
Software security

Tuomas Aura
CS-C3130 Information security

Aalto University, 2021 course

2

Outline

▪ Untrusted input

▪ SQL injection

▪ Buffer overrun

▪ Web vulnerabilities: CSRF, XSS

▪ Input validation
There is no one simple solution
that would make programs secure.
→ A competent programmer must
learn about all the things that can
go wrong. This lecture is only a
starting point.

There is no one simple solution
that would make programs secure.
→ A competent programmer must
learn about all the things that can
go wrong. This lecture is only a
starting point.

3

Untrusted input

▪ User and network input is untrusted

▪ Does my software get input from the Internet?

– Documents, streams, messages, photos may all be untrusted

– All modern applications are Internet clients or servers

– Intranet hosts, backend databases, office appliances etc. are directly
or indirectly exposed to input from the Internet

→ All software must be able to handle malformed
and malicious input safely

4

Example: format string vulnerability

▪ Vulnerable C code:
int process_text(const char *input){

char buffer[1000];

snprintf(buffer, 1000, input);

...

}

▪ User input in the format string:

– Input "%x%x%x%x%x…" will print data from the memory

– Input "%s%s%s%s%s…" will probably crash the program

– Input "ABC%n" will write value 3 to somewhere in the memory

SQL INJECTION

5

SQL injection example
▪ SQL query:

SELECT * FROM users WHERE username = 'Alice';

▪ Code with embedded SQL:

"SELECT * FROM users WHERE username = '" + input + "';"

▪ Attacker sends input:

input = "Bob'; DROP TABLE users; --"

▪ The query evaluated by the SQL database:

SELECT * FROM users WHERE username = 'Bob';

DROP TABLE users; --';

6

7

SQL injection example 2
▪ Application greets the user by first name:

"SELECT firstname FROM users WHERE username = '" + input + "';"

▪ Attacker enters username:

input = "nobody' UNION SELECT password FROM users WHERE username
= 'alice'; --"

▪ The query evaluated by the SQL database:

SELECT firstname FROM users WHERE username = 'nobody' UNION
SELECT password FROM users WHERE username = 'alice'; --';

▪ This is why we should always assume that the attacker can read
the password database

Mitigating SQL injection

▪ Minimum privilege: set tables as read-only; run different
services as different users

▪ Sanitize input: allow only the necessary characters and string
formats – but it is hard to do correctly!

▪ Escape input strings with safe library functions, e.g.

– mysql_real_escape_string() in PHP

– MySQLdb.escape_string(), MySQLdb.execute(),
sqlalchemy.text() in Python

8

Mitigating SQL injection

▪ Prepared statements and stored procedures:
precompiled SQL queries that can be executed many
times with different parameter values

▪ Disable SQL error messages to normal users
→ harder to build exploits

9

Use
these!
Use
these!

Do not make this mistake

▪ Jonne heard prepared statements are good for security:

$stmt = $conn->prepare("SELECT * FROM users WHERE username

= '" + input + "';");

$stmt->execute();

▪ Why is this wrong?

10

Swedish parliamentary election 2010

11

Some hand-written votes scanned by machine:

http://www.val.se/val/val2010/handskrivna/handskrivna.skv

http://www.val.se/val/val2010/handskrivna/handskrivna.skv

List of UK Registered Companies

12

https://web.archive.org/web/20171107023155/https://beta.
companieshouse.gov.uk/company/10542519

https://web.archive.org/web/20171107023155/https:/beta.companieshouse.gov.uk/company/10542519

13

XKCD: Exploits of a Mom

https://xkcd.com/327/

https://xkcd.com/327/

BUFFER OVERRUN

14

Used to be the number
one software security
problem. Still common in
embedded devices and
the Internet of Things.

Used to be the number
one software security
problem. Still common in
embedded devices and
the Internet of Things.

Buffer overrun

▪ Bug: failure to check for array boundary

#define MAXLEN 1000

char *process_input (char *input) {

char buffer[MAXLEN];

int i;

for (i = 0; input[i] != 0; i++) {

buffer[i] = input[i];

...

