ELEC-E8101 Digital and Optimal Control

Exercise 1

The problems marked with an asterisk (*) are not discussed during the exercise. The solutions are given in MyCourses, and these problems belong to the course material.
1.

Take the Z-transform of the following sequences by using the definition
$y(k)=1, k=0,1,2,3, \ldots$
$y(k)=e^{-a k}, a=$ constant and $k=0,1,2, \ldots$
2.
a. Let $f(k)=a^{k}, a$ constant. Show that $F(z)=\frac{z}{z-a}$.
b. In the Z-transform tables it is stated that $Z\left[e^{-k h / T}\right]=\frac{Z}{Z-e^{-h / T}}$. Is this the same as in part a. of the problem?
3.

Define the value of $y(k h)$, while $k \rightarrow \infty$ (use the final-value theorem).
$Y(z)=\frac{0,792 z^{2}}{(z-1)\left(z^{2}-0,416 z+0,208\right)}$

Verify your result by using Matlab.
4.

Take the inverse-transform of the following expression

$$
Y(z)=\frac{\left(1-e^{-a h}\right) z}{(z-1)\left(z-e^{-a h}\right)}, \quad a \text { constant. }
$$

*5.
Prove that the following holds

$$
\mathrm{Z}\left\{\frac{1}{2}(k h)^{2}\right\}=\frac{h^{2} z(z+1)}{2(z-1)^{3}}
$$

Hint: begin by transforming $Z\{k h\}$.
6.

By using the Z-transform solve for $y(k)$ from the following difference equation

$$
y(k+2)-1,5 y(k+1)+0,5 y(k)=u(k+1)
$$

where $u(k)$ is the unit step at $k=0, y(0)=0,5$ and $y(-1)=1$. Verify your solution.

Final-value theorem: If $\lim _{k \rightarrow \infty} y(k h)$ exists, then it holds

$$
\lim _{k \rightarrow \infty} y(k h)=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) Y(z),
$$

A sufficient (but not necessary) condition for the existence of $\lim _{k \rightarrow \infty} y(k h)$ is that $\left(1-z^{-1}\right) Y(z)$ has no poles on or outside the unit circle.

Theorems of Z-transformation

Definition: $F(z)=Z\{f(k h)\}=\sum_{k=0}^{\infty} f(k h) z^{-k}$	
z-transformation	Sequence in time domain
$F(z)$	$f(k)$
$C_{1} F_{2}(z)+C_{2} F_{2}(z)$	$C_{1} f_{2}(k)+C_{2} f_{2}(k)$
$z^{-n} F(z)$	$q^{-n} f(k)$
$q^{n} f(k)$	
$z^{n}\left(F(z)-\sum_{j=0}^{n-1} f(j h) z^{-j}\right)$	$\sum_{n=0}^{k} f_{1}(n) f_{2}(k-n)$
$F_{1}(z) F_{2}(z)$	
If the limits of $f(k h)$ and $F(z)$ exist, they satisfy	
$\lim _{k \rightarrow \infty}\{f(k h)\}=\lim _{z \rightarrow 1}\left\{\left(1-z^{-1}\right) F(z)\right\}$	$f(0)=\lim _{z \rightarrow \infty} F(z)$

Z-transformations and corresponding sequences

z-transformation	Sequence in time domain
1	$\delta(k)$
$\frac{z}{z-1}$	$1, k \geq 0$.
$\frac{h z}{(z-1)^{2}}$	$k h$
$\frac{h^{2} z(z+1)}{(z-1)^{3}}$	$(k h)^{2}$
$\frac{z}{z-e^{-h / T}}$	$e^{-k h / T}$
$\frac{z \sin (\omega h)}{z^{2}-2 z \cos (\omega h)+1}$	$\sin (\omega k h)$

