ELEC-E8107 - Stochastic models, estimation and control

Arto VISALA, and Issouf OUATTARA

September 12, 2022

Exercises Session 1

Exercise 1

Given the random variables x and y of dimensions n_{x} and n_{y}, with means \bar{x} and \bar{y} respectively, and with covariances matrices $P_{x x}, P_{y y}$ and $P_{x y}$:

1. Find the mean and covariances of the n_{z}-dimensional vector $z=A x+$ $B y+c$, where A and B are matrices of appropriate dimensions and c is a vector.
2. Indicate the dimensions of A, B and c.

Solution Exercise 1

1. The mean and covariance of z :

Since the expected value of the random variable is a linear operator and the expected value of a constant is a constant. The mean of the random variable $z=A x+B y+c$ is then computed as:

$$
\begin{aligned}
\bar{z} & =E[A x+B y+c] \\
& =E[A x]+E[B y]+E[c] \\
& =A E[x]+B E[y]+c \\
& =A \bar{x}+B \bar{y}+c
\end{aligned}
$$

Here, the mean $E[x]=\bar{x}$ is the result of an n-fold integration written as;

$$
\begin{aligned}
E[x] & =\int_{-\infty}^{\infty} \ldots \int_{\infty}^{\infty} x p(x) d x_{1} \ldots d x_{n} \\
& =\bar{x}
\end{aligned}
$$

Similarly, the $P_{x x}$ is the covariance matrix computed by the n_{x}-fold integration, given as:

$$
\begin{aligned}
\operatorname{cov}(x, x) & =E\left[(x-\bar{x})(x-\bar{x})^{T}\right] \\
& =\int_{-\infty}^{\infty} \cdots \int_{\infty}^{\infty}(x-\bar{x})(x-\bar{x})^{T} p(x) d x_{1} \ldots d x_{n} \\
& =P_{x x}
\end{aligned}
$$

Thus, the covariance matrix $P_{z z}$ of the n_{z}-vector is obtained from the n_{z}-fold integration (here, we will use the short-hand notations), which leads to;

$$
\begin{aligned}
P_{z z} & =E\left[(z-\bar{z})(z-\bar{z})^{T}\right] \\
& =E\left[(A x+B y+c-(A \bar{x}+B \bar{y}+c))\left(A x+B y+c-(A \bar{x}+B \bar{y}+c)^{T}\right]\right. \\
& =E\left[(A(x-\bar{x})+B(y-\bar{y})+c(1-1))(A(x-\bar{x})+B(y-\bar{y})+c(1-1))^{T}\right] \\
& =E\left[(A(x-\bar{x})+B(y-\bar{y}))(A(x-\bar{x})+B(y-\bar{y}))^{T}\right] \\
& =E\left[A(x-\bar{x})(x-\bar{x})^{T} A^{T}+A(x-\bar{x})(y-\bar{y})^{T} B^{T}+\right. \\
& \left.\quad B(y-\bar{y})(x-\bar{x})^{T} A^{T}+B(y-\bar{y})(y-\bar{y})^{T} B^{T}\right] \\
& =E\left[A(x-\bar{x})(x-\bar{x})^{T} A^{T}\right]+E\left[A(x-\bar{x})(y-\bar{y})^{T} B^{T}\right] \\
& \quad E\left[B(y-\bar{y})(x-\bar{x})^{T} A^{T}\right]+E\left[B(y-\bar{y})(y-\bar{y})^{T} B^{T}\right] \\
& =A E\left[(x-\bar{x})(x-\bar{x})^{T}\right] A^{T}+A E\left[(x-\bar{x})(y-\bar{y})^{T}\right] B^{T} \\
& \quad B E\left[(y-\bar{y})(x-\bar{x})^{T}\right] A^{T}+B E\left[(y-\bar{y})(y-\bar{y})^{T}\right] B^{T} \\
& =A P_{x x} A^{T}+A P_{x y} B^{T}+B P_{y x} A^{T}+B P_{y y} B^{T}
\end{aligned}
$$

2. The dimensions of A, B and c :

The dimensions of matrix A is $n_{z} \times n_{x}$; of matrix B is $n_{z} \times n_{y}$; and, the dimension of vector c is $n_{z} \times 1$.

Note that the covariance matrices are the symmetric matrices, where the diagonal entries constitute the variances and off-diagonal elements contain (scalar) covariances. The covariance matrix is also positive definite (and thus non-singular) unless there is some dependence among the elements of vector random variable. In such cases, the covariance matrix is positive semi-definite.

Exercise 2

A nonlinear system dynamic model of the car shown in Fig 1 is given by the following equation.

$$
\left\{\begin{array}{l}
x_{k+1}=x_{k}+\cos \left(\theta_{k}\right) \Delta t_{k} v_{k} \tag{1}\\
y_{k+1}=y_{k}+\sin \left(\theta_{k}\right) \Delta t_{k} v_{k} \\
\theta_{k+1}=\theta_{k} \frac{\Delta t_{k} v_{k}}{L} \tan \left(\Phi_{k}\right) \\
v_{k+1}=v_{k} \\
\Phi_{k+1}=\Phi_{k}
\end{array}\right.
$$

Where v is the speed of the vehicle, θ is the heading and Φ the steering angle. The state of the vehicle can be define as the vector $X_{k}=\left[x_{k}, y_{k}, \theta_{k}, v_{k}, \Phi_{k}\right]^{T}$. The equation (1) can be written as $X_{k+1}=f\left(X_{k}, t_{k}\right)$.

