ELEC-E8107 - Stochastic models, estimation and control

Arto VISALA, and Issouf OUATTARA

September 7, 2022

Exercises Session 1

Exercise 1

Given the random variables x and y of dimensions n_{x} and n_{y}, with means \bar{x} and \bar{y} respectively, and with covariances matrices $P_{x x}, P_{y y}$ and $P_{x y}$:

1. Find the mean and covariances of the n_{z}-dimensional vector $z=A x+$ $B y+c$, where A and B are matrices of appropriate dimensions and c is a vector.
2. Indicate the dimensions of A, B and c.

Exercise 2

A nonlinear system dynamic model of the car shown in Fig 1 is given by the following equation.

$$
\left\{\begin{array}{l}
x_{k+1}=x_{k}+\cos \left(\theta_{k}\right) \Delta t_{k} v_{k} \tag{1}\\
y_{k+1}=y_{k}+\sin \left(\theta_{k}\right) \Delta t_{k} v_{k} \\
\theta_{k+1}=\theta_{k} \frac{\Delta t_{k} v_{k}}{L} \tan \left(\Phi_{k}\right)
\end{array}\right.
$$

Where v is the speed of the vehicle, θ is the heading and Φ the steering angle. The state of the vehicle can be define as the vector $X_{k}=\left[x_{k}, y_{k}, \theta_{k}, v_{k}, \Phi_{k}\right]^{T}$. The equation (1) can be written as $X_{k+1}=f\left(X_{k}, t_{k}\right)$.

1. Compute the Jacobian of the function $f\left(X_{k}, t_{k}\right)$ with respect to the state vector X_{k}

Figure 1: Simple car kinematic model markings: The distance between the axles of the vehicle is described by L , the direction is described by θ and the steering angle by Φ. The vehicle navigation point is in the center of the rear axle.

Exercise 3

Prove that the following equation holds for a discrete time Markov process

$$
\int p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1} \mid x_{k-2}\right) d x_{k-1}=p\left(x_{k} \mid x_{k-2}\right)
$$

Exercise 4

The covariance matrix of random variables X and Y happens to be:

$$
Q=\left[\begin{array}{cc}
4 & -3 \\
-3 & 9
\end{array}\right]
$$

1. Find the variance of X and Y ?
2. Compute the correlation coefficient between the two random variables.