}

Loops until a null character found;
should check also for i < MAXLEN

Process virtual address space

Command-line arguments,
environment variables

Stack

unused

Heap

Initialized data

Text (program code)

Highest address
0xffffffff

Stack frames (activation
records) of called functions
incl. local variables
– grows down

Lowest address
0x00000000

Dynamically allocated
memory – grows up

Call stack

Command-line arguments,
environment variables

Stack

unused

Heap

Initialized data

Text (program code)

Function arguments

Previous frame pointer

Return address

Local variables

anything

Stack
pointer
(SP)

Details depend on
processor architecture
and programming
language

Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Stack
frame of
main()

Stack
frame of
f1()

Stack
frame of
f2()

(single-threaded program)

Stack smashing
▪ Why are buffer overruns

a security issue?

#define MAXLEN 1000

char *process_input (char *input) {

char buffer[MAXLEN];

int i;

for (i = 0; input[i] != 0; i++) {

buffer[i] = input[i];

...

}

Loops until a null character found;
should check also for i < MAXLEN

Call stack

Function arguments

Previous frame pointer

Return address

Local variables

anything

Function arguments

Previous frame pointer

Return address

Local variables

input

Previous frame pointer

Return address

buffer
i

Stack smashing
▪ Why are buffer overruns

a security issue?

#define MAXLEN 1000

char *process_input (char *input) {

char buffer[MAXLEN];

int i;

for (i = 0; input[i] != 0; i++) {

buffer[i] = input[i];

...

}

Too long input
overwrites variables
in the stack

Loops until a null character found;
should check also for i < MAXLEN

Call stack
Function arguments

Previous frame pointer

Return address

Local variables

anything

Function arguments

Previous frame pointer

Return address

Local variables

input

Previous frame pointer

Return address

buffer
i

Buffer overrunBuffer overrun

Malicious code execution
▪ Why are buffer overruns

a security issue?

#define MAXLEN 1000

char *process_input (char *input) {

char buffer[MAXLEN];

int i;

for (i = 0; input[i] != 0; i++) {

buffer[i] = input[i];

...

}

Loops until a null character found;
should check also for i < MAXLEN

Call stack

Function arguments

Previous frame pointer

Return address

Local variables

anything

Function arguments

Previous frame pointer

Return address

Local variables

input

Previous frame pointer

Return address

buffer
i

Buffer overrunBuffer overrun

Much too long input
overwrites the function
return address and
previous stack frames

Malicious code execution
▪ Why are buffer overruns

a security issue?

#define MAXLEN 1000

char *process_input (char *input) {

char buffer[MAXLEN];

int i;

for (i = 0; input[i] != 0; i++) {

buffer[i] = input[i];

...

}

Loops until a null character found;
should check also for i < MAXLEN

Call stack

Function arguments

Previous frame pointer

Return address

Local variables

anything

Function arguments

Previous frame pointer

Return address

Local variables

input

Previous frame pointer

Return address

buffer
i

Attack code

Attack code address

anything

When the function returns,
execution will jump to the new
return address, which points to
attack code → malicious code
execution with the process’s
permissions

Buffer overruns

▪ Buffer overruns may cause

– data modification → unstable program behavior

– access violation “segmentation fault” → process crashing

– malicious data modification

– code injection → attacker gains full control of the process

22

Running exploit code

▪ How attacker gains control:

– Stack overruns may overwrite function return address or exception
handler address

– Heap overruns may overwrite function pointer or virtual method
table

▪ How difficult is writing an exploit?

