Mathematics for Economists

Mitri Kitti

Aalto University

Vectors

Cartesian product of sets

- \blacktriangleright sets $X_1, X_2 \dots, X_n$
- cartesian product of sets

 $X_1 \times X_2 \times \cdots \times X_n = \{(x_1, x_2, \dots, x_n) : x_1 \in X_1, x_2 \in X_2, \dots, x_n \in X_n\}$

• if $X_i = X$ for all i = 1, ..., n, then X^n denotes the Cartesian product of the sets

Example: deck of cards, ranks = $\{A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2\}$ and suits= $\{\heartsuit, \clubsuit, \clubsuit, \diamondsuit\}$

both ranks×suits and suits×ranks correspond to the entire card deck

▶ The *n*-dimensional Euclidean space is the set

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}},$$

where $n \ge 1$

▶ A point in \mathbb{R}^n is an *n*-tuple (x_1, \ldots, x_n) of real numbers (called coordinates)

Note: A tuple is an *ordered* list. This means that, for example, $(1,1,2) \neq (2,1,1)$

• Points in \mathbb{R}^n can be interpreted as **vectors**

Notations for vectors

- $\mathbf{x} = \mathbf{y}$ means that $x_i = y_i$ for all $i = 1, \dots, n$
- $x \ge y$ means that $x_i \ge y_i$ for all $i = 1, \ldots, n$
- but what about > relation?
- during this course $\mathbf{x} \gg \mathbf{y}$ means that $x_i > y_i$ for all i = 1, ..., n
- Example: $\mathbf{x} = (2a + 3b + 5c, a 3c, 5b 3c)$ and $\mathbf{y} = (10, -2, 2), \mathbf{x} \ge \mathbf{y}$ corresponds to the system of inequalities

• Addition of vectors. If $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ are vectors, then their sum is

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$$

- Vector addition satisfies:
 - Commutativity: $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
 - Associativity: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$
 - Identity: $\mathbf{x} + \mathbf{0} = \mathbf{x}$, where $\mathbf{0}$ is the zero vector

Scalar multiplication of vectors. If r is a scalar and $\mathbf{x} = (x_1, \dots, x_n)$ is a vector, then their product is

The scalar multiplication of vectors satisfies the following distributive laws. For all scalars r, s and vectors u, v, we have

$$(r+s)u = ru + su$$

 $r(u+v) = ru + rv$

The **norm** or **length** of a vector **x** is

$$|\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

▶ The Euclidean **distance** between two vectors *x* and *y* is

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

▶ Distance between P and Q in \mathbb{R}^2 :

> The inner product or dot product of two vectors x and y is

$$\boldsymbol{x} \cdot \boldsymbol{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$

$$||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$
$$||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})}$$

For any two vectors \boldsymbol{x} and \boldsymbol{y} , let $\boldsymbol{\theta}$ be the angle between them. Then we have

 $\boldsymbol{x} \cdot \boldsymbol{y} = ||\boldsymbol{x}|| \, ||\boldsymbol{y}|| \, \cos \theta$

• If $\boldsymbol{x} \cdot \boldsymbol{y} = 0$, the two vectors are orthogonal

Lines, planes, hyperplanes

- ▶ Line in \mathbb{R}^2 is a set of the form $\{x \in \mathbb{R}^n : ax_1 + bx_2 = \alpha\}$, item note that in (x_1, x_2) plane we can write the equation of a line as $x_2 = -ax_1/b + \alpha/b$, slope is -a/b
- ▶ Plane in \mathbb{R}^3 is a set of the form $\{x \in \mathbb{R}^3 : ax_1 + bx_2 + cx_3 = \alpha\}$
- What next?
- Hyperplane in \mathbb{R}^n is a set of the form $\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{p} \cdot \mathbf{x} = \alpha \}$, where \mathbf{p} is the normal of the hyperplane
- Example: two planes $P_1 = \{ \mathbf{x} \in \mathbb{R}^3 : x_3 = 0 \}$ and $P_2 = \{ \mathbf{x} \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0 \}$, What is the intersection $P_1 \cap P_2$?

