

Aalto University School of Electrical Engineering

ELEC-E8740 — Course Overview and Introduction to Sensor Fusion

Simo Särkkä

Aalto University

September 6, 2022

Contents

3 Example: Sensor Fusion in Drone and Autonomous Car

Course Overview and Introduction Simo Särkkä 2/28

The Team

Simo Särkkä

Lecturer F305, Rakentajanaukio 2 c simo.sarkka@aalto.fi

Fatemeh Yaghoobi Exercises and Project Work F322, Rakentajanaukio 2 c fatemeh.yaghoobi@aalto.fi

Dr. Christos Merkatas, Dr. Hany Abdulsamad, M.Sc. Zaeed Khan Zulip support, grading

Course Overview and Introduction Simo Särkkä 4/28

Intended Learning Outcomes of The Course

After successfully completing this course, you are able to:

- explain the principles and components of sensor fusion systems,
- identify and explain the differences between linear and nonlinear models and their implications on sensor fusion,
- construct models of multi-sensor systems and use least-squares algorithms for sensor fusion,
- construct continuous and discrete time state-space models based on ordinary differential equations, difference equations, and physical sensor models,
- develop and compare state-space models and Kalman as well as particle filtering algorithms for solving sensor fusion problems.

Schedule

- 10+2 lectures
 - Tuesday, 12:15 14:00 in TU2.
 - Detailed schedule (incl. topics) on MyCourses
 - Previous year's recorded (Zoom) lectures will be available as backup
- 10+2 exercise sessions
 - Exercise sessions are on Fridays, 12:15 14:00 in AS2.
 - Exercises start on Friday, September 9, 2022.
- First exam is on Monday, October 17, 2022 at 9-12.
- Second exam is on Friday, December 9, 2022 at 13-16.
- The tentative project work deadlines are Sunday, November 20, 2022, and Sunday, December 18, 2022.

Check MyCourses regularly for updates!

Course Material and Zulip

Lecture notes and slides are the main course literature

- Lecture notes (~ course book) are already available on the course homepage in MyCourses.
- Slides will be made available in MyCourses just before each lecture.
- There is also Zulip chat space for the course (see MyCourses).

Exercises and Homeworks

- Exercise sessions are held on Fridays, 12:15 14:00 in AS2, starting on Friday, September 9, 2022.
- In the exercise sessions, the teacher shows you hands on how to solve the exercises.
- Pen & paper and computer exercises (mainly Python)
- Exercise sessions are not mandatory but highly recommended the exam questions are likely to be related to the exercises
- In the end of each exercise paper there is a homework. Homeworks affect grading.
 - The homeworks need to be generally returned on MyCourses before the next exercise session day at 12:00.

Assessment and Grading

• The high level formula for the grade is

final grade = max (exams+homework grade, project grade)

- You still must pass both the exams+homework and project!
- The exams and homeworks give total of 100 points, which determine the grade via mapping ≥ 50*pts* ↔ *grade* 1, ≥ 60*pts* ↔ *grade* 2, ≥ 70*pts* ↔ *grade* 3, ≥ 80*pts* ↔ *grade* 4, ≥ 90*pts* ↔ *grade* 5.
- Each of the 2 exams give maximum of 30 points and the homeworks (10) give 4 points each.
- The project work grading is clarified later.

Project work

- Track an autonomous robot using multiple sensors
- Details of the project work will be provided later.

Course Overview and Introduction Simo Särkkä 10/28

Presemo Questionnaire

- We are using presemo on this course.
- Please use your computer or mobile phone and go to:

http://presemo.aalto.fi/fusion

Definition of Sensor Fusion

• One possible definition of sensor fusion:

"computational methodology which aims at combining the measurements from multiple sensors such that they jointly give more information on the measured system than any of the sensors alone."

- The important aspects are:
 - It is computational methodology.
 - Uses measurements from multiple sensors.
 - Attempts to use the information from all the sensors jointly.

