

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

Joni Pajarinen 13.9.2022

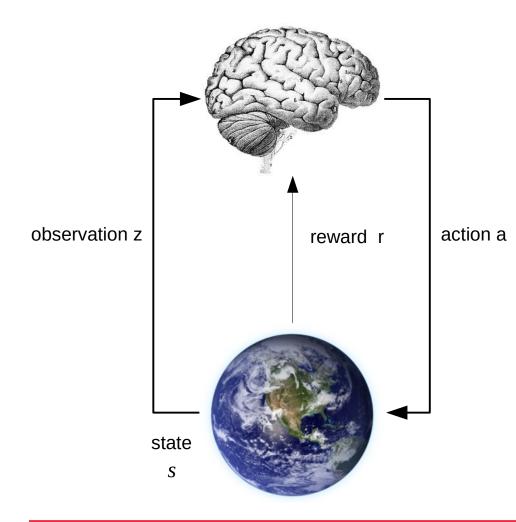
Today

• Markov decision processes

Learning goals

- Understand MDPs and related concepts
- Understand value functions
- Be able to implement value iteration for determining optimal policy

Markov decision process



MDP Environment observable z=s

Defined by dynamics $P(s_{t+1}|s_t, a_t)$

And reward function $r_t = r(s_t, a_t)$

Solution, for example $a_{1,...,T}^* = arg \max_{a_1,...,a_T} \sum_{t=1}^T r_t$

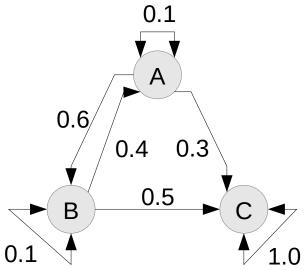
Represented as policy $a=\pi(s)$

Let's discuss MDPs in more detail

Markov property

- "Future is independent of past given the present"
- State sequence *S* is Markov iff \blacktriangleleft "if and only if" $P(S_{t+1}|S_t) = P(S_{t+1}|S_{1}, \dots, S_t)$
- State captures all history
- Once state is known, history may be thrown away

- Markov process is a memoryless random process that generates a state sequence *S* with the Markov property
- Defined as (*S*,*T*)
 - S: set of states
 - T: S $x \in [0,1]$ state transition function
 - $T_t(s,s') = P(s_{t+1}=s'|s_t=s)$
 - *P* can be represented as a transition probability matrix
- State sequences called episodes

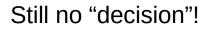


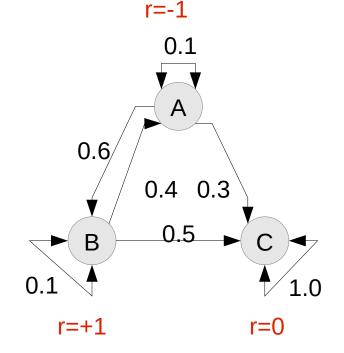
Aalto University School of Electrical Engineering

How to calculate probability of a particular episode? Starting from A, what is the probability of A,B,C?

Markov reward process

- Markov reward process = Markov process with rewards
- Defined by (S, T, r, γ)
 - S, T :as above
 - $r: S \rightarrow \mathcal{R}$ reward function
 - γ [0,1]: discount factor
- Accumulated rewards in finite (*H* steps) or infinite horizon $\sum_{t=0}^{H} \gamma^{t} r_{t} \qquad \sum_{t=0}^{\infty} \gamma^{t} r_{t}$





• *Return G*: accumulated rewards from time t

Aalto University School of Electrical Engineering

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k+1}$$

Why discount?

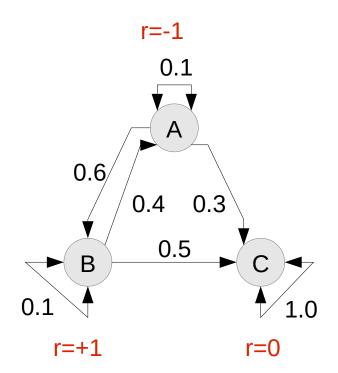
Return of (A,B,C), γ =0.9?

State value function for Markov reward processes

• State value function V(s) is expected cumulative reward starting from state s

 $V(s) = E[G_t | s_t = s]$

• Value function can be defined by the Bellman equation $V(s) = E[G_t | s_t = s]$ $V(s) = E[r_t + \chi V(s_{t+1}) | s_t = s]$



What is the value function for γ =0? What is the value function for γ =0.5?

Markov decision process (MDP)

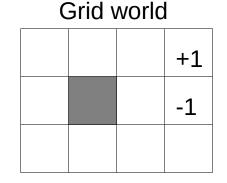
- Markov decision process defined by (S, A, T, R, y)
 - S, γ : as above
 - A: set of actions (inputs)

-
$$T: S \times A \times S \rightarrow [0,1]$$

 $T_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$

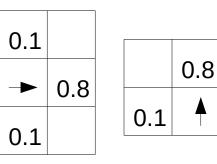
- R:
$$S \times A \rightarrow \Re$$
 reward function
 $r_t(s, a) = r(s_t = s, a_t = a)$

• Goal: Find policy $\pi(s)$ that maximizes expected cumulative reward



Agent tries to move forward: P(success) = 0.8 P(left) = 0.1P(right) = 0.1

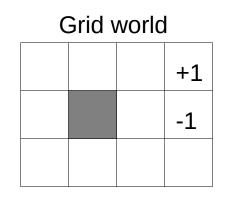
0.1



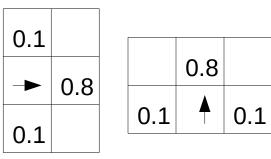
Grid world example!

