

"Understanding Product Specifications"

Saurabh Deo

Doctoral Researcher Design Factory Aalto University

Learning Outcomes

At the end of the session today you will be able to,

- Understand the concept of product specification
- Learn to develop your own product specification
- Understand limitations and challenges associated

Introduction

Product Specification

- Also, commonly knowns as Requirements and in some circles Engineering Characteristics
- Product Specifications and Requirements are synonyms, and they **spell out in measurable detail about what the product has to do**

For example: The maximum width of the wheelchair is 80 cm, Cooling capacity: The amount of cooling generated (in kW), The manufacturing cost is under $100 \in$

Connection With Need Identification

- You have a clear ideas about Must be Satisfied Need, Optional Needs in layman terms
- You have a prioritized set of customer needs
- Benchmarking

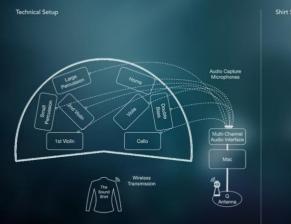
Importance

- Process of converting VAGUE/Nonspecific Statements into Engineering Aspects
- Imagine if a user wants the product small. Does it mean small in volume or weight or length or thickness ??

Digital Plant Pot

Journey from Point A to Point B

B


Vague ambiguous nature of the customer needs

- The shirt should feel good
- It should be comfortable to wear
- It should look good

A

- It should function
- Should not cause electrocution

Product Specification

- Product Information
- Business Benefits
- User Stories
- User Personas
- Product Designs
- Functional Specification

Procedure to Define Product Specification

Understand Customer Feedback

Benchmarking

Identify Must Have Specification

Define Metrics

Iterate and Improve

Case Study

"Fruit Juicer"

A Product Designer

Product Concept:

We are developing an automated fruit juicer– the kind where you can use squeeze the fruits to get the juice out.

Identified Customer Needs:

- The fruit juicer is **small** that it does not take space on the counter or when stored
- The fruit juicer **squeezes quietly** so that I do not wake up others in the morning
- The fruit juicer is **affordable**
- The fruit juicer can be **stored easily** so that it fits in the kitchen cupboard
- The fruit juicer is easy to keep clean

Customer need	Specification	Target value
The fruit juicer is small	The footprint of the fruit juicer shall be less than 30 cm^2	$< 30 \text{ cm}^2$
The fruit juicer squeezes quietly	The fruit juicer shall operate with noise level less than 70dB	<70dB
The fruit juicer is affordable	The fruit juicer unit material costs shall be $< 20 \in$.	<20€
The fruit juicer can be stored easily in the kitchen cupboard	The fruit juicer shall have a shape that is storable	Yes (binary)
The fruit juicer is easy to keep clean	The parts of the fruit juicer that come in contact with fruits can be washed in a dishwasher.	Yes (binary)

Initial Target Specification for the Coffee Grinder

A Few Samples of Product Specification Document

Product Specification Sheet

This one pager covers details regarding sample food product specification sheet in terms of product description, ingredients statement, nutritional information, regulatory claims, etc.

Product Description

Food product is made by flour, water, salt and yeast
All powders are mixed, and all liquids are added
Add text here

Ingredient Statement

Ingredient include, flour, wheat starch, salt, vegetable fat, chicory fibers, yeast Add text here

1	lutritional	Information	
Servings	500g	Size	XXX
Calories	204 kCal	Protein	XXX
Total Fat	12.18g	Vitamin A	XXX
Saturated Fat	3g	Vitamin C	XXX
Trans fat	9.18g	Vitamin D	XXX
Cholesterol	0mg	Calcium	XXX
Sodium	272mg	Iron	XXX
Carbohydrates	40g	Potassium	XXX
Dietary Sugar	2g		
Sugars	30g		

	Regulato	ory Claims	
Claim	Status	Size	
Soy Free		Gluten Free	
Peanut Free		Natural Flavors	
Dairy Free		Natural Colors	
GMO Free		Certified Organic	
Physical Sp	ecifications	Chemical Spe	ecifications
Viscosity	XXX	рH	5
Color	White	Fat Content	XXXX

12 weeks
Suggestive Storage
Refrigerated

Shelf Life

Allergens

Eggs, milk or mil derivatives, nuts

Packed under nitrogen atmospheres

Microbiologica	al Specification	
Yeast	<10 cfu/g	
Mold	<10 cfu/g	
Add text here	Add text here	
Version No.	Issue Date	
12345	2 Sep' 2020	