Course Overview and Introduction Simo Särkkä 13 / 28

Sensor Fusion Applications: Drones

Sensor Fusion Applications: Autonomous Cars

Course Overview and Introduction Simo Särkkä 15/28

Sensor Fusion Applications: Smartphones

Course Overview and Introduction Simo Särkkä 16/28

The Components of Sensor Fusion

Course Overview and Introduction Simo Särkkä 17/28

Model of a Drone (1)

- We measure *y*₁ with e.g. radar or ultrasound.
- We measure y₂ with e.g. radar or barometer.
- We wish to "fuse" the sensor measurements to get the location (p^x, p^y).
- The model in this case is

$$y_1 = p^x + r_1,$$

 $y_2 = p^y + r_2$. (r_1 and r_2 here denote measurement noises)

 Sensor fusion amounts to just p^x ≈ y₁ and p^y ≈ y₂.

Model of a Drone (2)

- We could also measure the distance y₃ to an additional tilted wall.
- The model now becomes

$$y_1 = p^x + r_1,$$

$$y_2 = p^y + r_2,$$

$$y_3 = \frac{1}{\sqrt{2}} (p^x - x_0) + \frac{1}{\sqrt{2}} p^y + r_3.$$

• In vector form:

 $\mathbf{y} = \mathbf{G} \, \mathbf{x} + \mathbf{b} + \mathbf{r}.$

Model of an Autonomous Car (1)

- We measure relative positions of *M* landmarks.
- We get 2*M* measurements (*M* = 4 here):

$$y_{1} = s_{1}^{x} - p^{x} + r_{1},$$

$$y_{2} = s_{1}^{y} - p^{y} + r_{2},$$

$$\vdots$$

$$y_{2M-1} = s_{M}^{x} - p^{x} + r_{2M-1},$$

$$y_{2M}=s_M^y-p^y+r_{2M}.$$

Again leads to form

$$\mathbf{y} = \mathbf{G} \, \mathbf{x} + \mathbf{b} + \mathbf{r}.$$

Course Overview and Introduction Simo Särkkä 21/28

Model of an Autonomous Car (2)

- We only measure the range to each landmark.
- In that case we have

$$y_1^R = \sqrt{(s_1^x - p^x)^2 + (s_1^y - p^y)^2} + r_1^R,$$

:
:

$$y_M^R = \sqrt{(s_M^x - p^x)^2 + (s_M^y - p^y)^2 + r_M^R}.$$

• This is a non-linear model

$$\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{r}$$

• Non-linear least squares method is needed.

Course Overview and Introduction Simo Särkkä 22/28

Dynamic Models

- The object of interest might also be moving.
- We can model time-continuity with a dynamic model.
- For example, we might have

 $\mathbf{x}_n = \mathbf{x}_{n-1} + \mathbf{q}_n$ (here \mathbf{q}_n is a noise process)

More generally we get state-space models of the form

$$\mathbf{x}_n = \mathbf{f}(\mathbf{x}_{n-1}) + \mathbf{q}_n,$$

 $\mathbf{y}_n = \mathbf{g}(\mathbf{x}_n) + \mathbf{r}_n.$

• Can be coped with Kalman filters, and extended/unscented Kalman filters.

Technical Contents of the Course

- Formulation of sensor fusion as a least squares problem.
- Solution methods for linear least squares problems.
- Solution methods for non-linear least squares problems.
- Solution methods for dynamic least squares (state-estimation) problems.
- Implementation of the methodology to robot platform.

Summary (1)

- Lectures are on Tuesdays in 12:15-14:00
- Exercises on Fridays in 12:15-14:00
- Teaching materials are lecture notes and slides on MyCourses.
- Project work starts later and it is about sensor fusion in a mobile robot.
- There are two mid-term Exams.
- The grade is determined by exams, homeworks, and project work.
- Sensor fusion is methodology for intelligent processing of measurements from multiple sensors.
- In practice, linear/non-linear least squares methods and Kalman filtering methods.

Summary (2)

Typical models that we saw are the following:

$$\mathbf{y} = \mathbf{G} \, \mathbf{x} + \mathbf{b} + \mathbf{r}$$

 $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{r}$

Course Overview and Introduction Simo Särkkä 27/28

Presemo Questionnaire

http://presemo.aalto.fi/fusion

Course Overview and Introduction Simo Särkkä 28/28