
ELEC-E8107 Stochastics models,  

estimation and Control (5 p)

Applications of the state estimation:  Kalman filtering

• Tracking/ surveillance

• Control systems, power systems, failure detection

• Navigation and trajectory determination, robotics

– Probabilistic robotics

• Signal processing, image processing, communication, 

operations research, econometric systems

• Remote sensing, geophysical research, Biomedical 

systems

Duality of estimation and control, stochastic optimal control
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Course arrangements

• Lectures: Arto.Visala@aalto.fi on Tuesday 14:15-16:00

• Exercises and home assignments: Issouf.ouattara

@aalto.fi on Tuesdays 8:15-10:00

• Slides mainly from textbook of Bar-Shalom et al

• In autumn 2022, evaluation consists of Exam (100%)

• In exam you can get extra points corresponding one 

grade  by submitting in time valid  Home assignments 

given in connection of exercises. 

• It is possible to get the excellent grade without  Home 

assignments, but it is not easy.
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Field robotics; autonomous vehicles

Data from ATV platforms used is in 

examples
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ELEC-E8107 Stochastics models, estimation and control 

Lecture 1: Statistics and stochastics

• Gradient, Jacobian and Hessian; Eigenvalues, 
Eigenvectors, and Quadratic Forms

• Gaussian Random Variables; pdf, Mean and Covariance; 
Joint and Conditional Random Variables

• Fundamental Equations of Linear Estimation

• Stochastic processes; Correlation; White noise process

• Random Sequences, Markov Processes; Markov 
Sequences and Markov Chains
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Statistics and stochastics in Kalman 

filter

Optimal

fusion of 

Information from

Dynamic

Model

and

Measurements



Gradient, Jacobian, Hessian

Gradient operator of a scalar function

If Quadratic form

For a vector

function

Jacobian matrix
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Hessian

• Hessian of the scalar function
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Eigenvalues, Eigenvectors, and 

Quadratic Forms

A nxn matrix, eigenvectors and –values

Determinant

Trace

Quadratic form
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A positive (semi)definite quadratic form

The inequality of two matrices is defined as follows: 

the matrix A is smaller (not larger) than the matrix B if 

and only if the difference B − A is positive (semi) definite
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Gaussian pdf, random variable, mean 

and covariance

• Scalar Gaussian or 

Normal pdf

• Vector Gaussian pdf

• Mean or expected 

value

• Covariance P



Mean, average, first moment

The nth moment is

The second central moment or variance

Mean Square MS
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The Central Limit Theorem

If the sequence xi, i = 1,. . . , consists of independent random variables, 

then under some reasonably mild conditions the pdf of the sum 

will tend to a Gaussian pdf as n→∞.

The Law of Large Numbers

states loosely that the sum of a large number of random variables 

tends, under some fairly nonrestrictive conditions, to its expected 

value.
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Joint and Conditional Gaussian random variables,

Conditional pdf of x given z.

New zero mean random variables, the exponent q of Gaussian conditional 

pdf becomes
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continues, matrix 

inversion lemma is 

utilized; trick TT-1=I

completion of the squares in exponent of 

the conditional Gaussian pdf

Fundamental equations of linear estimation
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Estimation of Gaussian random vectors

x and z jointly Gaussian z is the measurement x random variable to be 

estimated

Next slide set: The MMSE Minimum Mean Square Error –estimator
is the conditional mean of x given z, for linear Gaussian case, 

also Maximum a Posteriori MAP -estimator
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Fundamental equations of linear 

estimation - Interpretations
• A priori estimate is updated/corrected on the basis of measurement

information in calculation of a posteriori estimate

• Correction gain depends directly on Pxz the crosscovariance between x and 

measurement z. Pxz must be unzero in order measurements contain

information in general about the state x.

• Correction effect depends inversely proportional on Pzz . The better

measurements, the ’smaller’ covariance, the bigger the correction gain.



Random process, stochastic process

A scalar random variable is a (real) number x determined by the 

outcome ω of a random experiment

A (scalar) random process or a stochastic process is a function of 

time determined by the outcome of a random experiment 

This is a family or ensemble of functions of time, in general different for 

each outcome ω

mean or ensemble average
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its autocorrelation

autocovariance of this random process

Stationarity process

The power spectrum or power spectral density of a stationary

random process is the Fourier transform

9/6/2022
ELEC-E8104

18



White Noise

A (not necessarily stationary) random process whose autocovariance

is zero for any two different times is called white noise

the Dirac (impulse) delta function

A stationary zero-mean white process

A nonstationary zero-mean white process x(t)
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Random Walk and the Wiener Process

The Wiener random process (or Wiener-Levy or Brownian motion) is 

a limiting form of the random walk: the sum of independent steps of 

size s → 0, equiprobable in each direction, taken at intervals Δ → 0 

such that

This yields a stochastic process w(t) with the following

pdf [assuming w(0) = 0],

the Wiener process is nonstationary. It relates to the zero-mean

white noise, denoted here as n(t), as follows
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Stochastic sequences, Markov property
Markov processes are defined by Markov property

the past up to any is fully characterized by the value of the 

process  at 

“The future is independent of the past if the present is known.”

The Wiener process is Markov

Furthermore, the state x(t) of a (possibly time-varying) dynamic 

system driven by white noise n(t), is a Markov process



Random Sequences and Markov Sequences

Random Sequences, 

a random sequence is Markov Sequences if

The (real-valued) zero-mean sequence v(j), j = 1, . . . , is a discrete-

time white noise (a white sequence) if

where the Kronecker delta function 

q(k) denotes its variance, q(k) =q 

stationaty
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The state x(k) of a dynamic system excited by white noise v(k)

is a discrete-time Markov process or Markov sequence. In general,

both x(k) and v(k) are vector-valued.

The state of a linear dynamic system excited by white Gaussian noise

is a Gauss-Markov sequence

A special case, for a scalar x,  

x becomes the integral (sum) of the white noise sequence terms,

and is called a discrete-time Wiener process
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Markov Chains

A Markov chain is a special case of a Markov sequence, in which the 

state space is discrete and finite

its characterization is given in full by the transition (jump) probabilities

Define the vector

where the components are the probabilities of the chain being in state i.

The evolution in time of (1.4.22-11) is then given by

with matrix notation

the transition matrix of the Markov chain
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Markov property continues
discrete-time white noise (a white 

sequence) scalar

The state of linear dynamic 
equation with white noise 
process

has the following analytical 
solution, next slide
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The State as a Markov Process

Thus, since v(i), i = l, . . . , k − 1, are independent of

which depend only on v(i), i = 0, . . . , l − 1, one has

Thus, the state vector is a Markov process, or, more correctly, a Markov

sequence.

State of a stochastic system described by a Markov process — summarizes

probabilistically its past.