– Instructions and code widely available

– There are people and companies actively developing exploits

23

#define BUFLEN 4

void vulnerable(void) {

wchar_t buf[BUFLEN];

int val;

val = MultiByteToWideChar(

CP_ACP, 0, "1234567", -1, buf, sizeof(buf));

printf("%d\n", val);

}

Expected size of the
destination buffer in
wide characters , but
sizeof gives bytes

Another example

▪ Vulnerabilities can be difficult to spot

Should calculate target buffer size as
sizeof(buf)/sizeof(buf[0])

[Code Red vulnerability, example thanks to Ulfar Erlingsson]

Buffer overrun prevention

▪ Preventing buffer overruns:

– Type-safe languages (e.g. Java, C#)

– Programmer training, code reviews

– Avoiding unsafe and difficult-to-use libraries:
strcpy, gets, scanf, MultiByteToWideChar, etc.

– Fuzz testing

– Static code analysis, symbolic model checking: proving safety

▪ No reliable way to find all buffer overrun vulnerabilities
→ need to also mitigate consequences

25

Buffer overrun mitigation

▪ Stack canary

– Store an unguessable value on the top of the stack frame in function
prologue; check before returning

– GCC -fstack-protector-all, Visual Studio /GS

▪ Non-executable (NX) bit

– Set the stack and heap memory pages as non-executable

– Breaks some code, e.g. JIT compilation

– Often combined with memory layout randomization

26

Previous frame pointer

Return address

Local variables

anything

Return to libc

▪ NX prevents machine code
insertion to stack

▪ However, there is another attack:
return to libc, which uses existing
executable code in the memory

– e.g. standard library functions in libc

Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Extra
material

Previous frame pointer

Return address

Local variables

anything

Return to libc
Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Function 4 address

Values for fun 4 locals

Function 2 arguments

Previous frame pointer

Function 3 address

Values for fun 2 locals

Function 1 arguments

Previous frame pointer

Function 2 address

Values for fun 1 locals

anything

Previous frame pointer

Function 1 address

anything
Buffer
overrun

Library
functions
to be
executed
in order
1,2,3

▪ When function returns,
execution jumps to the return
address in stack

– Point the return addresses to
the beginnings of library (libc)
functions

– Set arguments as desired

▪ Typical exploit creates an
executable page, copies attack
code there, and runs it

Extra
material

Previous frame pointer

Return address

Local variables

anything

Return to libc

▪ Solution: combine NX with
memory layout randomization

– Load libc and other library code at a
random memory offset → attacker
does not know where to jump

▪ New solutions:
e.g. Windows control flow guard

Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Function arguments

Previous frame pointer

Return address

Local variables

Function 4 address

Values for fun 4 locals

Function 2 arguments

Previous frame pointer

Function 3 address

Values for fun 2 locals

Function 1 arguments

Previous frame pointer

Function 2 address

Values for fun 1 locals

anything

Previous frame pointer

Function 1 address

anything
Buffer
overrun

Library
functions
to be
executed
in order
1,2,3

Extra
material

Integer overflow

▪ Integers in programming
languages are not ideal
mathematical integers

▪ Integer overflow can cause
buffer overrun

30

nBytes = (nBits + 7) >> 3;

if (nBytes <= bufferSize)

copyBits(input, buffer, nBits);

Vulnerable code:

nBits = UINT_MAX

Attacker input:

nBytes = (UINT_MAX + 7) >> 3

→ 6 >> 3 → 0

nBytes <= bufferSize

→ (0 <= bufferSize) → 1

Evaluation

WEB VULNERABILITIES: CSRF, XSS

31

Cross-site request forgery (CSRF)

▪ Fictional example:
– Users on social.net stay logged in with a session cookie

– JavaScript on Bob’s web page bobs.org:

<script type="text/javascript">

frames['hidden'].window.location =

'http://social.net/AddFriend.php?name=Bob';

</script>

▪ Why possible? Interaction between web sites is usually
prevented by the same origin policy. However, web links and
HTTP GET and POST redirection to another site is allowed.

