Reinforcement Learning
Exercise 1

September 6, 2022

Introduction

In this exercise we will take a first look at a reinforcement learning environment, its components and modify
the reward function of a simple agent.

States, observations and reward functions

The provided Python script (train.py) instantiates a Cartpole environment from OpenAl gym and an RL
agent that acts in it. The agent.py file contains the implementation of a simple reinforcement learning agent;
for the sake of this exercise, you can assume it to be a black box (you don’t need to understand how it works,
although you are encouraged to study it in more detail). You don’t have to edit the agent.py file to complete
this exercise session. Another environment, called Reacher is implemented in file reacher.py, and (incomplete)
code to help visualise reward functions is found in file plot_rew.ipynb. The folder cfg contains config files to
e.g. define the maximum number of steps in an episode. In this exercise you will need to edit the Python
file reacher.py, and the Jupyter Notebook file plot_rew.ipynb.

Cartpole

The Cartpole environment consists of a cart and a pole mounted on top of it, as shown in Figure(ll The cart
can move either to the left or to the right. The goal is to balance the pole in a vertical position in order to
prevent it from falling down. The cart should also stay within limited distance from the center (trying to move

outside screen boundaries is considered a failure).

The state and the observation are four element vectors:

A Aalto University

https://www.gymlibrary.dev/

/home/karol/PycharmPr.../pg-CartPole_torch.py v~

Figure 1: The Cartpole environment

o)

D KRR

where x is the position of the cart, is its velocity, 8 is the angle of the pole w.r.t. the vertical axis, and 6 is
the angular velocity of the pole.

In the standard formulation, a reward of 1 is given for every timestep the pole remains balanced. Upon
failing (the pole falls) or completing the task, an episode is finished.

The train.py script will record videos of the agent’s learning progress during training, and the recorded
videos are saved to results/video/CartPole-v0/train. By default, the training information is saved to
results/logging/CartPole-v0_logging.pkl as well as on cloud via wandb. When the training is finished, the
models are saved to results/model/Cartpole-vO_params.pt. The models can be tested by setting testing=true,
and if the models are saved to a different path, you can use model_path=<YOUR MODEL PATH> to indicate it. Videos
of the agent’s behaviour during testing are saved to results/video/CartPole-v0/test.

Task 1-10 points Train a model with 100 timesteps per episode. Use the command python train.py seed=1
max_episode_steps=100. Then test the model for 1000 timesteps with command: python train.py testing=true
seed=1 max_episode_steps=1000 use_wandb=false — this will evaluate the trained model in 10 episodes and
report the average reward (and episode length) for these 10 episodes. Export the training plot episodes-
ep_reward from wandb (see README.md) and attach the plot in your report. Report also the
average reward after testing the model.

A' Aalto University
H

https://docs.wandb.ai/

g

Question 1.1 — 10 points Test trained model from Task 1 five times with different random seeds. Did
the same model, trained to balance for 100 timesteps, learn to always balance the pole for 1000 timesteps?
Why/why not?

Task 2 - 10 points Repeat the experiment in Task 1 five times, each time training the model from scratch
with 100 timesteps and testing it for 1000 timesteps (in this Task it is enough to test with one seed). Use a
different seed number for each training/testing cycle. Report the average test reward for each repeat.

Question 2.1 — 15 points: Are the behavior and performance of the trained models the same every time?
Why/why not? Analyze the causes briefly.

Question 2.2 — 10 points: What are the implications of this stochasticity, when it comes to comparing
reinforcement learning algorithms to each other? Please explain.

Reacher

Now we will focus on designing a reward function for a different environment, the Reacher environment,
where a two-joint manipulator needs to reach a goal (see Figure 2).

The Cartesian (x, y) position of the end-effector of the manipulator can be determined following the equation:

X = L1 Sin(@o) +L2 Sin(@o + 01),

(2)
y =—L1cos(0g) — Lo cos(0g + 61),
where L1 =1, Lo =1 are the lengths, and 6y, 61 the joint angles of the first and second links respectively.
The state (and observation) in this environment is the two element vector
0o
=8 = , 3
0=s (91) 3)

reacher.py - X

e
___|
Figure 2: The Reacher environment

A’, Aalto University

g

The action space now consists of 5 "options"; 4 correspond rotating the first/second joint left/right, and the
final one performs no motion at all (the configuration doesn’t change). The episode terminates when the agent
reaches the target position, marked in red. To run the training script with the Reacher environment, use

python train.py env=reacher_vl.

Now, let us design a custom reward function and use it for training the RL agent.

Task 3 — 20 points: Edit the function get_reward in reacher.py, and write a reward function to incentivise
the agent to learn the following behaviors:

1. Keep the manipulator rotating clockwise continuously (wrt angle 6y). You can use a lower number of
training episodes for this, e.g. train.py env=reacher_vl train_episodes=200

2. Reach the goal point located in x =[1.0,1.0] (marked in red). Use at least 500 training episodes.

Train one model for each behavior and include the model files in your submission. Also include
the reward function implementations in your report (write them out or attach as screenshots).

Hint: Use the observation vector to get the quantities required to compute the new reward (such as the posi-
tion of the manipulator). You can get the Cartesian position of the end-effector with env.get_cartesian_pos(state).

Task 4 — 10 points: Now, let us visualize the reward function for the second behavior (reaching the goal
[1,1]). Plot the values of the second reward function from Task 3 and the learned best action as a function of
the state (the joint positions). Use the plot_rew.ipynb script as a starting point. After plotting, answer the
questions below. Include the two figures produced by plot_rew.ipynb in your report.

Question 4.1 — 5 points: Where are the highest and lowest reward achieved?

Question 4.2 — 10 points: Did the policy learn to reach the goal from every possible state (manipulator
configuration) in an optimal way (i.e. with lowest possible number of steps)? Why/why not?

Feedback

In order to help the staff of the course as well as the forthcoming students, it would be great if you could
answer to the following questions in your submission:

¢ How much time did you spend solving this exercise?

¢ Did you find any of the particular tasks or questions difficult to solve?

A Aalto University

Submitting

The deadline to submit the solutions through MyCourses is on Sep. 19, 23:55. Example solutions will be
presented during exercise sessions the following Monday.

Your submission should consist of (1) a PDF report containing answers to the Questions asked in these
instructions and plots/model files/reported metrics as required in each of the Tasks, (2) the code with
solutions used for the exercise. Please remember that submitting a PDF report without following the Latex
template provided by us will lead to subtraction of points.

For more formatting guidelines and general tips please refer to the README.md.

If you need help or clarification solving the exercises, you are welcome to join the Slack channel and exercise
sessions.

A, , Aalto University