Policy

- Deterministic policy $\pi(S)$: $S \rightarrow A$ is mapping from states to actions
- Stochastic policy π(a|s): S,A → [0,1] is a distribution over actions given states
- Optimal policy π*(s) is a policy that is better or equal than any other policy (in terms of cumulative rewards)
 - There always exists a deterministic optimal policy for an MDP



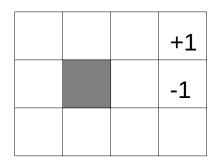
Agent tries to move forward: P(success) = 0.8 P(left) = 0.1P(right) = 0.1

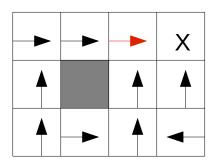


What is the optimal policy in the grid world?

MDP value function

- State-value function of an MDP is the expected return starting from state s and following policy π $V_{\pi}(s) = E_{\pi}[G_t|s_t = s]$
- Can be decomposed into immediate and future components using Bellman expectation equation





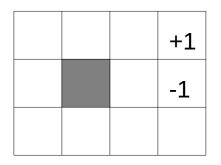
$$V_{\pi}(s) = E_{\pi}[r_{t} + \gamma V_{\pi}(s_{t+1})|s_{t} = s]$$

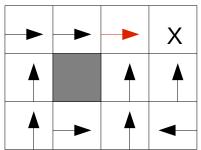
$$V_{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$$

What is value function here?

Action-value function

• Action-value function Q is expected return starting from state s, taking action a, and then following policy π $Q_{\pi}(s,a) = E_{\pi}[G_t|s_t = s, a_t = a]$





• Using Bellman expectation equation $Q_{\pi}(s,a) = E_{\pi}[r_{t} + \gamma Q_{\pi}(s_{t+1}, a_{t+1}|s_{t} = s, a_{t} = a)]$ $Q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} T(s,a,s') Q_{\pi}(s',\pi(s'))$

Optimal value function

 Optimal state-value function is maximum value function over all policies

$$V^*(s) = max_{\pi}V_{\pi}(s)$$

• Optimal action-value function is maximum action-value function over all policies

$$Q^*(s,a) = max_{\pi}Q_{\pi}(s,a)$$

• All optimal policies achieve optimal state- and action-value functions

What is the optimal action if we know Q^* ? What about V^* ?

Optimal policy vs optimal value function

Optimal policy for optimal action-value function

$$\pi^*(s) = arg max_a Q^*(s, a)$$

• Optimal action for optimal state-value function $\pi^{*}(s) = \arg \max_{a} E_{s'}[r(s,a) + \gamma V^{*}(s')]$ $\pi^{*}(s) = \arg \max_{a} \left(r(s,a) + \gamma \sum_{s'} T(s,a,s') V^{*}(s') \right)$

Value iteration

Do you notice that this is an expectation?

• Starting from $V_0^*(s) = 0 \forall s$ iterate

$$V_{i+1}^{*}(s) = max_{a} \left(r(s, a) + \gamma \left(\sum_{s'} T(s, a, s') V_{i}^{*}(s') \right) \right)$$

until convergence

• Value iteration converges to V*(s)

Compare to $G^*(s) = min_a \{l(s,a) + G^*(f(s,a))\}$ from last week!

Iterative policy evaluation

- Problem: Evaluate value of policy π
- Solution: Iterate Bellman expectation back-ups
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_{\pi}$
- Using synchronous back-ups:
 - For all states s
 - Update $V_{k+1}(s)$ from $V_k(s')$
 - Repeat

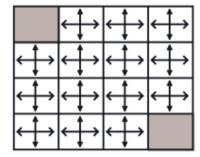
$$V_{k+1}(s) = r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_k(s')$$
$$V_{k+1}(s) = \sum_{a} \pi(a|s) \left(r(s, a) + \gamma \sum_{s'} T(s, a, s') V_k(s') \right)$$

Note: Starting point can be random policy

From slide 11

V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Greedy policy



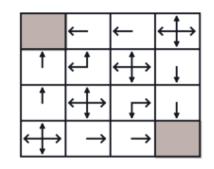
	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	Ļ	\Leftrightarrow	\Leftrightarrow
1	¢	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	¢	\Leftrightarrow	ţ
\longleftrightarrow	\Leftrightarrow	\rightarrow	

r=-1 for all actions

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0



k = 1

Policy improvement and policy iteration

- Given a policy π , it can be improved by
 - Evaluating V_{π}
 - Forming a new policy by acting greedily with respect to ${V}_{\pi}$
- This always improves the policy
- Iterating multiple times called *policy* iteration
 - Converges to optimal policy

Computational limits – Value iteration

- Complexity O(|A||S|²) per iteration
- Effective up to medium size problems (millions of states)
- Complexity when applied to action-value function
 O(|A|²|S|²) per iteration

Summary

- Markov decision processes represent environments with uncertain dynamics
- Deterministic optimal policies can be found using statevalue or action-value functions
- Dynamic programming is used in value iteration and policy iteration algorithms

Next week: From MDPs to RL

- Readings
 - Sutton & Barto Ch. 5-5.4, 5.6, 6-6.5