32

Preventing CSRF

▪ Server checks Referer (sic) field in HTTP requests

▪ CSRF token i.e. secret session identifier in all GET URLs or POST
payloads; attacker would need to guess it

33

Modern web application frameworks
prevent CSRF with good session
management (including CSRF token)

Modern web application frameworks
prevent CSRF with good session
management (including CSRF token)

CSRF example:
Direct Operator

Billing

34

Payment service
provider (PSP):

payment approval

Payment service
provider (PSP):

payment approval

Online shop:
checkout

Online shop:
checkout

Mobile phone’s
web browser

Mobile phone’s
web browser

Online shop:
order confirmation

Online shop:
order confirmation

Mobile operator’s
Mobile billing gateway

Mobile operator’s
Mobile billing gateway

3. Resolve
MSISDN

5. Billing
information

1.Redirect
to PSP

4. Redirect
back to shop

2. User clicks
“Approve”

• No user login to PSP needed!
Operator resolves customer
MSISDN and adds the purchase
to the phone bill

• Operator and PSP are trusted.

Extra
material

http://www.mobiilimaksuinfo.fi/

http://www.mobiilimaksuinfo.fi/

CSRF example:
Direct Operator

Billing

35

Payment service
provider (PSP):

payment approval

Payment service
provider (PSP):

payment approval

Online shop:
checkout

Online shop:
checkout

Mobile phone’s
web browser

Mobile phone’s
web browser

Online shop:
order confirmation

Online shop:
order confirmation

Mobile operator’s
Mobile billing gateway

Mobile operator’s
Mobile billing gateway

3. Resolve
MSISDN

5. Billing
information

1.Redirect
to PSP

4. Redirect
back to shop

2. User clicks
“Approve”

http://www.mobiilimaksuinfo.fi/

CSRF: shop forges the
approve click

Reason: no CSRF
cookie in approval

Extra
material

http://www.mobiilimaksuinfo.fi/

Cross-site scripting (XSS)

▪ User-posted content on web sites may contain malicious
JavaScript

▪ Fictional example:

– Social.net allows users to post comments. Bob’s comment:

<b onmouseover="$.get('

http://social.net/AddFriend.php?name=Bob’);">

Be my friend!

– Another user reads the blog and moves mouse over the text

▪ This is stored XSS: malicious script stored on the server

36

Reflected XSS
▪ PHP code on a web server:
<html><body><?php

print "Page not found: ". urldecode($_SERVER["REQUEST_URI"]);
?></body></html>

▪ Typical output: Page not found: /foo.html

▪ Bob tricks Alice to follow this URL-encoded link:

http://social.net/%3Cscript%3E%3D%22%24.get%28%27http%3A%2F%2Fsoci
al.net%2FAddFriend.php%3Fname%3DBob%E2%80%99%29%3B%3C%2Fscript%3E

▪ The error page on social.net will contain this:

Page not found: /<script>="$.get('http://social.net/AddFriend.php
?name=Bob’);</script>

▪ This is reflected XSS: malicious script sent via the server but not stored there

37

Preventing XSS on web servers
▪ Browsers try to detect XSS, but they are not perfect. A lot still depends on the web

application programmer

▪ Avoid embedding input into output; generate the output from scratch when
possible

▪ Filter <tags>, Javascript or all angled brackets from user-posted content
▪ When you need to embed untrusted data into a web page, encode it first as

HTML entities
▪ Do not embed untrusted data into <script>, <style>, URL, tag attributes or other

unusual places
▪ Content Security Policy (CSP) allows web servers to declare in response headers

what types of active content the response may contain, e.g. to exclude scripts
▪ Set HttpOnly flag on session cookies to prevent scripts from stealing them

38

39

What is untrusted input to web server?

▪ Inputs that may contain XSS or other malicious content:

– Input from web client or user, or REST API client

– Data read from database

– Messages between servers

▪ Should escape or validate all these inputs

INPUT VALIDATION

40

Example: File path vulnerability
Vulnerable code:

▪ Attacker sends input:

▪ The same file path has many representations →
use the realpath(3) function to obtain the canonical representation

▪ Online services should be executed in a sandbox to limit their
access: chroot(2), virtual machine or container

41

char docRoot[] = "/usr/www/";

char fileName[109];

strncpy(fileName, docRoot, 9);

strncpy(fileName+9, input, 100);

file = fopen(fileName, "r");

// Next, send file to client

input =

"../../etc/passwd"

User input:

42

Sanitizing input

▪ Sanitizing input is not easy

▪ Escape sequences enable many encodings for the same
character and string:

– URL escapes: %2e%2e%2f2e%2e%2f = ../../

– HTML entities:

<SCRIPT> =<SCRIPT>

▪ Not sufficient to filter out .. or <

SUMMARY

43

44

Why security failures?