PRODUCT DESIGN SPECIFICATIONS					
Parameters	Unit	Datum	Target Range		
Drying Time	Days	6 - 9	2 - 4		
Throughput	Bricks/Minute	4	2		
Manufacturing Cost	USD	5	500		
Maximum Compressive Force of Device on Clay	lbs-f	N/A	9,600		
Number of Operators	People	1-2	1-2		
Weight of Device	lbs	2	200		
Percent Volume Compression	%	0	20-30		
Life of Assembly	Months	3	48		
Brick Composition	Туре	Natural Clay, Dirt, Sand Sawdust	Model: Earthenwa Clay, Sand Sawdu		
Target Market	Туре	N/A	Brick Makers in Third World Countries		
Minimum Human Force Input for Compression	lbs-f	N/A	75		
Power Source	Туре	Manual (By Hand/Feet)	Manual (Compour Lever Force Multiplication)		
Dimension of Brick	in (l,w,h)	12x5x2.5	12x5x2.5		
Reloading/Forming Time	Minutes	0.5	1		
Brick Density	lb/ft^3	50-60	70-75		
Compression/Forming Time	Minutes	N/A	5		

WORKING SPEC

- Installed System Life: 7 years (industry standard) (60k hours)
- Operating Temp Range: -40 to 65C (industry standard)
- Dimensions:
 - Overall height 27"
 - pole + ball: 18"
 - Main housing: cylinder
 - height: 9"
 - diameter: outside 5.5"
 - PCB Dimensions: TBD!
- Weight: TDB g
- Force/Strain gauge measurements, 12-bit, 3 axis.
 - Implied wind range: 2 to 200 mph (1.5 to 90 m/s)
 - Implied wind accuracy: 1 mph (0.5 m/s)
 - Implied rain range: 0.1 in/hour to 4 in/hour
 - Implied rain accuracy: 2% < 0.5 in/hour
 - Implied hail range: ½ inch diameter and higher
 - Implied hail accuracy: ¼ inch diameter
- Temperature measurement:
 - Range: operating temp range (-40 to 65C)
 - Accuracy: 0.3 C
 - o Aspirated temp. measurement required for industry standard accuracy
 - Direct sunlight causes significant temp offset.
 - Industry has tried to develop passive methods but aren't good enough
 - highly insulated thermocouple based solutions are used in very high end systems
 - Research option: measure sunlight w/ calibrated lux sensor and apply correct via thermal model
- Humidity
 - Range: 1 to 100% Relative Humidity
 - Accuracy: 1.8% Relative Humidity
- Sunlight sensor:
 - o detects ambient light through the case (not through a clear window)
 - Light range: TBD lux
 - Light accuracy: probably doesn't need to be that good. Needs to be better if we

- Indicators: TDB (brightness is probably important since these are up on poles and such)
- suci
- Power:
 - Receives IEC power cable, so 120VAC.
 - Power Rating: TBD W
 - Output voltages: TBD V
 - So far, need 3v3 and 5v0
- On-board GPS: (battle between Alex and Bryan)
 - Tradeoffs: cost vs getting:
 - good timebase (which you need, can also pull from cell network, annoying to propagate through star or mesh network)
 - location (very useful for operations)
- Battery Backup
 - Runtime: 1 day without power
 - Cell chemistry: rechargeable (TBD) (probably lead-acid or LiFE to hit operating life)
 - · Cell configuration: TBD
 - Battery Dimensions: TBD L x W x H
 - Battery Capacity: TBD mAh
 - Gas Gauge indication
- Locally logged data: (somewhat implied by battery backup --- failover for comm. outages)
 - Runtime: 4 years
 - Number of samples: 4 years @ every 5 seconds
 - Storage Capacity: 2 gb
 - · Round-Robin ok (new data clobbers oldest data when buffer is full)
- Field Strategy:
 - Not field serviceable
 - System _should_ be robust to be installed and last for operating life
 - RMA strategy is provide new unit and swap out bad units.
 - (this implies no power switch or reset button)
- Wireless Firmware Update?
 - linux makes this easy, hard otherwise

Summary

- Convert vague, ambiguous customer needs and requirements into engineering-specific measurable variables.
- Writing a product specification is an iterative process that varies with different industries, products, requirements and company's operating procedure

Thank You