1. Compute the Jacobian of the function $f\left(X_{k}, t_{k}\right)$ with respect to the state vector X_{k}

Figure 1: Simple car kinematic model markings: The distance between the axles of the vehicle is described by L , the direction is described by θ and the steering angle by Φ. The vehicle navigation point is in the center of the rear axle.

Solution Exercise 2

The Jacobian is computed using the definition. Note that $f\left(X_{k}, t_{k}\right)$ is a vector valued function. The Jacobian can be written as follow:

$$
\begin{align*}
& \left.\frac{\partial f}{\partial X}\right|_{X=X_{k}}=\left[\begin{array}{ccccc}
\frac{\partial f_{1}}{\partial X_{1}} & \frac{\partial f_{1}}{\partial X_{2}} & \frac{\partial f_{1}}{\partial X_{3}} & \frac{\partial f_{1}}{\partial X_{4}} & \frac{\partial f_{1}}{\partial X_{5}} \\
\frac{\partial f_{2}}{\partial X_{1}} & \frac{\partial f_{2}}{\partial X_{2}} & \ldots & \cdots & \cdots \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
\cdots & \ldots & \ldots & \ldots & \ldots
\end{array}\right] \tag{2}\\
& =\left[\begin{array}{ccccc}
1 & 0 & -v_{k} \Delta t_{k} \sin \left(\theta_{k}\right) & \Delta t_{k} \cos \left(\theta_{k}\right) & 0 \\
0 & 1 & v_{k} \Delta t_{k} \cos \left(\theta_{k}\right) & \Delta t_{k} \sin \left(\theta_{k}\right) & 0 \\
0 & 0 & 1 & \Delta t_{k} \frac{\tan \left(\Phi_{k}\right)}{L} & \frac{v_{k} \Delta t_{k}}{L \cos (\Phi)^{2}} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \tag{3}
\end{align*}
$$

Exercise

Prove that the following equation holds for a discrete time Markov process

$$
\int p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1} \mid x_{k-2}\right) d x_{k-1}=p\left(x_{k} \mid x_{k-2}\right)
$$

Solution Exercise 3

The marginal joint distribution $p\left(x_{k}, x_{k-2}\right)$ can be obtained from the joint distribution $p\left(x_{k}, x_{k-1}, x_{k-2}\right)$ by integrating with respect to x_{k-1} :

$$
\begin{align*}
\int p\left(x_{k}, x_{k-1}, x_{k-2}\right) d x_{k-1} & =p\left(x_{k}, x_{k-2}\right) \tag{4}\\
& =p\left(x_{k} \mid x_{k-2}\right) p\left(x_{k-2}\right) \tag{5}
\end{align*}
$$

By recursively using the Bayes' formula, and the Markov property we can write the following:

$$
\begin{align*}
p\left(x_{k}, x_{k-1}, x_{k-2}\right) & =p\left(x_{k} \mid x_{k-1}, x_{k-2}\right) p\left(x_{k-1}, x_{k-2}\right) \tag{6}\\
& =p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1}, x_{k-2}\right) \tag{7}\\
& =p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1} \mid x_{k-2}\right) p\left(x_{k-2}\right) \tag{8}
\end{align*}
$$

The equation (5) is obtained from (4) by applying the Markov property. We integrate (6) and equate it with (3):

$$
\begin{align*}
\int p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1} \mid x_{k-2}\right) p\left(x_{k-2}\right) d x_{k-1} & =p\left(x_{k} \mid x_{k-2}\right) p\left(x_{k-2}\right) \tag{9}\\
p\left(x_{k-2}\right) \int p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1} \mid x_{k-2}\right) d x_{k-1} & =p\left(x_{k} \mid x_{k-2}\right) p\left(x_{k-2}\right) \tag{10}\\
\int p\left(x_{k} \mid x_{k-1}\right) p\left(x_{k-1} \mid x_{k-2}\right) d x_{k-1} & =p\left(x_{k} \mid x_{k-2}\right) \tag{11}
\end{align*}
$$

Exercise 4

The covariance matrix of random variables X and Y happens to be:

$$
Q=\left[\begin{array}{cc}
4 & -3 \\
-3 & 9
\end{array}\right]
$$

1. Find the variance of X and Y ?
2. Compute the correlation coefficient between the two random variables.

Solution Exercise 4

1. The variance of X and Y :

The diagonal values of a covariance matrix consists of variances of individual variables, thus $\operatorname{Var}(X)=4$, and $\operatorname{Var}(Y)=9$.
2. The correlation coefficient between X and Y :

The off-diagonal elements include information of the correlation coefficient,

$$
\begin{aligned}
Q_{X Y} & =Q_{Y X} \\
& =\sigma_{X} * \sigma_{Y} * \rho_{X, Y}
\end{aligned}
$$

Thus, $\rho_{X, Y}=\frac{-3}{2 * 3}=-0.5$. Notice that the value of a correlation coefficient (also know as Pearson's correlation coefficient) is always between +1 and -1 . Note: if $\rho_{X, Y}=0$, the variables X and Y are said to be uncorrelated. If $\rho_{X, Y}=1$, then the variables X and Y are said to be linearly dependent.