▪ Why does software have security failures?
– Greedy business sells dangerous products?

– Lack of professional pride and ethics?

▪ Software is specified with use cases that describe the desired
functionality. Security is about undesired functionality

▪ Market forces and software development practices encourage
releasing a minimum viable product (MVP) – security not
included

▪ Threats and attacks evolve. Software security is never ready

45

Other types of security bugs

▪ Injection of untrusted input into the command line, JavaScript,
HTML, XML, format string, file path etc.

▪ Logical errors, e.g. time of check—time of use, use after free

▪ Integer overruns or signed/unsigned confusion

▪ Crypto mistakes, bad random numbers

▪ Insecure direct references

▪ Most software bugs first seem harmless but eventually
someone figures out how to build an exploit

How to produce secure code?

▪ Programming:
– Learn about bugs and vulnerabilities by example

– Adopt secure coding guidelines

– Use safe languages, libraries and tools

– Code reviews, static checkers

– Fuzz testing, penetration testing

▪ Software process:
– Threat modelling

– Define security requirements

– Define quality assurance process

46

Security principles
▪ Keep it simple
▪ Minimize attack surface
▪ Sanitize input and output
▪ Least privilege
▪ Defense in depth
▪ Isolation
▪ Secure defaults
▪ Secure failure modes
▪ Separation of duties
▪ No security through obscurity
▪ Fix even potential bugs

47

List of key concepts

▪ Untrusted input, input validation or sanitization

▪ Buffer overrun call stack, heap, stack frame, malicious code
execution, integer overrun, safe language, stack cookies, NX
bit, return to libc, memory layout randomization

▪ SQL injection, code injection, stored procedure or prepared
statement, escaping,

▪ Same-origin policy, cross-site request forgery CSRF, Referer,
CSRF token, cross-site scripting XSS

▪ Input validation, canonical form, isolation

▪ Fuzz testing, penetration testing

48

49

Reading material

▪ Dieter Gollmann: Computer Security, 2nd ed. chapter 14; 3rd ed.
Chapters 10, 18, 20.5–20.6

▪ Stallings and Brown: Computer security, principles and practice, 4th
ed., chapter 10-11

▪ Michael Howard and David LeBlanc, Writing Secure Code, 2nd ed.

▪ Online:
– Top 25 Most Dangerous Software Errors, http://cwe.mitre.org/top25/

– SQL Injection Attacks by Example, http://unixwiz.net/techtips/sql-injection.html

– OWASP, https://www.owasp.org/, see especially Top Ten

– CERT Secure Coding Standards,
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

– Aleph One, Smashing The Stack For Fun And Profit (classic paper)
http://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

http://cwe.mitre.org/top25/
http://unixwiz.net/techtips/sql-injection.html
https://www.owasp.org/
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
http://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

50

Exercises
▪ Find examples of actual security flaws in different categories. Try to understand

how they can or have been exploited.
▪ Which features in code may indicate poor quality and potential security

vulnerabilities?
▪ When you find a security vulnerability, it is worth the trouble to write an exploit

to prove how serious it is?
▪ How can error messages help an attacker?
▪ Buffer overrun in a type-safe language like Java will raise an exception. Problem

solved — or can there still be a security issue?
▪ What is insecure direct object reference? Find some examples.
▪ What security bugs can occur in concurrent systems, e.g. multiple web servers

that use one shared database?
▪ Find out what carefully designed string sanitization functions, such as

mysql_real_escape_string or the OWASP Enterprise Security API, actually do.

