does not agree with the threat model.” 
(Bruce Christianson)

▪ Some other attacks against PINs 
and passwords:
– Phishing emails and social engineering
– User mistakes: using the password on wrong site
– Side channels: heat camera, acoustic emanations
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BETTER USER AUTHENTICATION?
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One-time passwords

▪ Use each password only once. Protects against password sniffers 
and key loggers
– Random one-time passwords

– Lamport hash chain

– Unix S/KEY or OTP
1: HOLM BONG VARY TIP JUT ROSY  

2: LAIR MEMO BERG DARN ROWE RIG 

3: FLEA BOP HAUL CLAD DARK ITS  

4: MITT HUM FADE CREW SLOG HAST 

– Many commercial products such as RSA SecurID 

– Code apps and devices for Finnish banks

▪ Which attacks do one-time passwords prevent and which not?
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One-time password implementation
▪ One-time passwords can be random strings, but most practical implementations use 

pseudorandom values and cryptographic (one-way) hash functions
▪ Hash-based one-time passwords HOTP [RFC4226], OPTW

HOTP(K,i) = HMAC-SHA-1(K,i) mod 10D

– Produces one-time PIN codes of D decimal digits from master secret K and counter i
– Server and user’s authentication device only remember K and i

▪ Time-based one-time passwords: instead of counter, use the current time
– Many commercial products such as RSA SecurID

▪ Lamport hash chain:
H1 = hash(secret seed);  Hi+1= hash(Hi)

– Convenient storage: server stores initially H100 and asks user to enter H99. Next, it stores H99 and 
ask for H98, and so on

– Unix S/KEY [RFC1760] and OTP [RFC1938]
1: HOLM BONG VARY TIP JUT ROSY  
2: LAIR MEMO BERG DARN ROWE RIG 
3: FLEA BOP HAUL CLAD DARK ITS  
4: MITT HUM FADE CREW SLOG HAST 

– Usability problem: hashes are long random numbers
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Weak and low-entropy credentials

▪ PIN, graphical passwords, face recognition, fingerprints have 
recently replaced strong passwords. Why would that be ok?

▪ Only for physical access to device, not for remote access to the 
device or to related online services

▪ For access to online services, physical possession of the user 
device is considered one authentication factor, PIN the other

▪ Main threat now is lost and stolen mobile devices
– Attacker does not know the user

– Hardware feature to lock the device after a few trials
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Online accounts

▪ User authentication delegated to online server
– Device cryptographically locked, and server releases keys after 

successful authentication 

– Online server can limit the number of password guesses and 
implement risk-based additional authentication, e.g. 2FA

– Device must not store the password database and must be online

▪ But are the password hashes cached locally?
– e.g. Windows login with Microsoft account caches authentication 

information locally, unless disables by domain administator

▪ Authentication delegated to a secure hardware module can
have similar benefits
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Password manager

▪ Password manager for web service passwords

– Generates long, random, services-specific passwords

– Protects them all with a single master password

▪ e.g. LastPass, Dashlane, F-Secure Key

– Can also synchronize the database between the user’s devices

→ Solves the issues with human memory, weak passwords, and 
password reuse

→ Creates a new single point of failure
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PHYSICAL AUTHENTICATION TOKENS, 
TWO-FACTOR AUTHENTICATION
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Physical security tokens

▪ Smart card is a typical physical security token

– Stores cryptographic keys to prove its identity

– Tamperproof: secret keys will stay inside

▪ Used for door keys, computer 
login, bank cards

▪ Other security tokens: 
smart button, USB dongle, 
trusted chip in mobile phone
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Two-factor authentication (2FA)

▪ Two-factor authentication = 
require both a physical token and a PIN or password 

– Attacker needs to both steal the physical device and learn the PIN 
→ clear qualitative increase in security

▪ Context-aware or risk-based authentication:

– Require additional authentication only when the user is suspicious or 
requested action requires stronger security

– Online services can do this intelligently to avoid annoying the user
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Issues with physical tokens

▪ Physical tokens require distribution

▪ Computers (or doors etc.) must have readers

▪ It is not easy to integrate cryptographic tokens to all systems

– Application with cached credentials on the client or on a proxy server

– Systems that need to start automatically after unexpected reboot

▪ Process needed for recovering from the loss of tokens

▪ Are the two factors really independent?

– smart card + PIN

– fingerprint swipe and bank code app on your phone

49



Authentication with mobile phone

▪ Two-channel authentication used by major online services:

– Confirmation via telephone: callback, SMS

– Confirmation via dedicated mobile app

– Sending a second secret to a known address: SMS, email, post

– Alerting user to potentially malicious events 

▪ Secure element in mobile phones can be used as a login token

– The SIM is a smart card and could also act as the authentication 
token
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SUMMARY
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User authentication summary
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Credential lifecycle
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List of key concepts
▪ Entity authentication, user authentication, login, logout, session
▪ Credential, shared secret, username, password
▪ Issuing or enrollment, out-of-band channel
▪ Sniffing, spoofing, malware, trusted path
▪ Failure recovery 
▪ Brute-force cracking, dictionary attacks, online vs. offline attacks, entropy, 

probability, security metrics
▪ Cryptographic hash function, one-way function, salt, PBKDF2, Argon2, one-

time password, Lamport hash chain
▪ Smart card, two-factor authentication, second channel, context-aware or 

risk-based authentication
▪ Account and credential provisioning, revocation
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Reading material

▪ Dieter Gollmann: Computer Security, 2nd ed., chapter 3; 3rd 
ed. chapter 4

▪ Matt Bishop: Introduction to computer security, chapter 11

▪ Ross Anderson: Security Engineering, 2nd ed., chapters 2, 15

▪ Stallings, Brown: Computer Security: Principles and Practice, 
3rd/4th ed., chapter 3

▪ Bonneau, Joseph: Guessing Human-Chosen Secrets, PhD 
Thesis, University of Cambridge, 2012.
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Exercises
▪ Why do you need both the username and password? Would not just one secret identifier (password) be 

sufficient for logging in?
▪ What effect do strict guidelines for password format (e.g. 8 characters, at least 2 capitals, at least 2 digits, at 

least 1 special symbol) have on the password entropy? 
▪ What is the probability of guessing the code for a phone that allows 3 attempts to guess a 4-digit PIN code, then 

10 attempts to guess an 8-digit PUK code?
▪ In what respects is PBKDF2 better for password hashing than the old crypt(3)? How does Argon2 improve on 

PBKDF2?
▪ How many hash values can a brute-force attacker test in a second with the latest GPUs? Check also the Bitcoin 

mining speeds on GPUs. 
▪ How do mandatory periodic password changes increase security? What is the optimal interval for password 

expiry?
▪ How to limit the number of login attempts without creating a DoS vulnerability? Consider both an online service 

and a device like phone.
▪ Learn about graphical passwords and compare their entropy to passwords and PIN codes of various lengths.
▪ Learn about HTTP Digest Authentication [RFC2617] and MS-Chap-V2 [RFC2759]. Explain how to perform an 

offline password guessing attack after sniffing a login. 
▪ Which attacks do one-time passwords / password managers / physical tokens / 2FA prevent, and which do they 

not? 
▪ Could authentication be based on who you know (or who knows you), or where you are? 
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