Examples

- ▶ What is the equation that determines the plane that has (1, −1, 2) as its normal and passes through (1, 2, 3)?
- Assume that a line in x_1, x_2 -plane has a parameterized presentation $x_1(t) = 1 + 2t$, $x_2(t) = -1 + 2t$, what would be the quation of the line in the form $ax_1 + bx_2 = c$?

Pairs of equations

$$ax_1 + bx_2 = e$$
$$cx_1 + dx_2 = f$$

- Finding a solution means finding the point of intersection of two lines
- There is a solution whenever the lines are not parallel, or the two lines are the same line (in which case there is inifinitely many solutions)
- Can you formulate these conditions mathematically?
- What about higher dimensional cases?

Intersections of hyperplanes

Tesseract — hypercube in \mathbb{R}^4

Example

- Consumption bundle of *n*-goods, *x* = (x₁,...,x_n), where x_i, *i* = 1,..., *n* are amounts consumed
- Price vector $\boldsymbol{p} = (p_1, \dots, p_n)$
- Monetary value of the consumption bundle $p_1x_1 + p_2x_2 + \cdots + p_nx_n = \mathbf{p} \cdot \mathbf{x}$
- Monetary value of the consumption bundle $p_1x_1 + p_2x_2 + \cdots + p_nx_n = \mathbf{p} \cdot \mathbf{x}$
- ▶ Budget set $\{x \in \mathbb{R}^n : p \cdot x = w, x \ge 0\}$, where w is the wealth
 - note: an intersection of hyperplanes

Consider m vectors u₁,..., u_m. We say that a vector v is a linear combination of u₁,..., u_m if there exist scalars a₁,..., a_m such that

 $\boldsymbol{v} = a_1 \boldsymbol{u}_1 + \cdots + a_m \boldsymbol{u}_m$

Suppose we want to express $\mathbf{v} = (3, 7, -4)$ as a linear combination of the three vectors

$$m{u}_1 = (1,2,3) \ m{u}_2 = (2,3,7) \ m{u}_3 = (3,5,6)$$

We need to find three scalars a₁, a₂, a₃ such that v = a₁u₁ + a₂u₂ + a₃u₃
That is, we need to solve the following system of linear equations:

$$a_1 + 2a_2 + 3a_3 = 3$$

 $2a_1 + 3a_2 + 5a_3 = 7$
 $3a_1 + 7a_2 + 6a_3 = -4$

Verify that the unique solution is $a_1 = 2$, $a_2 = -4$, and $a_3 = 3$. Thus $\mathbf{v} = 2\mathbf{u}_1 - 4\mathbf{u}_2 + 3\mathbf{u}_3$

Vectors u_1, \ldots, u_m in \mathbb{R}^n are **linearly dependent** if and only if there exist scalars a_1, \ldots, a_m , not all zero, such that

$$a_1 \boldsymbol{u}_1 + \cdots + a_m \boldsymbol{u}_m = \boldsymbol{0}.$$

▶ Vectors u_1, \ldots, u_m in \mathbb{R}^n are **linearly independent** if and only if

$$a_1 u_1 + \cdots + a_m u_m = \mathbf{0}$$

implies

$$a_1=a_2=\cdots=a_m=0.$$

- Suppose one of the vectors u_1, \ldots, u_m is equal to **0**. Then the vectors must be linearly dependent
- Every nonzero vector *u* is, by itself, linearly independent
- ► If two of the vectors u₁,..., u_m are equal or one is a scalar multiple of the other, then the vectors must be linearly dependent
- Two vectors are linearly dependent if and only if one of them is a scalar multiple of the other
- If a set S of vectors is linearly independent, then any subset of S is linearly independent
- If a set S contains a subset of linearly dependent vectors, the S is linearly dependent
- ► The nonzero rows of a matrix in row echelon form are linearly independent